Skip to Main content Skip to Navigation
Journal articles

Full optical confinement in 1D mesoscopic photonic crystal-based microcavities: an experimental demonstration

Abstract : Full light confinement in mesoscopic photonic crystal membranes, forming a mesoscopic self-collimating 1D Fabry-Pérot cavity, was predicted by Magno et al. [Opt. Lett. 39(14), 4223-4226 (2014)], using 2D calculations. Mesoscopic self-collimating cavities enable full light confinement despite the lack of index- or bandgap-guiding along one direction due to the flatness of the cavity reflectors. In this paper, we study these cavities using 3D-FDTD modelling and demonstrate that 3D light confinement survives the high losses inherent to the out-of-plane diffraction. Furthermore, we report an experimental demonstration at telecom wavelength on GaAs membranes with Q factors above 1700. This structure may pave the way for the fabrication of innovative configurations devoted to biochemical sensing and optical tweezing for nanoparticle manipulation thanks to its translational invariance property.
Complete list of metadatas

https://hal.laas.fr/hal-01917368
Contributor : Olivier Gauthier-Lafaye <>
Submitted on : Friday, November 6, 2020 - 3:36:03 PM
Last modification on : Friday, November 6, 2020 - 3:36:06 PM

Identifiers

Citation

Antoine Monmayrant, M. Grande, B. Ferrara, G. Calò, Olivier Gauthier-Lafaye, et al.. Full optical confinement in 1D mesoscopic photonic crystal-based microcavities: an experimental demonstration. Optics Express, Optical Society of America - OSA Publishing, 2017, 25 (23), pp.28288. ⟨10.1364/OE.25.028288⟩. ⟨hal-01917368⟩

Share

Metrics

Record views

89