Hierarchical Task Network (HTN) planning is a proven approach to solving complex, real world planning problems. By planning for tasks in the same order that they are later executed, total-order HTN planners always know the complete state of the world at each planning step. This enables writing more expressive planning domains than what is possible in partial-order HTN planning. Such features have facilitated the use of total-order HTN planners in agent systems and seen them excel in AI games.

Features & Search Control

As in standard HTN planning, an HATP domain comprises a set of user supplied HTN methods (“recipes”) and operators. For defining these, however, HATP employs some useful structured programming concepts such as structures, conditionals, and typing.

Moreover, agent types and object types of an HATP domain or problem are defined separately as a collection of entities. HATP supports search control, e.g. how variables occurring in methods should be bound at runtime, via SELECT, SEL-ORDERED, and SEL-ONCE constructs.

We have recently enabled encoding domain-dependent backtrack preferences, allowing the more “promising” backtrack points to be explored first.

Finally, HATP supports developing agent-oriented domains by making a distinction between agents and other objects. Agents are treated as first class citizens, and it is possible to define different types of agents.

Symbolic-Geometric Planning

An HATP operator such as `move(Robot, From, To)` might assume that as long as location `To` is adjacent to location `From`, that the robot at `From` will be able to navigate to location `To`. In reality this will not work when certain geometrical characteristics of the robot and the route make the move physically impossible.

Combining HATP with geometric planning algorithms used in robotics is therefore crucial to be able to obtain primitive solutions that are viable in the real world.

Interleaved HTN and geometric planning is now a built-in feature of HATP, as illustrated below in the task to move a group of UAVs.

```plaintext
action movWithGroup(Agent Rob, Location From, Location To, Type T) {
  precondition {
    FORALL(Agent R, { R isIn Rob.travelGroup; })
      { addConstraint(Rob.ID, T isVisible, R.ID, true) == true; });
    Rob.at == From;
    To isIn From.adjacent;
    checkMove(Rob, From, To) == true; // simulate to check that a move is possible
  };
  projects { applyMove(Rob, From, To) }; // do the move within the 3D world
  effects { Rob.at = To; }; // any side effect is added transparently
  cost { moveCost(From, To) }; // used for finding the optimal plan
  duration { moveDur(From, To) }; // used to estimate a plan's execution period
}
```

HATP

HATP is a total-order HTN planner. Since its first implementation (Montreuil et al., ’07), HATP has had various extensions and integrations over the years, such as:

- support for splitting a solution into multiple streams and assigning them to the agents in the domain
- allowing “social rules” to be included by the user to define what kind of agent behaviour is appropriate
- modelling their beliefs as distinct world states
- support for interleaved HTN and geometric planning

HTN Planning

Hierarchical Task Network (HTN) planning is a proven approach to solving complex, real world planning problems.