
MODELING & SIMULATION FRAMEWORK FOR THE

INCLUSION OF SIMULATION OBJECTIVES BY

ABSTRACTION

Sangeeth saagar Ponnusamy
1&2

, Vincent Albert
2
 and Patrice Thebault

1

1Airbus Operations SAS, 316 Route de Bayonne, 31060, Toulouse, France
2LAAS-CNRS, 7 Avenue du Colonel Roche, F-31077, Toulouse, France

{sangeeth-saagar.ponnusamy,patrice.thebault}@airbus.com, valbert@laas.fr

Keywords: Abstraction, Compatibility, Experimental Frame, Formal Matching, Hybrid Systems, Simulation

Abstract: Abstractions of experimental frame components with respect to simulation objectives are discussed with a

hybrid system simulation application. Validity assessment through behavioural compatibility criteria

described by the trace inclusion framework is given. The simulation objectives are associated with

modelling abstractions by such a framework and described in established modeling & simulation

framework. Consistent abstractions from hierarchically ordered posets for stimulant and observer models in

experimental frame are discussed. A landing gear example is taken and testability through primary

experimental frame component abstractions was observed for the given simulation requirements. The formal

framework under development is briefly discussed at the end in the context of applicability and derivability

of experimental frame and fidelity of simulation.

1 INTRODUCTION

A system maps input signals to output signals
with an underlying dynamic. Hybrid dynamics in
systems arise out of interaction between continuous
dynamics and discrete dynamics and are found in a
myriad of real world systems, both complex and
simple alike. Modeling and Simulation (M&S) of
such dynamics is difficult due to mutual interaction
of discrete jumps and continuous flows. Abstractions
are always employed in modeling systems and this is
more so true in hybrid systems, however, in
modeling such a system, the choice of abstractions
are crucial to reach the objective of simulation.
However, an abstraction is valid only for a given
validation objective and in [Albert, 2009] validity of
simulation is discussed in terms of class of
abstractions. Abstractions of hybrid systems
especially for safety verification were widely
discussed in [Girard, 2007]. Abstraction must
capture the dual relationship between the model and
its intended purpose.

This paper describes the formal approach to
reach this intended objective of simulation through
the abstraction of Experimental Frame (EF)

components described in the established M&S
framework by Zeigler [Zeigler, 1984]. The approach
is illustrated with an application to EF abstraction
refinement and verification of a hybrid system
simulation.

2 MODELING ABSTRACTIONS

A model is always an abstraction of reality and
in modeling and simulation of complex systems,
often the difficulty is finding and using consistent
and valid abstractions to model the simulated real
world system with respect to simulation
requirement. In the context of increased usage of
simulation as a means to design and analyse real
world complex systems, a Model-Based Systems
Engineering approach is important in development
and usage of simulation products. This is more so
true in developing a complex simulation product
where the component models are developed by
different stakeholders and a common frame of
reference must exist in terms of implementing
consistent abstractions in the experimental frame.

From systems perspective, consistency is
evaluated through traceability and verification,
whereas validity is evaluated through validation. In a

simulation framework, abstraction of the systems to
simulate the System Under Test (SUT) includes
abstraction of the stimulant and environmental
systems and this paper deals with the consistency
and validity of stimulant abstractions.

2.1 Experimental Frame

In the context of studying a system through
simulation, the concept of experimental frame
introduced in [Zeigler, 1984] is used to describe
experimental scenarios under which the system and
corresponding models will be used. An EF defines
controllability and observability means to stimulate
and observe the model temporal evolution.

The systems approach in segregating SUT and
EF is often the case in reality when system
development and its validation through simulation
are done by two different entities. The language and
its level of abstraction need to be coherent to derive
any meaningful conclusion from the simulation
results about the real system.

An Experimental Frame, in general, is composed
of a Generator (G), Transducer (T) and Acceptor
(A). A classical illustration of EF as depicted in
[Zeigler, 1984] is shown in the following figure.

Figure 1: Experimental Frame.

Traoré et al defines an EF in the form of following

tuple in [Traoré, 2010]

 (1)

where , (

) and

with is the time base

 are the input variable of model and EF

 are the output variable of model and EF

 are the set of segments injected onto the model

inputs

 are the set of admissible input segments for the

experimental control

 are the set of segments observed onto the model

outputs

SU is the set of conditions, also referred to as

summary mappings establishing relationship

between inputs and outputs within a frame.
The acceptor dictates the acceptance conditions

for simulation and encoded in temporal logic

 (

) ⊨ { , }

(2)

where are the requirements defined in a
formalism such as temporal logic. An example could
be, response time for the steady state should be
below a given time limit, .

The generator acts as an input stimulus for the
model, whose outputs are transformed by a
transducer into a comprehensible form, which are in
turn compared against a set of acceptable conditions
specified by an acceptor. In addition, the EF may
contain environmental models which simulate the
real environment in which the SUT operates. Thus
the EF components may be classified broadly as
primary and secondary components with the former
being the prime drivers of simulation, namely
generator, acceptor and transducer, and the latter
being environmental models. The components could
be interconnected and hierarchically composed to
build an EF. However, it must be noted that
abstraction of environmental models are equally
important as such models are seldom absent in an
EF.

2.1.1 EF Applicability & Derivability

In [Albert, 2010], the concepts of
homomorphism, applicability and derivability are
discussed in the framework of M&S. A morphism
relation establishes correspondence between a
concrete model and an abstract model and such a
relation between two models is called
homomorphism when the transition and output
function has been preserved i.e. behavioural
equivalence. Applicability and derivability are more
structural concepts in that the former determines
whether an EF can be applied to a model and the
later determines the extent of such an application.
Applicability and derivability defines compatibility
criteria between a model and EF. This compatibility
is influenced by the abstraction level of EF
components and the paper deals with the
applicability of such an abstraction. Figure 2, taken
from [Zeigler, 1984], illustrates this concept
between the derivability and hierarchy of
abstractions and the relation between them through
applicability.

 IM M

 E E

Figure 2: Morphism, Applicability & Derivability

relations.

2.2 Validity in Experimental Frame

In general, a model is said to be valid if it

satisfies the experimental frame. In this context, in

[Albert, 2009], experimental frames were proposed

in terms of model usage domain and objective

domain called Simulation Domain of Use (SDU) and

Simulation Objective of Use (SOU) respectively.

Simulation validity in other words can be defined

as the compatibility between SDU and SOU.

Compatibility, in general, is defined as the degree of

conformity between the considered entities. A valid

simulation has the prerequisite of syntactic and

semantic compatibility between the SDU and SOU.

A study on semantic compatibility between the ports

of simulation models based on ontologies was done

in [Man, 2009]. Similarly, in [Albert, 2010],

compatibility between EF and model interfaces were

discussed in terms of syntactics parameters such as

topology, scope, type signature, I/O relation. In this

paper, however, compatibility is discussed in terms

of validity through abstraction. In simulating a

complex system which is hierarchically composed of

different subsystems, modeling abstraction choices

in building a SDU consistent with the simulation

objectives described by SOU will yield this

compatibility. In addition, simulation product

validity is an aggregation of the problem of

correctness and validity. The correctness of

implementation or verification is not discussed here

and only the abstraction influence of primary EF on

validity is discussed.

2.2.1 Primary EF Component Validity

SDU and SOU intuitively refers to model
behavioural limits and model behavioural
expectations respectively. Then the key question is
how to drive the model behaviour to reach its
intended expectations in the context of simulation.
In other words, what are the necessary and

consistent abstractions to be made in the EF
components to drive the SUT to an acceptable
degree of validity? This paper deals with the
reachability of SOU through primary EF component
abstractions. The reachability of SOU through
environmental model abstractions and their
composition with primary components are subject of
another study and are not discussed here.

From the systems perspective, testability of a
system is based on the controllability and
observability of the system components.
Controllability and observability defines the ease of
bringing and propagating data to the input and
output of the component respectively. Thus the
abstraction of primary EF components must result in
adequate testability conditions with respect to the
simulation objectives.

In [Foures, 2013], a method of defining the
intended purpose of simulation for discrete event
simulation of a continuous system was presented by
Damien et al. In [Foures, 2012], a formal
compatibility between EF and FD-DEVS model was
proposed in terms of metrics defined on scope,
precision and state space. The state space metric was
discussed in terms of trace inclusion and a truth table
was proposed to describe the model coverage by EF.
This study is an extension of such definition of SDU
and SOU to simulation of a hybrid system in the
context of input abstraction and its subsequent
compatibility to an EF.

The compatibility is discussed in terms of

reachability of the SUT where reachability is defined

as the set of all possible states reachable by a system

and is used to verify temporal logic properties

defined as safety etc. In this context of definition of

validation requirements, it is important to distinguish

between simulation validity and system validity.

Simulation validity answers whether the simulation

is adequate to answer questions on system

validation. System validation is validation of system

with respect to its requirements. Simulation validity

is a prerequisite of system validity and thus

decisions taken at any stage along the V cycle where

simulation is used as a means of Verification &

Validation, it is intrinsically tied to the key question

of simulation fidelity. A system is said to be valid by

simulation only when the simulation itself is valid

and thus it is a necessary and sufficient condition for

system validity assessment through simulation. Let

 and be system and simulation

requirements respectively on the system () and

its representation ().

System validation through simulation implies the

acceptor input i.e. model output, satisfies system

requirements and thereby simulation requirements,

 ⊨ ⇒⊨

(3)

where, ⊨ means simulation validity. The

converse may not be true ⊨ ⊬⊨ .

The system validity assessment by simulation

thus becomes

(4)

In other words, the above equation dictates that

reachability under input stimuli to the model

from EF (must result in model output

 satisfying to be a valid model.

It may be recalled that the distance between

system and simulation validation is introduced by

abstraction of the system as a simulation model. The

study deals with what are the necessary and

consistent modeling abstractions to be implemented

in simulation such that they are consistent with

system validation requirements. In other words,

choosing abstractions such that the simulation is

adequate i.e. valid to draw any meaningful

conclusion about the real system. Assuming correct

environmental model abstraction, the question is

abstraction of the primary EF components in driving

the simulation to its objective with respect to SDU.

In this paper, through reachability of SUT, necessary

and consistent primary EF abstractions with respect

to system requirements are discussed.

2.2.2 Primary EF Component Abstraction

The primary components of EF are given as

 ∣ (5)

where and Y are input and output variables

defined with over a time base T. Similar to the

general EF definition, we define

 , are the set of output segments

 , are the set of input segments

A morphism relation establishes correspondence

between a concrete model and its abstract version

through abstraction operation. Abstractions are

manyfold depending on the simulation objectives

and hypotheses. From the classes of abstractions

defined in [Albert, 2009], we define abstraction

operation as over an abstraction class. Such

abstractions are related by binary relations forming a

partial order. A partially ordered set or a poset is a

set with reflexive, transitive relation on a

set . The hierarchy of abstractions could be defined

as a partial order relation over a finite lattice.

→

→

(6)

Different abstraction operations may be feasible

over such a finite lattice whose height is defined by

a set The valid set of abstractions among them are

defined by

 ⊨ { , } ∣ n

(7)

In addition to abstraction of model semantics,

model interfaces are abstracted based on their syntax

definition and semantics it handles. The syntactics

(number of ports, coupling, structure) and semantics

(data type, type signature) of EF and SOU interfaces

must be compatible and are defined in terms of a

partial order relation. Such a definition followed by

an inclusion criterion will help address the

simulation validity with respect to abstractions.

The general inclusion relation between the

admissible model input segments with respect to its

capabilities are defined by

(8)

It must be noted that there could be

interconnection () between environmental

models and primary components and the

applicability extends to them as well. In EF

definition as a tuple in [Albert, 2010], the coupling

between models M with identifiers I is given by Z.

(9)

where EF .

The experimental control segments to model, and

acceptor input, then becomes

(10)

Acceptance conditions require transduced outputs or

outputs of the SUT or environmental models. The

compatibility is given by

(11)

Utilising such definition, applicability is extended as

(12)

The compatibility criteria described above also

includes model constraints, defined by the

behavioural limits in terms of possible reachable

states (), in other words SDU, as well as the

constraints on the inputs (X) and outputs (Y).

 = { }

(13)

Constraints on state, output and input are defined

for all the EF and SUT and violation of such

constraints results in inconsistency. The constraint

on the state evolution is given below

∀

→

 such that

(

(14)

Intuitively, the above equation lays out a consistency

criteria such that the under transition relation, , the

evolution of state from step i to i+1 respect the

constraints imposed on the state space. Similarly,

such definition can be extended to inputs and

outputs.

2.3 Model Coverage Metric

The compatibility state space metric defined by

trace inclusion is used to analyse the extent of model

coverage by primary EF components and thereby

quantify the abstraction with respect to simulation

objectives. In this context, four criteria have been

proposed with respect to this model coverage metric,

Valid : EF Abstractions are consistent with

simulation objectives.

 ⊨

(15)

Partially Valid: EF Abstractions are partially

consistent with simulation objectives.

 ⊨

(16)

Properties

 belonging to the same class could be

hierarchical from high level to low level and are

validated sequentially (
⊨

⇒

⊨

).

Invalid : EF abstractions are not consistent

with simulation objectives and resulting model

behaviour violates the requirements

(17)

Incompatible : EF abstractions are not consistent

with simulation objectives and the resulting model

behaviour violates the constraints.

(18)

The EF abstraction is said to be valid if the resulting

reachable states are achievable and covered. The

abstractions of primary EF components resulting in

such validity are denoted by where p={G,T,A}.

In the primary EF model abstractions, certain

abstractions are used to drive the simulation to its

objective and are called design abstractions

For example the generator abstraction,

resulting in SUT input
 driving the

simulation output is given by notation

 .

More details can be found with an example in the

following application case.

3 APPLICATION CASE

As an example application for our approach,
verification of behavioural properties of an aircraft
landing gear described in [Boniol, 2014] was taken.
An aircraft landing gear is used to support the
weight of the aircraft during landing and ground
operations. The conventional retractable landing
gear is tricycle type with two aft gears and one front
gear attached to the main structure of aircraft. In the
following example, other details of the landing gear
system such as brakes, retractable mechanism,
warning devices, fairing, cowling, structures and
other auxiliary systems are not discussed.

3.1 Problem Formulation

The landing gear is extended or retracted by a set

of hydraulic actuators and the system is controlled

digitally in normal mode and analogically in

emergency mode. The SUT is the landing gear

digital control logic which controls the opening or

closing of flow control valves to the actuators. In

normal operation, upon the extend command, the

doors are opened and the landing gear is extended

and upon retract command, the gear is retracted

followed by door closure. The opening and closing

of doors are not simulated in this case. The general

architecture of landing gear is given below with the

presence of a single actuator and could be extended

to the full system of all the landing gears,

Figure 3: Landing gear

The architecture of the hydraulic part is

described in Figure 3 and only the principles of the
motion mechanism are discussed. The landing gear
motion is performed by a set of actuating cylinders.
The cylinder piston position corresponds to the
landing gear position and for each landing gear, a
cylinder retracts or extends it. Hydraulic power is
provided to the cylinders by a set of electro-valves,
where one main electro-valve supplies the specific
electro-valves for closing or opening with hydraulic
power from the aircraft hydraulic circuit. The
hydraulic power is supplied to the landing gear
circuit by a pump with flow Q. The actuator part of
the model is inspired from a MATLAB example of
the single hydraulic cylinder simulation [MATLAB,
2014]. The architecture of the actuator cylinder is
same except for the presence of two openings at the
ends of actuator cylinder marked A and B denoting
retracted and extended positions respectively.

The working mechanism is briefly given as
follows, initially the control logic receives the pilot
command to extend or retract and, activates the
pump. As the flow from pump is passed through the
opening main control valve orifice with area , the
pressure,

 starts building at the end A or B,

depending on the pilot input to extend or to
retract the gear. Once the pressure differential
exceeds a certain threshold,

 , the piston starts
moving until it reaches the other end or chamber
pressure equalizes the pump pressure, whichever is
earlier. Modeling abstractions such as flow
coefficients (, leakage phenomenon,
orifice model are kept the same as described in the
example for the sake of simplicity. Similarly, the
dynamic effect of aerodynamic or ground reactions
is not considered and interaction with other aircraft
systems is also not considered.

Figure 4: Actuator model [Boniol, 2014]

The inertial differential pressure at the ends A and B

are
 and

 and the dwell time when pressure is

below these limits corresponds to the unlock time

from the current mode. The length of cylinder is

given by .

3.2 System Dynamics & Simulation

The SUT is modelled as a Finite State Machine

(FSM) abstraction, a data type state aggregation

abstraction with hypothesis being the system

dynamics has four different modes depending on the

pilot input and actuator response.

Retracted : The piston is at position A and the
differential pressure is below the threshold.

Extending : The modulus of differential pressure
is above the threshold,

 and the piston starts
moving from A.

Extended : The piston is at position B
Retracting : The modulus of differential pressure

is above the threshold,
 , and the piston starts

moving from B.

The system remains at the retracted or extended

position indefinitely until pilot command has been
initiated or failure of hydraulic circuit or both.

The system is modeled in SIMULINK and
Stateflow, a widely used commercial tool in
modeling and simulation of complex reactive
systems based on the finite state machine described
by events and actions. Simulations are carried out
using a variable step ODE45 solver. Alternatively,
such a hybrid system could be modeled in DEVS
formalism and solved using QSS algorithms which
are more amenable to hybrid system simulation as
the state events can be handled much more
efficiently by state-quantization algorithms than by
time-slicing algorithms.

The SUT is the control logic with the
environmental models being that of actuator, pump

Landing Gear

Retracting

Landing Gear

Extending

and main control valve. The generator given below
supplies the input to generate input segments, of
pump flow and main control valve profile apart from
pilot commands

The switching modes are illustrated in the
following figure.

Figure 5: Landing gear hybrid system

3.3 Simulation Requirements

Broadly, the requirements are classified as

normal and failure modes and the requirements

related to normal mode gear function alone listed in

[Boniol, 2014] are taken for validity assessment.

The high level SOU functional objective is

reaching the mode of operation for the given

command. The system should start from extended

mode and reach retracted mode when retract

command is given and vice versa for extend

command.

The other SOU is defined as the data class type

abstraction with validity criteria being error

tolerance on the maximum time of extending and

retracting denoted by and respectively.

 ∀

 ∀

(19)

where, is the unlock time (when

<

), is the

time of extension, is the unlock time (when

<

) and is the time of retraction. The

simulation requirement given in the form of

temporal profile with gear angle being measured

from horizontal plane is shown in figure 6.

Figure 6: Landing gear output requirement

The state constraints are given as

 {

 } ∪{x }

(20)

The simulation is valid if it satisfies the functional

and temporal requirements without violating

constraints.

3.4 Experimental Frame

The specification of the experimental frame
defined in Eq 1 is given as follows.

T = ℝ

The input and output of the EF are

The input and output of the SUT are

where
 i d gives the interconnection relation
 is the retracting or extending
valves
 are
the states describing the phase of the simulation.
 The input segments of the EF and model are given
based on Eq 1. The acceptor segments are given by

(21)

The environmental abstractions are assumed to

be ideal with respect to simulation requirements and

only the primary EF components abstractions are

discussed in the following section.

The experimental frame is illustrated in figure 7.

Figure 7: Landing gear hybrid system

The interconnection between EF and model

components can be seen and such a definition helps

in coherent model development with respect to

simulation objectives.

3.4.1 Primary EF Abstractions

The generator, acceptor and transducer are
described below.

Generator, G: The input stimulii are the pilot
command to retract or extend the gear, pump flow
parameters of the main control valve orifice area and
pump flow profile.

(22)

where, = ,
 ={{Q, } cmd={retract, extend}}

 is the main orifice valve opening profile.

The computation class abstraction is employed in

the form of a Look Up Table and linear interpolation
between data points d for the pump flow and valve
opening profile. The pilot command is abstracted as
a simple flag.

 (

)

(23)

 is the concrete system specification of pump and

main control valve. is the linear map between data
points and time. The design abstraction,

 defined
in section 2.3, in this case is Q and .

Transducer, T: The state of the model is transduced
in terms of gear rotation angle. The transducer
model is given by

(24)

where, ={ } ={ }

The transducer is abstracted as

 =

{

(25)

The map could be a simple linear function (eg:

90*(x)) or may be dependent on velocity,

transmission delay etc.

Acceptor, A : The acceptor includes conditions to

check physical violation constraints such as negative

pressure defined as and semantics of modes

formalized in temporal logic.

 (

) (
 →
 →

)
(26)

where
 is the concrete acceptance conditions

specified in temporal logic formalism. Simulation

validity conditions could also be specified in it.

3.4.2 Results

A typical retract and extend operation of the landing

gear is shown below for a sample simulation

Figure 8: Landing gear output

The fall in pressure at the pump,

 and

subsequent rise in pressure at the main control valve,

 and downstream in the chamber,

 are seen. The

piston displacement, x for both extending (red) and

retracting (green) until it reaches other end of

cylinder is seen. In failure cases such as pump

failure, the piston stops before it reaches the other

end, which is not shown here. In essence, in normal

mode, once the piston reaches the other end, the

control logic closes the control valve and pressure

equalises in the circuit. For the sake of simplicity the

closing of main valve is not simulated.

The method allows to abstract the valid primary

EF components with respect to requirements based

on sample simulation runs. In the present simulation

the pump flow, Q and main valve opening, are

the input design parameters,
 . Recalling definition

in section 2.3, the generator design abstraction,

 resulting in model input,

 driving

the simulation output is given by notation,

 . Then the trace inclusion criteria allows to

classify them as

Valid :

 ⊨

(27)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2
x 10

6

P
re

s
s
u

re
 (

P
a
)

Pressure

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
-0.01

0

0.01

0.02

0.03

Time (s)

D
is

p
la

c
e
m

e
n

t
(m

)

Displacement

p1

p2

p3

Extending displacement

Kx

Retracting displacement

Invalid:

Partially Valid:

 ⊨

Incompatible:

The pump flow and cross section parameters of

main valve are thus classified with respect to

simulation objectives. Similar such abstraction for

transducer
 and acceptor

 driving the

SUT can be defined respectively, though it is not

used in the current study. Such design abstractions

can help for example drive the simulation to its

objective by observing and monitoring the results.

The aggregate effects of all such primary

abstractions are observed onto the model output.

It may be noted that the requirements

 defined

belong to temporal class in that in certain cases

validation of a lower level requirement implicitly

validates the higher level requirement. Assuming the

acceptor abstraction
 is given as a requirement

then validation of temporal behaviour specified as

implies validation of semantics of mode specified

as

The abstraction influence of primary EF

components on simulation validity can thus be

studied using such a validity criteria. Abstraction

classification and hierarchical composition

implemented in a tool will help in extracting

abstractions which are necessary and consistent with

simulation objectives. Building a repository of such

abstractions with respect to objectives could be used

to derive and reuse concepts based on the ontology

framework, also based on the lattice concepts. The

unified simulation method thus helps in better

development of models corresponding to

requirements.

4 FUTURE WORK

The present study deals with primary EF
component abstraction compatibility with SOU. The
notions are based on trace inclusion and a formal
tool needs to be built to quantify this abstraction.
However, notion of reachability is more pertinent
than simulation for hybrid systems since an
exhaustive breadth first search of state space through
reachability analysis, difficult as it might be in terms

of computational cost, yields formal verification of
system. In this regard, various reachability tools
such as MATISSE, UPPAAL, StateEx may be used
and the inclusion relation of reachable state space of
SDU with respect to SOU could be checked.
Problems of scalability of these reachability methods
were discussed widely in literature with potential
solutions of using abstractions to alleviate the
computational burden. The next step would be
extending this method of reachability inclusion
through formal verification tools.

The influence of modeling abstractions
especially of environmental models in EF are not
discussed here and quantification of abstraction
effect on the model reachability with respect to its
objective is of fundamental importance in the usage
of simulation as a means of analysis and design of
real world systems. A correct ‘by design’ of
abstraction with respect to simulation objectives
based on the concepts of approximate bisimulation
[Girard, 2007] and Galois connections [Cousot,
1992] is being studied. Such a holistic approach in
considering the objectives of simulation explicitly
into modeling via abstractions will help address the
problem of validity and fidelity in simulation.

5 CONCLUSIONS

Primary EF component abstraction in input

stimuli has been explained with respect to simulation

objectives. The hierarchical abstraction for class of

abstraction is explained with its correspondence to

simulation objective. Validity is assessed with a

behavioural compatibility criteria based on trace

inclusion. The method implemented here is not

correct by design but rather employed in classical

iterative fashion which is clearly neither optimal nor

formal in its approach. A rigorous mathematical

framework in synthesising such an abstraction with

respect to simulation objective would be the next

step. However, the current study lays sufficient

ground work in terms of assessment methodology

for a formal abstraction compatibility criterion to be

developed.

ACKNOWLEDGEMENTS

The authors would like to thank Richard Johnson

and Bernard Mattos for reviewing the paper and

Damien Foures for fruitful discussions on the

landing gear example.

REFERENCES

Albert, Vincent, 2009, Simulation validity assessment in

the context of embedded system design, Phd Thesis,

LAAS-CNRS, University of Toulouse, Unpublished.

Albert, V, Nketsa, A, Seguin, C, 2010, Verifying trace

inclusion between an experimental frame and a model,

DEVS Integrative Modeling and Simulation

Symposium.

Boniol, F, Wiels, V, 2014, The Landing Gear Case Study,

4th International ABZ Conference, Case study track.

Cousot, Patrick, 1992, Abstract Interpretation

Frameworks, Journal of Logic and Computation,

volume 2, pages 511-547.

Foures, D, Albert, V, Nkesta, A, 2013, Simulation

validation using the compatibility between simulation

model and experimental frame, Proceedings of the

2013 Summer Computer Simulation Conference,

Society for Modeling & Simulation International,

Vista, CA, Article 55 , 7 pages.

Foures, D, Albert, V, Nkesta, A, 2012, Formal

compatibility of experimental frame concept and FD-

DEVS model, 9th International Conference on

Modeling, Optimization & Simulation, Bordeaux,

France.

Girard, A, Pappas, G J, 2007, Approximation Metrics for

Discrete and Continuous Systems, IEEE Transactions

on Automatic Control, Volume 52, Issue 5, pages 782-

798.

Man-Kit-Leung, J, Mandl, T, Lee, E A, Latronico, E,

Shelton, C, Tripakis, S, Lickly, B, 2009, Scalable

semantic annotation using lattice based ontologies.

Lecture Notes in Computer Science, Volume 5795, pp

393-407.

MATLAB SIMULINK Single hydraulic cylinder

simulation, SIMULINK R2014a Example,

http://www.mathworks.fr/fr/help/simulink/examples/si

ngle-hydraulic-cylinder-simulation.html.

Traoré, M K, Muzzy, A, 2006, Capturing the dual

relationship between simulation models and their

context, Simulation Modelling Practice and Theory

14(2): 126–142.

Zeigler, B P, 1984, Theory of Modelling and Simulation,

Krieger Publishing Co., Inc., Melbourne, FL, USA.

