J. Henriques, C. Cragnell, and M. Skepö, Molecular dynamics simulations of intrinsically disordered proteins: force field evaluation and comparison with experiment, J. Chem. Theory Comput, vol.11, pp.3420-3431, 2015.

J. R. Huang, V. Ozenne, M. R. Jensen, and M. Blackledge, Direct prediction 615 of NMR residual dipolar couplings from the primary sequence of unfolded proteins, Angew. Chem. Int. Edit, vol.52, pp.687-690, 2013.

J. Iglesias, M. Sanchez-martínez, and R. Crehuet, SS-map: Visualizing cooperative secondary structure elements in protein ensembles, Intrinsically Disord. Proteins, vol.1, p.25323, 2013.

M. R. Jensen, G. Communie, E. A. Ribeiro, N. Martinez, A. Desfosses et al., Intrinsic disorder in measles virus nucleocapsids, Proc. Natl. Acad. Sci. USA, vol.108, pp.9839-9844, 2011.
DOI : 10.1073/pnas.1103270108

URL : http://europepmc.org/articles/pmc3116414?pdf=render

M. R. Jensen, K. Houben, E. Lescop, L. Blanchard, and R. W. Ruigrok, Quantitative conformational analysis of partially folded proteins from residual dipolar couplings: Application to the molecular recognition element of sendai virus nucleoprotein, J. Am. Chem. Soc, vol.130, pp.8055-8061, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00337329

M. R. Jensen, P. R. Markwick, S. Meier, C. Griesinger, and M. Zweckstetter,

S. Siek, P. Bernadó, and M. Blackledge, Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings, Structure, vol.17, pp.1169-1185, 2009.

A. K. Jha, A. Colubri, K. F. Freed, and T. R. Sosnick, Statistical coil model of the unfolded state: Resolving the reconciliation problem, Proc. Natl. Acad, 2005.

, Sci. USA, vol.102, pp.13099-13104

W. Kabsch and C. Sander, Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.22, pp.2577-2637, 1983.

R. Kolodny, P. Koehl, L. Guibas, and M. Levitt, Small libraries of protein 640 fragments model native protein structures accurately, J. Mol. Biol, vol.323, pp.297-307, 2002.
DOI : 10.1016/s0022-2836(02)00942-7

J. Kragelj, A. Palencia, M. H. Nanao, D. Maurin, G. Bouvignies et al., Structure and dynamics of the MKK7-JNK signaling complex, Proc. Natl. Acad. Sci. USA, vol.112, pp.3409-3414, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01149468

G. G. Krivov, M. V. Shapovalov, and R. L. Dunbrack, Improved prediction of protein side-chain conformations with SCWRL4, Proteins, vol.77, pp.778-795, 2009.
DOI : 10.1002/prot.22488

URL : http://europepmc.org/articles/pmc2885146?pdf=render

M. Krzeminski, J. A. Marsh, C. Neale, W. Y. Choy, and J. D. Forman-kay, Characterization of disordered proteins with ensemble, Bioinformatics, vol.29, pp.398-399, 2013.
DOI : 10.1093/bioinformatics/bts701

URL : https://academic.oup.com/bioinformatics/article-pdf/29/3/398/17105186/bts701.pdf

M. Levitt, A simplified representation of protein conformations for rapid simulation of protein folding, J. Mol. Biol, vol.104, pp.59-107, 1976.

S. C. Lovell, I. W. Davis, W. B. Arendall, P. I. De-bakker, J. M. Word et al., Structure validation by C? geometry: ?, ? and C? deviation, Proteins, vol.50, pp.437-450, 2003.
DOI : 10.1002/prot.10286

M. W. Macarthur and J. M. Thornton, Influence of proline residues on protein conformation, J. Mol. Biol, vol.218, pp.397-412, 1991.

C. O. Mackenzie, J. Zhou, and G. Grigoryan, Tertiary alphabet for the observable protein structural universe, Proc. Natl. Acad. Sci. USA, vol.113, pp.7438-7447, 2016.
DOI : 10.1073/pnas.1607178113

URL : https://www.pnas.org/content/pnas/113/47/E7438.full.pdf

T. Mittag, J. Marsh, A. Grishaev, S. Orlicky, H. Lin et al., Structure/function implications in a dynamic complex of the intrinsically disordered sic1 with the cdc4 subunit of an {SCF} ubiquitin ligase, Structure, vol.18, pp.494-506, 2010.

A. Mohan, C. J. Oldfield, P. Radivojac, V. Vacic, M. S. Cortese et al., , p.665

A. K. Uversky and V. N. , Analysis of molecular recognition features (MoRFs), J. Mol. Biol, vol.362, pp.1043-1059, 2006.

M. D. Mukrasch, P. Markwick, J. Biernat, M. Von-bergen, P. Bernadó et al., , 2007.

, Highly populated turn conformations in natively unfolded tau protein identi670 fied from residual dipolar couplings and molecular simulation, J. Am. Chem. Soc, vol.129, pp.5235-5243

E. Mylonas, A. Hascher, P. Bernadó, M. Blackledge, E. Mandelkow et al., Domain conformation of tau protein studied by solution smallangle X-ray scattering, Biochemistry, vol.47, pp.10345-10353, 2008.

J. T. Nielsen and F. A. Mulder, Potenci: prediction of temperature, neighbor and ph-corrected chemical shifts for intrinsically disordered proteins, J. Biomol. NMR, vol.70, pp.141-165, 2018.

H. Ota and S. Fukuchi, Sequence conservation of protein binding segments in intrinsically disordered regions, Biochem. Biophys. Res. Comm, vol.494, pp.680-607, 2017.

V. Ozenne, F. Bauer, L. Salmon, J. R. Huang, M. R. Jensen et al., Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables, Bioinformatics, vol.28, pp.685-1463, 2012.

V. Ozenne, R. Schneider, M. Yao, J. R. Huang, L. Salmon et al., Mapping the potential energy landscape of intrinsically disordered proteins at amino acid resolution, J. Am. Chem. Soc, vol.134, pp.15138-15148, 2012.

R. Pancsa and M. Fuxreiter, Interactions via intrinsically disordered regions: What kind of motifs?, IUBMB Life, vol.64, pp.513-520, 2012.
DOI : 10.1002/iub.1034

URL : https://iubmb.onlinelibrary.wiley.com/doi/pdf/10.1002/iub.1034

Y. Pérez, M. Gairí, M. Pons, and P. Bernadó, Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase, p.148, 2009.

S. Piana, A. G. Donchev, P. Robustelli, and D. E. Shaw, Water dispersion interactions strongly influence simulated structural properties of disordered protein states, J. Phys. Chem. B, vol.119, pp.5113-5123, 2015.

V. Receveur-brechot and D. Durand, How random are intrinsically disor700 dered proteins? a small angle scattering perspective, Curr. Protein. Pept. Sci, vol.13, pp.55-75, 2012.
DOI : 10.2174/138920312799277901

URL : http://europepmc.org/articles/pmc3394175?pdf=render

C. A. Rohl, C. E. Strauss, K. M. Misura, and D. Baker, Protein structure prediction using Rosetta, Numerical Computer Methods, Part D, vol.383, pp.66-93, 2004.
DOI : 10.1016/s0076-6879(04)83004-0

B. Rozycki, Y. C. Kim, and G. Hummer, Saxs ensemble refinement of escrtiii chmp3 conformational transitions, Structure, vol.19, pp.109-116, 2011.

R. Schneider, D. Maurin, G. Communie, J. Kragelj, D. F. Hansen et al., Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear 710 relaxation dispersion NMR, J. Am. Chem. Soc, vol.137, pp.1220-1229, 2015.

M. Schwalbe, V. Ozenne, S. Bibow, M. Jaremko, L. Jaremko et al., Predictive atomic resolution descriptions of intrinsically disordered htau40 and alpha-synuclein in solution from NMR and small angle 715 scattering, Structure, vol.22, pp.238-249, 2014.

S. Schwarzinger, G. J. Kroon, T. R. Foss, J. Chung, P. E. Wright et al., Sequence-dependent correction of random coil nmr chemical shifts, J. Am. Chem. Soc, vol.123, pp.2970-2978, 2001.

R. Schweitzer-stenner and S. E. Toal, Construction and comparison of bor effects on backbone torsion angles and nmr scalar coupling constants in disordered proteins, Prot. Sci, vol.27, pp.146-158, 2016.

N. Sibille and P. Bernadó, Structural characterization of intrinsically disordered proteins by the combined use of NMR and SAXS, Biochem. Soc. Trans, vol.40, pp.955-962, 2012.

J. Silvestre-ryan, C. Bertoncini, R. Fenwick, S. Esteban-martin, and X. Salvatella, Average conformations determined from pre data provide highresolution maps of transient tertiary interactions in disordered proteins, Biophys. J, vol.104, pp.1740-1751, 2013.

L. J. Smith, K. A. Bolin, H. Schwalbe, M. W. Macarthur, and J. M. Thornton, , p.740

C. M. Dobson, Analysis of main chain torsion angles in proteins: Prediction of NMR coupling constants for native and random coil conformations, 1996.

, J. Mol. Biol, vol.255, pp.494-506

K. Sugase, H. J. Dyson, and P. E. Wright, Mechanism of coupled folding and binding of an intrinsically disordered protein, Nature, vol.447, p.1021, 2007.

D. Svergun, C. Barberato, and M. H. Koch, CRYSOL-a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates, J. Appl. Crystallogr, vol.28, pp.768-773, 1995.

K. Tamiola, B. Acar, and F. A. Mulder, Sequence-specific random coil chemical shifts of intrinsically disordered proteins, J. Am. Chem. Soc, vol.132, pp.18000-18003, 2010.

D. Ting, G. Wang, M. Shapovalov, R. Mitra, M. I. Jordan et al., Neighbor-dependent ramachandran probability distributions of amino acids developed from a hierarchical dirichlet process model, PLOS Comput. Biol, vol.6, pp.1-21, 2010.

P. Tompa, E. Schad, A. Tantos, and L. Kalmar, Intrinsically disordered proteins: Emerging interaction specialists, Curr. Opin. Struct. Biol, vol.35, pp.49-59, 2015.

V. N. Uversky, C. J. Oldfield, and A. K. Dunker, Intrinsically disordered proteins in human diseases: Introducing the D2 concept, Ann. Rev. Biophys, vol.760, pp.215-246, 2008.

K. Van-roey, B. Uyar, R. J. Weatheritt, H. Dinkel, M. Seiler et al., Short linear motifs: Ubiquitous and functionally diverse protein interaction modules directing cell regulation, Chem. Rev, vol.114, pp.6733-6778, 2014.

M. Wells, H. Tidow, T. J. Rutherford, P. Markwick, M. R. Jensen et al., Structure of tumor suppressor p53 and its intrinsically disordered n-terminal transactivation domain, Proc. Natl. Acad. Sci. USA 105, pp.5762-5767, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01524472

H. Xie, S. Vucetic, L. M. Iakoucheva, C. J. Oldfield, A. K. Dunker et al., , p.770

V. N. Obradovic and Z. , Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions, J. Proteome Res, vol.6, pp.1882-1898, 2007.