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SummaryThis paper presents a general methodology to predict the dynamics of geometrically nonlinear Micro/Nano Electro-

Mechanical Systems (M/NEMS) with piezoelectric and dielectric transducers, modelled as laminated thin structures. Modal
Reduced Order Models (ROM) are built using nite-element software thanks to a non-intrusive strategy. The resulting system
of coupled oscillators is solved with the Harmonic Balance Method (HBM) coupled to an Asymptotic Numerical Method
(ANM). The present study focuses on the computation of the ROM, that include the geometrical nonlinear terms and the
direct and converse electromechanical couplings. Then, frequency responses and nonlinear modes, including possible internal
resonances, are proposed for some particular beams and circular plates M/INEMS architectures.

Keywords: Geometrical nonlinearities, electromechanical coupling, piezoelectric, dielectric, M/INEMS,
nite elements.

1 Introduction

Geometrical nonlinearities, due to large transverse displacements of thin structures, are involved in a
large range of applications. Among them, Micro-Electro Mechanical Systems (MEMS) developments
has been the focus of numerous studies, whose purpose is to master and use the geometrically nonlin-
ear behaviour (among others, sgg [7| 11, 14, 17]). Recent advances in non-intrusive reduced-order nite
element modeling of nonlinear geometric structures offer new perspectives for massive nonlinear pre-
diction in structural computation [8]. An application on piezoelectric nanobridges of such a method has
been proposed in [6], with a home made nite element code. The purpose of this paper is to extend this
approach to a wider range of MEMS architectures with thin geometries, including beams with complex
cross section [16] and laminated beams/plate structures |2, 4, 5].

Two examples of structures are shown on Fig. 1. They are both constituted of a base structure (a
silicon / silicon oxide stack) which has been etched through the material to pattern a beam/plate thin
structure, with clamped boundary conditions. The electromechanical transducers are constituted of mul-
tilayer stacks of an active layer surounded by two electrodes (top and bottom). Oh Fig. 1, both structures
are equipped with two transducers (one at each end of the clamped/clamped beam; an annular one at
the edge of the circular plate and another circular one at its center). The structures are at a hanometer
(thickness of 350nmfor the beam) or micrometer (thickneéss2:5 m for the plate) scale, with a thin
geometry (aspect ratio @012 0:35=30 for the beam an@:5=200for the plate). Two electromechani-
cal transduction schemes are considered. The rst one is the well known piezoelectric material, and the
second one is based on the use of dielectric layers, as introduced in [5]. In this latter case, the excitation
results from the electrostatic force created between the charged electrodes which causes a transverse de-
formation of the dielectric Im and a bending of the multilayer structure; the detection of the vibration is
capacitive, based on the uctuation of the capacitance due to the deformation of the dielectric Im. In the
case of thin layers, both effects can be modelled in the same way [13]. The modelling proposed here thus
includes: (i) the geometrical nonlinearities (ii) the laminated structure and (iii) the electromechanical
transduction with both converse and direct effects.
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Figure 1. Scanning Microscope Images and cutaway view of some M/NEMS devices: a
clamped/clamped beam and a clamped circular plate. Beam dimenSior30 m, thickness820nm,
dielectric stack thickness35 nm. Plate dimensions: diamet200 m, thicknessl m, piezoelectric
stack thicknessl:6 m

2 Finite element reduced-order model

We consider an elastic structure equipped vidth2 N thin transducers composed of multilayer
stacks including an active layer (piezoelectric/dielectric, Fjg. 1). Following the ideas lof [12] for the
linear case and [6§ for the case with geometrical nonlinearities, the governing equations can be written:

¥ h i
%MmU+KmU+fm(U)+ fP+pPU vP = F; (1a)
. pl
E h iT
>cPy® @4 p@Py U= QP; 8p2fl:::Pg (1b)

In the above equationd) is the vector containing the mechanical degrees of freedom (ofNsize
F is the mechanical forcing vector (of si¢), V(P) is the voltage applied to the-th. active layer
and QP is the electric charge contained in one of its electrodés,, andK , are the mechanical
mass and stiffness matrices (of side N), f, (U) is the nonlinear part of the internal mechanical
forces vector (coming from the geometrical nonlinearities, of Bige All those mechanical quantities
are related to the structure with all active layers short-circuté® (= 0 8p). C(P is the electrical
capacitance of thp-th. active layer with the elastic structure in blocked state< 0). Finally, f ép) is
the electromechanical forcing vector (the one introduced in [12], ofizevhich couples the-th active
layer to the mechanical dofs aﬁdp) is an electromechanical coupling matrix, related to the geometrical
nonlinearities, responsible in particular of parametric excitation effects in thin structufes [14].

As shown in [6], we considelk < N eigenmodeg ;! k) of the structure with all active layers
short circuited Y (P) = 0 8p). They are solution of:

Km !'?Mpy = 0: (2)
and normalized with respect to the mass matrix:
iMm =1 8k (3
The displacemenit (t) is written:
X
u(t)= KOk (1); (4)

k=1
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with the n}?dal coordinate(t) that verify:

2 X k X k
& +2 g+ ot iaq + K agq
ihj =1 il =1
X x o0
p=1 p=1 i=1
X X
' k=1 i =1

The idea of a non-intrusive method is to use the standard static and modal analyses procedures of nite-
elements commercial codes to evaluate the coef cients of the above reduced order model, esﬁfecially

ilj(l , (kp) and i(lf)'

As explained in|([9], the nonlinear stiffness coef cient# and i‘jﬂ are computed by prescribing
a series of displacement expanded to some linear modes, evaluating nonlinear direct static problems
and solving an algebraic linear system. For the electromechanical coupling coefc@htsnd I(lf)
several strategies are tested. The rst one is to use a standard elastic nite-elements code and to use
a thermal analogy: prescribing a given voltages equivalent, to some assumptions, to prescribe a
given temparature eld. It enables in a straighforward manner to compute the linear coef c@hts

The nonlinear ones i(jp) can be evaluated with the same method, the only difference being that the

displacement elds result from a geometrically nonlinear thermoelastic static problem. Another one is
to use a nite element code with piezoelectric nite elements and geometrical nonlinearities.

3 Computation of frequency responses

The obtained reduced order modg| (5) can be treated in several manners. If it is reduced to very few
oscillators (with normal form for instance [15]), analytical perturbation methods can be used (see [10]).
Here, we are interested in numerical methods, which enables to consider more oscilldt¢rs in (5) and
compute accurately frequency responses. We use here a combination of the Harmonic Balance Method
(HBM), to compute periodic solutions, and an Asymptotic Numerical Method (ANM) to follow the
solution branches [[L] 3]. It requires to rewrité (5) in the state space and under a quadratic form, which is
done by introducing the modal velocitigg = g« and new slave variableés = g .

We compute frequency responses, when the structure is subjected to an harmonic forcing (for instance
by prescribing the voltage in one of the transducer st&i$ = Vpcos t) or nonlinear modes, which
correspond to the periodic solutions of Ed. (5) in free/conservative vibrations. The latter case conducts to
compute backbone curves, which are very interesting in practice since they constitute the skeleton of the
forced vibrations responses. However, since the system is conservative in this case, numerous internal
resonances are computed which increases the computation time. An example is shown dn Fig. 2 on
which some responses of a homogeneous isotropic circular plate are presented. The four rst NNM have
been computed by assuming that the axisymmetric and asymmetric problems are separated. Numerous
modal interactions at high vibration amplitudes are obtained, for which harmonics of id&; 10
emerge in the free response of the plate around the rst mode. The asymmetric modes are subject to a
1:1 internal resonance, well computed by the algorithm.
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