A. Korkegian, M. E. Black, D. Baker, and B. L. Stoddard, Computational thermostabilization of an enzyme, Science, vol.308, pp.857-860, 2005.

J. E. Diaz, C. Lin, K. Kunishiro, B. K. Feld, S. K. Avrantinis et al., Computational design and selections for an engineered, thermostable terpene synthase, Protein Sci, vol.20, pp.1597-1606, 2011.

R. S. Rudicell, Y. D. Kwon, S. Ko, A. Pegu, M. K. Louder et al., Enhanced Potency of a Broadly Neutralizing HIV-1 Antibody In Vitro Improves Protection against Lentiviral Infection In Vivo, J. Virol, vol.88, pp.12669-12682, 2014.

K. E. Roberts, P. R. Cushing, P. Boisguerin, D. R. Madden, and B. R. Donald, Computational Design of a PDZ Domain Peptide Inhibitor that Rescues CFTR Activity, PLoS Comput. Biol, vol.8, pp.1-12, 2012.

A. Verges, E. Cambon, S. Barbe, S. Salamone, Y. Le-guen et al., Computer-aided engineering of a transglycosylase for the glucosylation of an unnatural disaccharide of relevance for bacterial antigen synthesis, ACS Catal, vol.5, pp.1186-1198, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-02043360

B. A. Smith and M. H. Hecht, Novel proteins: from fold to function, Curr. Opin. Chem. Biol, vol.15, pp.421-426, 2011.

L. Jiang, E. A. Althoff, F. R. Clemente, L. Doyle, D. Röthlisberger et al., De novo computational design of retro-aldol enzymes, Science, vol.319, pp.1387-1391, 2008.

S. D. Khare, Y. Kipnis, R. Takeuchi, Y. Ashani, M. Goldsmith et al., Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis, Nat. Chem. Biol, vol.8, pp.294-300, 2012.

B. Kuhlman, G. Dantas, G. C. Ireton, G. Varani, B. L. Stoddard et al., Design of a novel globular protein fold with atomic-level accuracy, vol.302, pp.1364-1368, 2003.

M. A. Hallen, D. A. Keedy, and B. R. Donald, Dead-end elimination with perturbations (DEEPer): A provable protein design algorithm with continuous sidechain and backbone flexibility, Proteins: Struct., Funct., Bioinf, vol.81, pp.18-39, 2013.

T. Gaillard, N. Panel, and T. Simonson, Protein side chain conformation predictions with an MMGBSA energy function, Proteins: Struct., Funct., Bioinf, vol.84, pp.803-819, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01456152

M. Henrion, Search-based methods to bound diagnostic probabilities in very large belief nets, Seventh conference on Uncertainty in Artificial Intelligence, pp.142-150, 1991.

I. Georgiev, R. H. Lilien, and B. R. Donald, The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles, J. Comput. Chem, vol.29, pp.1527-1542

C. ;. Viricel, D. Simoncini, D. Allouche, S. De-givry, S. Barbe et al., Approximate counting with deterministic guarantees for affinity computation. International Conference on Modelling, Computation and Optimization in Information Systems, Proceedings of the 3rd International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences, pp.165-176, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01269259

C. Viricel, D. Simoncini, S. Barbe, and T. Schiex, Guaranteed weighted counting for affinity computation: Beyond determinism and structure, International Conference on Principles and Practice of Constraint Programming, pp.733-750, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01828389

C. Viricel, S. De-givry, T. Schiex, and S. Barbe, Cost function network-based design of protein-protein interactions: predicting changes in binding affinity, Bioinformatics, pp.733-750, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02154341

A. A. Ojewole, J. D. Jou, V. G. Fowler, B. R. Donald, and . Bbk*, Branch and Bound Over K*): A Provable and Efficient Ensemble-Based Protein Design Algorithm to Optimize Stability and Binding Affinity Over Large Sequence Spaces, J. Comput. Biol, vol.25, p.29641249, 2018.

K. Druart, J. Bigot, E. Audit, and T. Simonson, A hybrid Monte Carlo method for multibackbone protein design, J. Chem. Theory Comput, vol.12, pp.6035-6048, 2017.

F. Villa, N. Panel, X. Chen, and T. Simonson, Adaptive landscape flattening in amino acid sequence space for the computational design of protein:peptide binding, J. Chem. Phys, p.72302, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01975456

S. Polydorides and T. Simonson, Monte Carlo simulations of proteins at constant pH with generalized Born solvent, flexible sidechains, and an effective dielectric boundary, J. Comput. Chem, vol.34, pp.2742-2756, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00984643

F. Villa, D. Mignon, S. Polydorides, and T. Simonson, Comparing pairwise-additive and manybody generalized Born models for acid/base calculations and protein design, J. Comput. Chem, vol.38, pp.2396-2410, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01964492

P. J. Van-laarhoven and E. H. Aarts, Simulated annealing: Theory and applications

A. B. Chowdry, K. A. Reynolds, M. S. Hanes, M. Voorhies, N. Pokala et al., An object-oriented library for computational protein design, J. Comput. Chem, vol.28, pp.2378-2388, 2007.

L. Wernisch, S. Héry, and S. Wodak, Automatic protein design with all atom force fields by exact and heuristic optimization, J. Mol. Biol, vol.301, pp.713-736, 2000.

M. Schmidt-am-busch, A. Lopes, D. Mignon, and T. Simonson, Computational protein design: software implementation, parameter optimization, and performance of a simple model, J. Comput. Chem, vol.29, pp.1092-1102, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00488192

T. Simonson, T. Gaillard, D. Mignon, . Schmidt, M. Busch et al., Computational protein design: The proteus software and selected applications, J. Comput. Chem, vol.34, pp.2472-2484, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00868677

X. Yang and J. G. Saven, Computational methods for protein design and protein sequence variability: biased Monte Carlo and replica exchange, Chem. Phys. Lett, vol.401, pp.205-210, 2005.

K. Druart, Z. Palmai, E. Omarjee, and T. Simonson, Protein:ligand binding free energies: a stringent test for computational protein design, J. Comput. Chem, vol.37, pp.404-415, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01276168

D. Mignon and T. Simonson, Comparing three stochastic search algorithms for computational protein design: Monte Carlo, Replica Exchange Monte Carlo, and a multistart, steepestdescent heuristic, J. Comput. Chem, vol.37, pp.1781-1793, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01445473

G. R. Grimmett and D. R. Stirzaker, Probability and random processes, 2001.

D. Allouche, S. Traoré, I. André, S. De-givry, G. Katsirelos et al., Computational protein design as a cost function network optimization problem. Principles and Practice of Constraint Programming, pp.840-849, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01191320

S. Traoré, D. Allouche, I. André, S. De-givry, G. Katsirelos et al., A new framework for computational protein design through cost function network optimization, Bioinformatics, vol.29, pp.2129-2136, 2013.

D. Allouche, I. André, S. Barbe, J. Davies, S. De-givry et al., Computational protein design as an optimization problem, Artif. Intell, vol.212, pp.59-79, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01268554

S. Traoré, K. E. Roberts, D. Allouche, B. R. Donald, I. André et al., Fast search algorithms for computational protein design, J. Comput. Chem, pp.1048-1058, 2016.

M. J. O'meara, A. Leaver-fay, M. Tyka, A. Stein, K. Houlihan et al., A Combined Covalent-Electrostatic Model of Hydrogen Bonding Improves Structure Prediction with Rosetta, J. Chem. Theory Comput, vol.11, pp.609-622, 2015.

R. F. Alford, A. Leaver-fay, J. R. Jeliazkov, M. J. Oameara, F. P. Dimaio et al.,

J. J. Gray, he Rosetta All-Atom Energy Function for Macromolecular Modeling and Design

, J. Chem. Theory Comput, vol.13, pp.3031-3048, 2017.

M. V. Shapovalov and R. L. Dunbrack, A Smoothed Backbone-Dependent Rotamer Library for Proteins Derived from Adaptive Kernel Density Estimates and Regressions, Structure, vol.19, pp.844-858, 2011.

D. Simoncini, D. Allouche, S. De-givry, C. Delmas, S. Barbe et al., Guaranteed Discrete Energy Optimization on Large Protein Design Problems, J. Chem. Theory Comput, vol.11, pp.5980-5989, 2015.

N. Mladenovi´cmladenovi´c and P. Hansen, Variable Neighborhood Search, Comput. Oper. Res, vol.24, pp.1097-1100, 1997.

I. Samish, The Framework of Computational Protein Design, Methods Mol. Biol, vol.1529, pp.3-19, 2017.

P. Meseguer and F. Rossi,

D. Allouche, S. De-givry, G. Katsirelos, T. Schiex, and M. Zytnicki, Anytime hybrid best-first search with tree decomposition for weighted CSP, International Conference on Principles and Practice of Constraint Programming, pp.12-29, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01198361

B. ;. Hurley, B. O'sullivan, D. Allouche, G. Katsirelos, T. Schiex et al., Multi-Language Evaluation of Exact Solvers in Graphical Model Discrete Optimization, Constraints, vol.21, pp.413-434, 2016.

M. Cooper, S. De-givry, M. Sanchez, T. Schiex, M. Zytnicki et al., Soft arc consistency revisited, Artif. Intell, vol.174, pp.449-478, 2010.

W. D. Harvey and M. L. Ginsberg, Limited discrepancy search, Proc. of IJCAI'95, pp.607-615, 1995.

M. Fontaine, S. Loudni, and P. Boizumault, Exploiting Tree Decomposition for Guiding Neighborhoods Exploration for VNS. RAIRO OR, vol.47, pp.91-123, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01024210

J. Larrosa, E. Rollon, and R. Dechter, Limited Discrepancy AND/OR Search and Its Application to Optimization Tasks in Graphical Models, Proc. of IJCAI, pp.617-623, 2016.

M. Luby, A. Sinclair, and D. Zuckerman, Optimal speedup of Las Vegas algorithms, Proc. of TCS, pp.128-133, 1993.

A. Lopes, A. Aleksandrov, C. Bathelt, G. Archontis, and T. Simonson, Computational sidechain placement and protein mutagenesis with implicit solvent models, Proteins: Struct., Funct., Bioinf, vol.67, pp.853-867, 2007.

P. Tuffery, C. Etchebest, S. Hazout, and R. Lavery, A New Approach to the Rapid Determination of Protein Side Chain Conformations, J. Biomol. Struct. Dyn, vol.8, p.1892586, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00313445

T. Gaillard and T. Simonson, Full Protein Sequence Redesign with an MMGBSA Energy Function, J. Chem. Theory Comput, vol.13, p.28886244, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01954913

P. Hansen, N. Mladenovi´cmladenovi´c, and J. A. Moreno-pérez, Variable neighbourhood search: methods and applications, vol.4, pp.319-360, 2008.

B. Jarboui, A. Sifaleras, and . Rebai, A. 3rd International Conference on Variable Neighborhood Search (VNS'14). Electronic Notes in Discrete Mathematics, vol.47, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01679171

S. Subramaniam and A. Senes, Backbone dependency further improves side chain prediction efficiency in the Energy-based Conformer Library (bEBL), Proteins: Struct., Funct., Bioinf, vol.82, pp.3177-3187

J. A. Davey and R. A. Chica, Multistate approaches in computational protein design, Protein Sci, vol.21, pp.1241-1252, 2012.

A. D. St-jacques, O. Gagnon, and R. A. Chica, Modern Biocatalysis: Advances Towards Synthetic Biological Systems, vol.32, p.88, 2018.

A. Ouali, S. Loudni, L. Loukil, P. Boizumault, and Y. Lebbah, Replicated parallel strategies for decomposition guided VNS, Electronic Notes in Discrete Mathematics, vol.47, pp.93-100, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02088733

V. Opuu, M. Silvert, and T. Simonson, Computational design of fully overlapping coding schemes for protein pairs and triplets, Scientific Reports, vol.7, p.15873, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01961705