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Abstract: Abstractions of experimental frame components with respect to simulation objectives are discussed with a 

hybrid system simulation application. Validity assessment through behavioural compatibility criteria 

described by the trace inclusion framework is given. The simulation objectives are associated with 

modelling abstractions by such a framework and described in established modeling & simulation 

framework. Consistent abstractions from hierarchically ordered posets for stimulant and observer models in 

experimental frame are discussed. A landing gear example is taken and testability through primary 

experimental frame component abstractions was observed for the given simulation requirements. The formal 

framework under development is briefly discussed at the end in the context of applicability and derivability 

of experimental frame and fidelity of simulation.     

1 INTRODUCTION 

A system maps input signals to output signals 
with an underlying dynamic. Hybrid dynamics in 
systems arise out of interaction between continuous 
dynamics and discrete dynamics and are found in a 
myriad of real world systems, both complex and 
simple alike. Modeling and Simulation (M&S) of 
such dynamics is difficult due to mutual interaction 
of discrete jumps and continuous flows. Abstractions 
are always employed in modeling systems and this is 
more so true in hybrid systems, however, in 
modeling such a system, the choice of abstractions 
are crucial to reach the objective of simulation. 
However, an abstraction is valid only for a given 
validation objective and in [Albert, 2009] validity of 
simulation is discussed in terms of class of 
abstractions. Abstractions of hybrid systems 
especially for safety verification were widely 
discussed in [Girard, 2007]. Abstraction must 
capture the dual relationship between the model and 
its intended purpose. 

This paper describes the formal approach to 
reach this intended objective of simulation through 
the abstraction of Experimental Frame (EF) 

components described in the established M&S 
framework by Zeigler [Zeigler, 1984]. The approach 
is illustrated with an application to EF abstraction 
refinement and verification of a hybrid system 
simulation. 

2 MODELING ABSTRACTIONS  

A model is always an abstraction of reality and 
in modeling and simulation of complex systems, 
often the difficulty is finding and using consistent 
and valid abstractions to model the simulated real 
world system with respect to simulation 
requirement. In the context of increased usage of 
simulation as a means to design and analyse real 
world complex systems, a Model-Based Systems 
Engineering approach is important in development 
and usage of simulation products. This is more so 
true in developing a complex simulation product 
where the component models are developed by 
different stakeholders and a common frame of 
reference must exist in terms of implementing 
consistent abstractions in the experimental frame. 

From systems perspective, consistency is 
evaluated through traceability and verification, 
whereas validity is evaluated through validation. In a 



 

simulation framework, abstraction of the systems to 
simulate the System Under Test (SUT) includes 
abstraction of the stimulant and environmental 
systems and this paper deals with the consistency 
and validity of stimulant abstractions.   

2.1 Experimental Frame 

In the context of studying a system through 
simulation, the concept of experimental frame 
introduced in [Zeigler, 1984] is used to describe 
experimental scenarios under which the system and 
corresponding models will be used. An EF defines 
controllability and observability means to stimulate 
and observe the model temporal evolution.  

The systems approach in segregating SUT and 
EF is often the case in reality when system 
development and its validation through simulation 
are done by two different entities. The language and 
its level of abstraction need to be coherent to derive 
any meaningful conclusion from the simulation 
results about the real system. 

An Experimental Frame, in general, is composed 
of a Generator (G), Transducer (T) and Acceptor 
(A). A classical illustration of EF as depicted in 
[Zeigler, 1984] is shown in the following figure. 

 

 

Figure 1: Experimental Frame. 

Traoré et al defines an EF in the form of following 

tuple in [Traoré, 2010] 
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inputs 

   are the set of admissible input segments for the 

experimental control 
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SU is the set of conditions, also referred to as 

summary mappings establishing relationship 

between inputs and outputs within a frame. 
The acceptor dictates the acceptance conditions 

for simulation and encoded in temporal logic 
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where         are the requirements defined in a 
formalism such as temporal logic. An example could 
be, response time for the steady state should be 
below a given time limit,                 . 

The generator acts as an input stimulus for the 
model, whose outputs are transformed by a 
transducer into a comprehensible form, which are in 
turn compared against a set of acceptable conditions 
specified by an acceptor. In addition, the EF may 
contain environmental models which simulate the 
real environment in which the SUT operates. Thus 
the EF components may be classified broadly as 
primary and secondary components with the former 
being the prime drivers of simulation, namely 
generator, acceptor and transducer, and the latter 
being environmental models. The components could 
be interconnected and hierarchically composed to 
build an EF. However, it must be noted that 
abstraction of environmental models are equally 
important as such models are seldom absent in an 
EF. 

2.1.1    EF Applicability & Derivability 

In [Albert, 2010], the concepts of 
homomorphism, applicability and derivability are 
discussed in the framework of M&S. A morphism 
relation establishes correspondence between a 
concrete model and an abstract model and such a 
relation between two models is called 
homomorphism when the transition and output 
function has been preserved i.e. behavioural 
equivalence. Applicability and derivability are more 
structural concepts in that the former determines 
whether an EF can be applied to a model and the 
later determines the extent of such an application. 
Applicability and derivability defines compatibility 
criteria between a model and EF. This compatibility 
is influenced by the abstraction level of EF 
components and the paper deals with the 
applicability of such an abstraction. Figure 2, taken 
from [Zeigler, 1984], illustrates this concept 
between the derivability and hierarchy of 
abstractions and the relation between them through 
applicability. 
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Figure 2: Morphism, Applicability & Derivability 

relations. 

2.2 Validity in Experimental Frame 

In general, a model is said to be valid if it 

satisfies the experimental frame. In this context, in 

[Albert, 2009], experimental frames were proposed 

in terms of model usage domain and objective 

domain called Simulation Domain of Use (SDU) and 

Simulation Objective of Use (SOU) respectively.  

Simulation validity in other words can be defined 

as the compatibility between SDU and SOU. 

Compatibility, in general, is defined as the degree of 

conformity between the considered entities. A valid 

simulation has the prerequisite of syntactic and 

semantic compatibility between the SDU and SOU. 

A study on semantic compatibility between the ports 

of simulation models based on ontologies was done 

in [Man, 2009]. Similarly, in [Albert, 2010], 

compatibility between EF and model interfaces were 

discussed in terms of syntactics parameters such as 

topology, scope, type signature, I/O relation. In this 

paper, however, compatibility is discussed in terms 

of validity through abstraction. In simulating a 

complex system which is hierarchically composed of 

different subsystems, modeling abstraction choices 

in building a SDU consistent with the simulation 

objectives described by SOU will yield this 

compatibility. In addition, simulation product 

validity is an aggregation of the problem of 

correctness and validity. The correctness of 

implementation or verification is not discussed here 

and only the abstraction influence of primary EF on 

validity is discussed. 

2.2.1 Primary EF Component Validity 

SDU and SOU intuitively refers to model 
behavioural limits and model behavioural 
expectations respectively. Then the key question is 
how to drive the model behaviour to reach its 
intended expectations in the context of simulation. 
In other words, what are the necessary and 

consistent abstractions to be made in the EF 
components to drive the SUT to an acceptable 
degree of validity? This paper deals with the 
reachability of SOU through primary EF component 
abstractions. The reachability of SOU through 
environmental model abstractions and their 
composition with primary components are subject of 
another study and are not discussed here.  

From the systems perspective, testability of a 
system is based on the controllability and 
observability of the system components. 
Controllability and observability defines the ease of 
bringing and propagating data to the input and 
output of the component respectively. Thus the 
abstraction of primary EF components must result in 
adequate testability conditions with respect to the 
simulation objectives. 

In [Foures, 2013], a method of defining the 
intended purpose of simulation for discrete event 
simulation of a continuous system was presented by 
Damien et al. In [Foures, 2012], a formal 
compatibility between EF and FD-DEVS model was 
proposed in terms of metrics defined on scope, 
precision and state space. The state space metric was 
discussed in terms of trace inclusion and a truth table 
was proposed to describe the model coverage by EF. 
This study is an extension of such definition of SDU 
and SOU to simulation of a hybrid system in the 
context of input abstraction and its subsequent 
compatibility to an EF. 

The compatibility is discussed in terms of 

reachability of the SUT where reachability is defined 

as the set of all possible states reachable by a system 

and is used to verify temporal logic properties 

defined as safety etc. In this context of definition of 

validation requirements, it is important to distinguish 

between simulation validity and system validity. 

Simulation validity answers whether the simulation 

is adequate to answer questions on system 

validation. System validation is validation of system 

with respect to its requirements. Simulation validity 

is a prerequisite of system validity and thus 

decisions taken at any stage along the V cycle where 

simulation is used as a means of Verification & 

Validation, it is intrinsically tied to the key question 

of simulation fidelity. A system is said to be valid by 

simulation only when the simulation itself is valid 

and thus it is a necessary and sufficient condition for 

system validity assessment through simulation.  Let 

     and      be system and simulation 

requirements respectively on the system (    ) and 

its representation (    ). 

System validation through simulation implies the 

acceptor input i.e. model output, satisfies system 

requirements and thereby simulation requirements,  
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where,    ⊨     means simulation validity. The 

converse may not be true    ⊨     ⊬⊨    .  

The system validity assessment by simulation 

thus becomes 

 

 
      

            

 

(4) 

In other words, the above equation dictates that 

reachability under input stimuli      to the model 

from EF (    must result in model output 

     satisfying         to be a valid model. 

It may be recalled that the distance between 

system and simulation validation is introduced by 

abstraction of the system as a simulation model. The 

study deals with what are the necessary and 

consistent modeling abstractions to be implemented 

in simulation such that they are consistent with 

system validation requirements. In other words, 

choosing abstractions such that the simulation is 

adequate i.e. valid to draw any meaningful 

conclusion about the real system. Assuming correct 

environmental model abstraction, the question is 

abstraction of the primary EF components in driving 

the simulation to its objective with respect to SDU. 

In this paper, through reachability of SUT, necessary 

and consistent primary EF abstractions with respect 

to system requirements are discussed.  

2.2.2 Primary EF Component Abstraction  

The primary components of EF are given as  

 

             ∣              (5) 

 

where   and Y are input and output variables 

defined with over a time base T. Similar to the 

general EF definition, we define 

   
       , are the set of output segments  

   
       , are the set of input segments  

 

A morphism relation establishes correspondence 

between a concrete model and its abstract version 

through abstraction operation. Abstractions are 

manyfold depending on the simulation objectives 

and hypotheses. From the classes of abstractions 

defined in [Albert, 2009], we define abstraction 

operation as   over an abstraction class. Such 

abstractions are related by binary relations forming a 

partial order. A partially ordered set or a poset is a 

set            with reflexive, transitive relation on a 

set  . The hierarchy of abstractions could be defined 

as a partial order relation over a finite lattice. 
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Different abstraction operations may be feasible 

over such a finite lattice whose height is defined by 

a set    The valid set of abstractions among them are 

defined by 
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(7) 

In addition to abstraction of model semantics, 

model interfaces are abstracted based on their syntax 

definition and semantics it handles. The syntactics 

(number of ports, coupling, structure) and semantics 

(data type, type signature) of EF and SOU interfaces 

must be compatible and are defined in terms of a 

partial order relation. Such a definition followed by 

an inclusion criterion will help address the 

simulation validity with respect to abstractions. 

The general inclusion relation between the 

admissible model input segments with respect to its 

capabilities are defined by 

 

              

 

(8) 

It must be noted that there could be 

interconnection (   ) between environmental 

models and primary components and the 

applicability extends to them as well. In EF 

definition as a tuple in [Albert, 2010], the coupling 

between models M with identifiers I is given by Z. 
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where EF          . 
 

The experimental control segments to model,    and 

acceptor input,    then becomes  

 

               

      
  

         

 

(10) 

Acceptance conditions require transduced outputs or 

outputs of the SUT or environmental models. The  

compatibility is given by 

  

   
       

              
 

 

(11) 

Utilising such definition, applicability is extended as 

  



 

                 
 

                 
 

 

(12) 

The compatibility criteria described above also 

includes model constraints,    defined by the 

behavioural limits in terms of possible reachable 

states ( ), in other words SDU, as well as the 

constraints on the inputs (X) and outputs (Y).  
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Constraints on state, output and input are defined 

for all the EF and SUT and violation of such 

constraints results in inconsistency. The constraint 

on the state evolution is given below 
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    such that  

(  
    

             

 

(14) 

Intuitively, the above equation lays out a consistency 

criteria such that the under transition relation,  , the 

evolution of state from step i to i+1 respect the 

constraints imposed on the state space. Similarly, 

such definition can be extended to inputs and 

outputs. 

2.3 Model Coverage Metric 

The compatibility state space metric defined by 

trace inclusion is used to analyse the extent of model 

coverage by primary EF components and thereby 

quantify the abstraction with respect to simulation 

objectives. In this context, four criteria have been 

proposed with respect to this model coverage metric, 

 

Valid                :  EF Abstractions are consistent with 

simulation objectives. 
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(15) 

Partially Valid: EF Abstractions are partially 

consistent with simulation objectives. 
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Properties  
 
  belonging to the same class could be 

hierarchical from high level to low level and are 

validated sequentially (   
⊨  

   
⇒    

⊨

 
     

).  

Invalid          : EF abstractions are not consistent 

with simulation objectives and resulting model 

behaviour violates the requirements 

 

     
   

 
                 

 

(17) 

Incompatible        : EF abstractions are not consistent 

with simulation objectives and the resulting model 

behaviour violates the constraints. 

 

     
                 

 

(18) 

The EF abstraction is said to be valid if the resulting 

reachable states are achievable and covered. The 

abstractions of primary EF components resulting in 

such validity are denoted by     where p={G,T,A}. 

In the primary EF model abstractions, certain 

abstractions are used to drive the simulation to its 

objective and are called design abstractions   
      

For example the generator abstraction,   
     

resulting in SUT input   
     driving the 

simulation output is given by notation   
    

 . 

More details can be found with an example in the 

following application case.  

3 APPLICATION CASE 

As an example application for our approach, 
verification of behavioural properties of an aircraft 
landing gear described in [Boniol, 2014] was taken. 
An aircraft landing gear is used to support the 
weight of the aircraft during landing and ground 
operations. The conventional retractable landing 
gear is tricycle type with two aft gears and one front 
gear attached to the main structure of aircraft. In the 
following example, other details of the landing gear 
system such as brakes, retractable mechanism, 
warning devices, fairing, cowling, structures and 
other auxiliary systems are not discussed. 

3.1 Problem Formulation 

The landing gear is extended or retracted by a set 

of hydraulic actuators and the system is controlled 

digitally in normal mode and analogically in 

emergency mode. The SUT is the landing gear 

digital control logic which controls the opening or 

closing of flow control valves to the actuators. In 

normal operation, upon the extend command, the 

doors are opened and the landing gear is extended 

and upon retract command, the gear is retracted 

followed by door closure. The opening and closing 

of doors are not simulated in this case. The general 



 

architecture of landing gear is given below with the 

presence of a single actuator and could be extended 

to the full system of all the landing gears, 

 

 
Figure 3: Landing gear  

 
The architecture of the hydraulic part is 

described in Figure 3 and only the principles of the 
motion mechanism are discussed. The landing gear 
motion is performed by a set of actuating cylinders. 
The cylinder piston position corresponds to the 
landing gear position and for each landing gear, a 
cylinder retracts or extends it. Hydraulic power is 
provided to the cylinders by a set of electro-valves, 
where one main electro-valve supplies the specific 
electro-valves for closing or opening with hydraulic 
power from the aircraft hydraulic circuit. The 
hydraulic power is supplied to the landing gear 
circuit by a pump with flow Q. The actuator part of 
the model is inspired from a MATLAB example of 
the single hydraulic cylinder simulation [MATLAB, 
2014]. The architecture of the actuator cylinder is 
same except for the presence of two openings at the 
ends of actuator cylinder marked A and B denoting 
retracted and extended positions respectively.  

The working mechanism is briefly given as 
follows, initially the control logic receives the pilot 
command to extend or retract and, activates the 
pump. As the flow from pump is passed through the 
opening main control valve orifice with area   , the 
pressure,  

 
 starts building at the end A or B, 

depending on the pilot input     to extend or     to 
retract the gear. Once the pressure differential 
exceeds a certain threshold,   

   , the piston starts 
moving until it reaches the other end or chamber 
pressure equalizes the pump pressure, whichever is 
earlier. Modeling abstractions such as flow 
coefficients (           , leakage phenomenon, 
orifice model are kept the same as described in the 
example for the sake of simplicity. Similarly, the 
dynamic effect of aerodynamic or ground reactions 
is not considered and interaction with other aircraft 
systems is also not considered. 

 
 
 
 

 
 

 

Figure 4: Actuator model [Boniol, 2014] 

The inertial differential pressure at the ends A and B 

are   
  and   

  and the dwell time when pressure is 

below these limits corresponds to the unlock time 

from the current mode. The length of cylinder is 

given by   .  

3.2 System Dynamics & Simulation 

The SUT is modelled as a Finite State Machine 

(FSM) abstraction, a data type state aggregation 

abstraction with hypothesis being the system 

dynamics has four different modes depending on the 

pilot input and actuator response.  

Retracted : The piston is at position A and the 
differential pressure is below the threshold. 

Extending : The modulus of differential pressure 
is above the threshold,   

   and the piston starts 
moving from A. 

Extended  : The piston is at position B  
Retracting : The modulus of differential pressure 

is above the threshold,   
 , and the piston starts 

moving from B. 
 
The system remains at the retracted or extended 

position indefinitely until pilot command has been 
initiated or failure of hydraulic circuit or both.  

The system is modeled in SIMULINK and 
Stateflow, a widely used commercial tool in 
modeling and simulation of complex reactive 
systems based on the finite state machine described 
by events and actions. Simulations are carried out 
using a variable step ODE45 solver. Alternatively, 
such a hybrid system could be modeled in DEVS 
formalism and solved using QSS algorithms which 
are more amenable to hybrid system simulation as 
the state events can be handled much more 
efficiently by state-quantization algorithms than by 
time-slicing algorithms. 

The SUT is the control logic with the 
environmental models being that of actuator, pump 

Landing Gear 

Retracting 

Landing Gear  

Extending 



 

and main control valve. The generator given below 
supplies the input to generate input segments,    of 
pump flow and main control valve profile apart from 
pilot commands 

The switching modes are illustrated in the 
following figure. 

 
Figure 5: Landing gear hybrid system 

3.3 Simulation Requirements 

Broadly, the requirements are classified as 

normal and failure modes and the requirements 

related to normal mode gear function alone listed in 

[Boniol, 2014] are taken for validity assessment. 

The high level SOU functional objective is 

reaching the mode of operation for the given 

command. The system should start from extended 

mode and reach retracted mode when retract 

command is given and vice versa for extend 

command. 

The other SOU is defined as the data class type 

abstraction with validity criteria being error 

tolerance on the maximum time of extending and 

retracting denoted by         and          respectively.  

 

     ∀                      

        ∀                     
 

(19) 

where,    is the unlock time (when  
 
<  

 ),    is the 

time of extension,    is the unlock time (when 

 
 
<  

 ) and    is the time of retraction. The 

simulation requirement given in the form of 

temporal profile with gear angle being measured 

from horizontal plane is shown in figure 6. 

 

 
Figure 6: Landing gear output requirement 

The state constraints are given as 
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(20) 

The simulation is valid if it satisfies the functional 

and temporal requirements without violating 

constraints. 

3.4 Experimental Frame  

The specification of the experimental frame 
defined in Eq 1 is given as follows. 

 
T = ℝ 

 
The input and output of the EF are 
 

                  
 

         
 

The input and output of the SUT are  
 

                    
 
        

 
                       

          
         

 
where 
 i d gives the interconnection relation  
                   is the retracting or extending 
valves 
                                                   are 
the states describing the phase of the simulation. 
   The input segments of the EF and model are given 
based on Eq 1. The acceptor segments are given by 

 
                        

 
(21) 

The environmental abstractions are assumed to 

be ideal with respect to simulation requirements and 

only the primary EF components abstractions are 

discussed in the following section. 

The experimental frame is illustrated in figure 7.  

 
Figure 7: Landing gear hybrid system 



 

The interconnection between EF and model 

components can be seen and such a definition helps 

in coherent model development with respect to 

simulation objectives.  

3.4.1 Primary EF Abstractions  

The generator, acceptor and transducer are 
described below. 
 
Generator, G: The input stimulii are the pilot 
command to retract or extend the gear, pump flow 
parameters of the main control valve orifice area and 
pump flow profile. 
 

                 

 

(22) 

where,  =   , 
   ={{Q,         }   cmd={retract, extend}} 

    is the main orifice valve opening profile. 
 
The computation class abstraction is employed in 

the form of a Look Up Table and linear interpolation 
between data points d for the pump flow and valve 
opening profile. The pilot command is abstracted as 
a simple flag. 
 

  
 (  

 )           
 

(23) 

  
  is the concrete system specification of pump and 

main control valve.    is the linear map between data 
points and time. The design abstraction,   

  defined 
in section 2.3, in this case is Q and    . 
 
Transducer, T: The state of the model is transduced 
in terms of gear rotation angle. The transducer 
model is given by 

 

                 
 

(24) 

where,   ={   }   ={      } 
 
The transducer is abstracted as 
 

   = 

{
 

 
                                                     
                                              

                                                
   

 

(25) 

 
The map could be a simple linear function (eg: 

90*(    x)) or may be dependent on velocity, 

transmission delay etc. 

 

Acceptor, A : The acceptor includes conditions to 

check physical violation constraints such as negative 

pressure defined as     and semantics of modes 

formalized in temporal logic. 

 

  
 (  

 )    (
               →            
              →            

) 
(26) 

 

where   
  is the concrete acceptance conditions 

specified in temporal logic formalism. Simulation 

validity conditions could also be specified in it. 

3.4.2 Results 

A typical retract and extend operation of the landing 

gear is shown below for a sample simulation 

 

 
Figure 8: Landing gear output 

 

The fall in pressure at the pump,  
 
 and 

subsequent rise in pressure at the main control valve, 

 
 
 and downstream in the chamber,  

 
 are seen. The 

piston displacement, x for both extending (red) and 

retracting (green) until it reaches other end of 

cylinder is seen. In failure cases such as pump 

failure, the piston stops before it reaches the other 

end, which is not shown here. In essence, in normal 

mode, once the piston reaches the other end, the 

control logic closes the control valve and pressure 

equalises in the circuit. For the sake of simplicity the 

closing of main valve is not simulated. 

The method allows to abstract the valid primary 

EF components with respect to requirements based 

on sample simulation runs. In the present simulation 

the pump flow, Q and main valve opening,    are 

the input design parameters,   
  . Recalling definition 

in section 2.3, the generator design abstraction, 

  
     resulting in model input,   

     driving 

the simulation output is given by notation,   
  

  
 . Then the trace inclusion criteria allows to 

classify them as 

 

Valid   :  
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Invalid:  

    
    

    
 
      

 
      

 

Partially Valid: 
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Incompatible: 

           
   

 

 
      

 
      

 

The pump flow and cross section parameters of 

main valve are thus classified with respect to 

simulation objectives. Similar such abstraction for 

transducer   
     and acceptor   

     driving the 

SUT can be defined respectively, though it is not 

used in the current study. Such design abstractions 

can help for example drive the simulation to its 

objective by observing and monitoring the results. 

The aggregate effects of all such primary 

abstractions are observed onto the model output.  

It may be noted that the requirements  
 
 defined 

belong to temporal class in that in certain cases 

validation of a lower level requirement implicitly 

validates the higher level requirement. Assuming the 

acceptor abstraction   
  is given as a requirement  

 
 

then validation of temporal behaviour specified as 

 
 
implies validation of semantics of mode specified 

as  
 
   

The abstraction influence of primary EF 

components on simulation validity can thus be 

studied using such a validity criteria. Abstraction 

classification and hierarchical composition 

implemented in a tool will help in extracting 

abstractions which are necessary and consistent with 

simulation objectives. Building a repository of such 

abstractions with respect to objectives could be used 

to derive and reuse concepts based on the ontology 

framework, also based on the lattice concepts. The 

unified simulation method thus helps in better 

development of models corresponding to 

requirements. 

4 FUTURE WORK 

The present study deals with primary EF 
component abstraction compatibility with SOU. The 
notions are based on trace inclusion and a formal 
tool needs to be built to quantify this abstraction. 
However, notion of reachability is more pertinent 
than simulation for hybrid systems since an 
exhaustive breadth first search of state space through 
reachability analysis, difficult as it might be in terms 

of computational cost, yields formal verification of 
system. In this regard, various reachability tools 
such as MATISSE, UPPAAL, StateEx may be used 
and the inclusion relation of reachable state space of 
SDU with respect to SOU could be checked. 
Problems of scalability of these reachability methods 
were discussed widely in literature with potential 
solutions of using abstractions to alleviate the 
computational burden. The next step would be 
extending this method of reachability inclusion 
through formal verification tools.  

The influence of modeling abstractions 
especially of environmental models in EF are not 
discussed here and quantification of abstraction 
effect on the model reachability with respect to its 
objective is of fundamental importance in the usage 
of simulation as a means of analysis and design of 
real world systems. A correct ‘by design’ of 
abstraction with respect to simulation objectives 
based on the concepts of approximate bisimulation 
[Girard, 2007] and Galois connections [Cousot, 
1992] is being studied. Such a holistic approach in 
considering the objectives of simulation explicitly 
into modeling via abstractions will help address the 
problem of validity and fidelity in simulation. 

5 CONCLUSIONS 

Primary EF component abstraction in input 

stimuli has been explained with respect to simulation 

objectives. The hierarchical abstraction for class of 

abstraction is explained with its correspondence to 

simulation objective. Validity is assessed with a 

behavioural compatibility criteria based on trace 

inclusion. The method implemented here is not 

correct by design but rather employed in classical 

iterative fashion which is clearly neither optimal nor 

formal in its approach. A rigorous mathematical 

framework in synthesising such an abstraction with 

respect to simulation objective would be the next 

step. However, the current study lays sufficient 

ground work in terms of assessment methodology 

for a formal abstraction compatibility criterion to be 

developed. 
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