Combining symbolic and geometric planning to synthesize human-aware plans: toward more efficient combined search.

Mamoun Gharbi, Raphaël Lallement, Rachid Alami

To cite this version:

Mamoun Gharbi, Raphaël Lallement, Rachid Alami. Combining symbolic and geometric planning to synthesize human-aware plans: toward more efficient combined search.. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep 2015, Hamburg, Germany. hal-01955200

HAL Id: hal-01955200
https://hal.laas.fr/hal-01955200
Submitted on 14 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Combining Symbolic and Geometric Planning to synthesize human-aware plans: toward more efficient combined search.

Mamoun Gharbi1,2, Raphaël Lallement1,2 and Rachid Alami1,3

Abstract—We are combining symbolic and geometric planning to synthesize human-aware plans in order to deal with the complex and highly intricate planning problems induced by Human-Robot collaborative object manipulation.

In this paper, we summarize our previous contributions — refining symbolic actions at geometric level, during the symbolic planning, in order to assess their feasibility and computing the geometric side effects—, then we present the current contributions meant to tighten the cooperation between the symbolic planning and the geometric planning: the symbolic planner helps the geometric one by providing it with constraints and domain-expert knowledge making the geometric planner more efficient, and the geometric planner helps the symbolic one to find the best plan based on social costs computed at geometric level.

We also propose different examples, highlighting the interest of such cooperation between the planners in simulation and on our PR2 robot.

I. INTRODUCTION

We are developing a symbolic-geometric planner in the context of fetch & carry and collaborative human-robot object manipulation [1]. Besides, we would like the planner to be used in the context of situated dialogue [2], [3]. We argue that such a context is very challenging and opens interesting and “subtle” issues to the Combined Task and Motion Planning problems.

In such a context and perhaps more than in standard robotic manipulation problems (the block world problem and its robotics variants, for instance), there is a need for a more sophisticated reasoning since actions and motions are far more intricate, and the contexts in which they are performed, as well as how they have to be performed, can induce complex and highly interdependent decisions.

The planner should be able to synthesize plans for every agent, while taking into account the intricacy induced by having them sharing the same space and task. One difficulty comes from our intention to reason and consider affordances and perspective taking from both human and robot sides and, based on this, to produce collaborative actions where every agent has to act.

Fig. 1 shows an example of such a problem, where a robot needs to take decisions and computes plans in a human populated space. The bottom part corresponds to a plan automatically synthesised by our planner (containing both the action sequence for every agent and the geometric information needed, such as the trajectories, the grasps, and the object placements). The plan takes also into account a number of human-aware constraints such as minimising the humans efforts or avoiding to disturb them.

In a multi-agent, human-aware context, the action effects and their costs cannot be computed at symbolic level, especially while taking into account the human comfort and preferences [4]; the interleaving between symbolic and geometric planning becomes mandatory.

This paper reports on the extensions of a planner we have already presented in [5], [6]. We provide details on how the ramification problem is tackled and present a number of extensions specially dedicated to the improvement of the plan search: (1) a set of high level geometric constraints, (2) the ability to encode domain-expert knowledge at both levels, (3) well-informed cost estimation of actions and (4) the ability of the geometric planner to provide several instantiations of the same action. This permits to address more challenging problems and to integrate human-aware planning considerations.

II. RELATED WORK

Merging symbolic and geometric planning is a growing field that has been a focus to a number of researchers over the few last years. Various approaches are pursued, some are similar to our previous work, such as [7] where the
III. SYMBOLIC-GEOMETRIC PLANNING PROBLEM

We define a problem combining the symbolic and geometric planning as the 6-tuple $\langle D_s, D_g, S_{s0}, S_{g0}, g, E \rangle$ where D_s stands for the symbolic domain, containing all the symbolic tasks, while D_g is the geometric domain that contains all the geometric actions. S_{s0} and S_{g0} are respectively the symbolic and geometric initial states (they represent the SAME world state). g refers to the goal to achieve and E represents all the elements of the environment: the agents, the pieces of furniture, the objects and so on; they are called entities. The agents are treated as first-order entities since they correspond to robots and humans for which it will be necessary to compute motions. Entities are referred to, on both systems, with the same name to keep the correspondence. Their representation changes depending on the planner: at the symbolic level, attributes are associated to an entity in the form of predicates, whereas at the geometric level the same entity is described by its shape and its configuration space.

The geometric reasoning system is able to compute spatial relations between entities, such as between objects (in, on-top-of, ...) or between agents and objects (visibility, reachability, ...) [18]. This can be related to well known need to deal with the anchoring problem in order to fill the gap between the levels [19]. Those relations are named “Shared Literals” (as in [6]) since they are generated by the geometric level and exploited by the symbolic planner.

The solution to this kind of problem is a set of feasible actions, where an action is defined by the agents and their motions. The different actions are sequenced thanks to causal links –computed at the symbolic level from the HTN hierarchy– forming the plan.

IV. ALGORITHMS AND EXTENSIONS

A. Previous algorithms

We have proposed various contributions to the problem of combining symbolic and geometric reasoning in order to produce pertinent and feasible robot plans.

In Asymov [20], [21] we essentially proposed a principled way to link the two planners thanks to a geometric level able to tackle the so-called “manipulation planning problem” [22] and that allows to explicitly take into account the topological changes occurring in the configuration space, when a robot grabs or releases an object. Asymov provided a well founded translation of pick and place actions (and similar actions)
into 'transit' and 'transfer' motion planning requests even in multi-object and multi-robot contexts.

More recently we focused on a complementary approach [5], [6]: exploiting the capacity of the Hierarchical Task Network (HTN) [23] techniques to encode domain knowledge and developing a geometric planner capable of planning actions with several levels of abstractions, opening to more elaborate action instantiations. Such a combination provides several key features: a clean interface which corresponds to the anchoring problem and allows to better exhibit and master the links between the incremental processes of producing the symbolic plan and its geometric counterpart.

In [5] we presented a geometric backtracking algorithm which allows to reconsider the previous geometric choices by trying various alternatives to the previously computed actions and tests the validity of these alternatives by computing their geometric effects. In [6], the approach is different since the symbolic planner creates multiple instances for the same action (if a geometric refinement is needed) and backtracks on this instances, which are in fact, different geometric alternatives for the same symbolic action. If an actions is successfully refined, geometric effects, the shared literals, are computed.

The algorithm we use in this paper is presented in details in [5] and illustrated in fig. 2. The implementation is different: previously the link between the symbolic planner and the geometric planner was encoded directly into the symbolic domain, now a complementary module handles this link. At the geometric level, the implementation is more generic, and is able to tackle more complex problems linked to the symbolic-geometric planning problem.

B. Algorithm extension

The ramification problem occurs when all the effects of an action cannot be determined beforehand. When a motion is involved in an action, the symbolic planner cannot compute all the effects: a too-complex world model would be required. Furthermore, computing the human affordances (objects reachability, visibility and so on) makes it even more complex. Fig. 3 shows an example of this problem: the robot needs to place three objects on the table in front of it in order for the human to be able to reach the three of them at the same time. In the figure 3-C the robot places the third object, but this makes the first one no longer reachable.

In order to (partially) tackle this problem, we use the shared literals: after a geometric action is planned, we compute those literals for the new end state and send them to the symbolic layer. If some of the literals prevent a further action preconditions to apply, a backtrack is triggered and another geometric solution is requested. This process goes on until a valid plan is found, a given maximum number of geometric solutions (given by the domain expert) are tested, or no other geometric solution is available.

The problem is only partially tackled due to the discrete set of shared literals the system is able to compute: if a shared literals does not exist, the problem will not be tackled.

The symbolic layer exploits the shared literals when checking the preconditions, such as most other planners of the literature. In addition to the precondition checks, we added a “goal” for the abstract tasks (methods) under the form of literals. This goal is specified in the domain and used to check if the method decomposition has effectively reached the target goal. If the goal is achieved, the resolution continues, otherwise a backtrack is triggered. This mechanism is especially useful when, during a method decomposition, one or multiple actions can break previously achieved sub-goals in this same decomposition.

The shared literals are also used as constraints set by the symbolic layer when refining an action in the geometry. Then the constraints serve as supplementary goals to the action and drive the geometric search since they forbid some solutions. A constraint is a literal that must be true in the action geometric end state, for instance Object.ReachableBy == Human.

To better understand how constraints might be efficient in our context, a little reminder of the algorithm to find an action solution is needed: first it finds a position for the object, then, it finds a configuration for the agent, using inverse kinematic, and finally, it looks for a trajectory between the agent current state and this configuration.

For the constraints to be useful, they are tested as soon as possible: if it is constraints over the object position, they are tested before calling the inverse kinematic, if it is about the agent configuration, they are tested before the motion planning. Using the constraints enables to save computation time as they are tested before the computation is finished.

This constraints, when added to the symbolic domain, consist on a domain knowledge able to drive the geometric search. Another useful domain knowledge is the virtual
TABLE I
RESULTS FOR THE PICK & PLACE EXAMPLE.

<table>
<thead>
<tr>
<th>30 runs(time in s)</th>
<th>Place</th>
<th>PlaceR</th>
<th>PlaceRGoal</th>
<th>PlaceRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean time(stdev)</td>
<td>44.3(6.1)</td>
<td>27(3.6)</td>
<td>23(2.7)</td>
<td>16.2(1.8)</td>
</tr>
<tr>
<td>Nb tasks tried</td>
<td>67.5</td>
<td>11.6</td>
<td>9.7</td>
<td>8.6</td>
</tr>
<tr>
<td>Nb alternatives</td>
<td>59.6</td>
<td>3.8</td>
<td>2.5</td>
<td>1.6</td>
</tr>
</tbody>
</table>

actions. Virtual actions are simple, fast computing actions, used to test if a future action might be possible. Those actions do not ensure the infeasibility of the future actions, but, if they succeed, ensure their feasibility.

The example presented later in this paper (subsection V-B) concerns a virtualPlace\(^1\). This action places a virtual object\(^2\) on a support to test if it fits. In this case, any items this virtual object may contain will fit on the support.

The last contribution of this paper, is the cost usage: the symbolic planner uses cost-driven search [24], moreover each action has a cost function given by the domain expert. However, the geometric planner as it computes the actual trajectory, has a better cost estimation and can provide the symbolic planner with precise costs representing different parameters such as the energy needed, the time to execute or social rules (e.g. avoiding navigation behind humans [25]).

V. EXAMPLES & RESULTS

In this section, we present different examples involving at least a human and a robot (the PR2), where a standard two-layer planning architecture would not be able to solve the problem or would not find the best solution. The experiments were run on a quad-core Intel Core i7 processor and 8GB of RAM, running Ubuntu 14.04.

A. Exploiting reachability computation to enrich reasoning about pick & place

This example shows the interest of having a backtracking algorithm, different levels of abstraction in the geometric planner, constraints, symbolic goals and how our system handles the ramification problem.

Fig. 3-A shows a geometric initial situation \(S_{gb}\). The robot needs to place the three objects (the red cube, the grey book and the orange box) on the table in front of it, reachable by the human (at the same time, in the end of the task).

The shared literals used in this example are \texttt{ReachableBy} (which objects are reachable to each agent) and \texttt{IsOn} (which object is on which one). The available geometric actions in \(D_g\) are \texttt{pick}, \texttt{place}, \texttt{placeR} and \texttt{placeRC}. \texttt{placeR} is an action where the robot places an object \texttt{ReachableBy} the target agent (the human here). \texttt{placeRC} is similar to it but adds constraints to the action: the constraints are for the objects already placed on the table to still be \texttt{ReachableBy} the same target agent once the action is performed.

The highest-level task in the symbolic domain \(D_s\) is \texttt{PlaceObjects} and is composed of the succession of three

\(^1\)italic is used for the symbolic layer, \textbf{bold} is used for the geometric layer.

\(^2\)an object that can contain other objects, and that can be ignored by the collision checking when needed. The virtual objects are given to the system, each virtual object correspond to a set of objects it can contain.

transport tasks followed by a \texttt{Validate} action. The \texttt{Transport} method contains a \texttt{Pick} action, then a \texttt{Place} and finally a \texttt{CheckReachable}. The goal of the latter is to check if the object involved in \texttt{Transport} is reachable by the human. The \texttt{Validate} action is similar but does the reachability test for all the objects the robot should place and is used as a goal test. The objects placement order is given to the planner.

There are four variants of \texttt{PlaceObjects}: the first is presented above, the second, \texttt{PlaceObjectsR}, where \texttt{PlaceR} is called instead of \texttt{Place}, the third, \texttt{PlaceObjectsRC}, uses \texttt{PlaceRC} instead of \texttt{Place}. The set of objects to specify in this function is the list of the previously placed objects, which prevent this action from breaking the predicates \texttt{ObjectReachableBy} \(==\) \texttt{targetAgent} tested in \texttt{CheckReachable} and \texttt{Validate}. Finally the fourth, \texttt{PlaceObjectsRG}, which is similar to \texttt{PlaceObjectsR} (the second variant) but where the goal of each method is specified such that it must keep the previously-placed objects reachable in addition to make the newly-placed object reachable.

Table I shows a clear difference between the domains using \texttt{Place}, \texttt{PlaceR}, \texttt{PlaceRGoal} and \texttt{PlaceRC}. In the first case, the action \texttt{CheckReachable} preconditions are rarely met, resulting in a high number of alternatives computed and a long computation time (\(\sim15\text{min}\)). When \texttt{PlaceR} is used, the number of alternatives computed decreases significantly: the geometric planner directly places the objects reachable by the human. Placing a new object may change the reachability of the previously placed objects, –the ramification problem depicted in fig. 3–, the constraints enforcement in \texttt{PlaceRC} prevents this behaviour, greatly reducing the number of alternatives needed and the computation time. \texttt{PlaceRGoal} gives better results than \texttt{PlaceR}, the ramification problem is detected sooner enabling a faster recovery: for instance when the second object (the grey book) is placed, if it breaks the reachability of the first one (red cube) the \texttt{PlaceR} variant will only detect it at the final \texttt{Validate} while the goal enforcement ensures an earlier detection. However \texttt{PlaceRC} gives better results as it prevents the ramification problem from occurring.

This example is based on backtracking, shared literals and abstract actions. [20] and [12] can reproduce the first results (\texttt{placeR} and \texttt{placeRC}) while [16] and [9], due to their constraint based approaches, can reproduce the latest ones (under the condition of adding the human-aware predicates).

This experiment (with slightly different items, but with the same problems) was held on the actual robot (PR2) as well,
Fig. 5. The robot has to place the three books on the table in front of it. This table is cluttered by other objects, making it impossible to place more than one or two books. Case A shows an initial situation while B shows the VirtualPlace test made on the table to assess if there is enough space for placing all the books on the table.

Fig. 4 shows key pictures of the execution and the attached video shows the whole plan execution.

B. Using domain-expert knowledge to drive the search

This example shows how it is possible using the combination of a symbolic and a geometric planner to implement a common-sense heuristic. When one tries to place several objects close one to the others, it tries to find a surface or to free a surface (if needed) where it is possible to put an “imaginary” (we call it virtual), big object that represents the volume to be occupied by the full set of objects.

Fig. 5-A shows an initial geometric states S_{g0}. The robot needs to place the three books in front of the human, but the table is cluttered with other objects. The available geometric actions in D_g are pick and place.

In this scenario the top-level task, GiveCollection, has two decompositions and, to decide which one to use, it tries a virtualPlace with a virtual object. If the virtual object can be placed, it means that there should be enough room to directly call the task PutObjects. This task is recursive and is called once for all objects in order to Transport them. (Transport is defined as the sequence of a Pick and a Place actions.) In the case where the virtual object can not be placed, the task CleanTable is called before using the PutObjects. CleanTable is also recursive and iterates through all objects on the goal table and stops when either the virtualPlace succeeds or all objects are removed. If the robot can not carry out this task (no space to place or no grasp for the objects) the human will help out.

In order to have a reference value, we have created a version of this domain where the virtualPlace is not used to choose whether to CleanTable or not, neither to stop the recursive call to CleanTable (which then stops only when all objects are moved away). Table II shows the two domains (with and without the virtual test). When virtualPlace is used, the planner tries to place a virtual object corresponding to the set of books, on the table (fig. 5-B) and if no space is found, calls CleanTable before PutObjects, otherwise it directly calls PutObjects. In the other case, the planner will try to place the books on the table, and will probably succeed to place one or two, but the space is limited, and the third book will not have enough space. Hence, the planner will backtrack several times over the Transport task before finally trying another decomposition (CleanTable), this implies to try several decompositions, refine and compute a lot of alternatives before finding the first valid plan. The significant time spent on useless backtracks can be seen in table II. On the other hand, with the virtualPlace, a first valid plan is found sooner since it realises that it is necessary to free the table before putting the objects, yet it may use few alternatives to correctly refine CleanTable or PutObjects.

In this example, the aim was to remove objects in the target area only when necessary, this has been of interest in [11], [13], [17].

C. Reconsidering the object choices based on the plan cost

This example shows how the geometry can guide and/or help the symbolic planner to find the best plan based on its quality. Number of research focuses on qualifying a geometric action, especially in a human-aware context. We use [25] in order to compute a cost for the robot navigation action, integrating the path length, the distance between the path and the humans and the length of the path passing closely behind the humans.

Fig. 6 shows two initial situations S_{g0} and their solutions (the blue lines). The difficulty consist on choosing the right object (between the two similar and available ones) to bring to the human. This choice should take into account the comfort of every human in the environment.

The available geometric actions in D_g are pick, place and goto, which is a navigation action where the search space is the set of positions within range of the target object.

The domain starts with the task GiveObject that randomly chooses an object: this is a backtracking point and since all the plans are computed in order to find the best, all objects are tested. It decomposes into Take and MakeReachable methods. The first method has two decompositions depending on whether the robot can Pick or has to first GotoObject before being able to Pick. The choice is based on a reachability test. The MakeReachable task again takes in account the reachability of the table to place the object on: it relies on Place but also has a second decomposition where it first uses GotoTable before the Place.

This example can be solved using a symbolic planner only, but our approach enables the planner to choose the best solution among all the possible plans while taking into account the geometric world and some specific social rules.

[15] describes an example close to this one, where the robot needs to choose between multiple symbolic plans and the best one based on a geometric computation of the cost.

Fig. 1 shows a variation of this example (The attached video shows a symbolic-geometric search in this domain, and the plan found for it), where there are more actions and interactions. The green human is waiting for two processed objects to be delivered, and there are two unprocessed objects.
and a processed one in the environment. The blue human is able to process the objects. The difficulties in this example are the followings: (1) to reach the unprocessed object at B, the robot needs to move the orange box, (2) to navigate to the unprocessed object at C, the robot goes behind the red human, (3) the planner needs to choose between the two unprocessed object based on cost evaluation, (4) the choice between the processed and unprocessed object can be done only by the symbolic planner.

The planner chooses for the robot to first bring the processed object to the green human (smaller number of actions), then, goes and get the unprocessed object at B after moving the orange box (as it is less disturbing for the red human) and brings it to the green human after the blue human has processed it.

VI. CONCLUSION

We have presented in this paper different improvements to a previously published algorithm, concerning the combination of symbolic and geometric planning in the context of human robot collaboration. We have provided details on how we handle the ramification problem by computing the actions side-effects and using the shared literals. We have also presented these improvements: (1) using shared literals as constraints to guide the geometric planner, (2) Adding requests to the geometric planner to assess the feasibility of future actions, (3) estimating accurately the action cost based on social rules and (4) using different alternatives of a geometric action for the same symbolic task.

In order to support these improvements, we implemented them on pick & place examples, however they can be used in other domains. In order to achieve this, new domain specific knowledge should be added, such as new shared literals, new cost computations and/or new virtual actions, but their usage would be similar.

We believe that this framework will provide latitude for even more improvements and for devising more elaborate techniques to reduce computation time and focus on the more promising alternatives. For instance, a way to extend our work would be to choose a backtracking point using information from both the geometric and symbolic contexts. As of now, the maximum allowed number of alternatives is fixed by the domain expert, while it could be computed or learned from the geometric and symbolic contexts.

REFERENCES