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ABSTRACT
This paper takes place within the field of sound source lo-
calization by combining the signals sensed by a binaural
head with its motor commands. Such so-called “active”
schemes are known to overcome limitations occurring in the
static context, such as front-back ambiguities or distance
non-observability. On the basis of a stochastic filter, which
approximates the posterior probability density function of
the sensor-to-source situation, a feedback controller of the
sensor motion is proposed so as to reduce the associated
uncertainty. An information-theoretic analysis of the effect
of the sensor motion on the localization uncertainty is first
conducted. Then, a gradient ascent scheme is used to drive
the head towards the area of minimum uncertainty (maximum
information). An evaluation on simulated scenarios, as well
as on data coming from real experiments, is included.

Index Terms— Robot audition, active localization, stochas-
tic filtering, information theory, information based control.

1. INTRODUCTION

Auditory robots enable the incorporation of motion into bin-
aural “active” sound source localization, so as to remove
front-back ambiguities or recover range [1]. Such schemes
can cope with moving and intermittent sound sources [2].
This paper addresses the feedback control of the sensor mo-
tion so as to reduce localization uncertainty.

Within the related “exploration problem” in robotics,
robots move autonomously so as to maximize their knowl-
edge about the world. Simultaneous localization and map-
ping (SLAM) has been extended so that robots move in the
direction of maximum local information improvement [3].
The control scheme extracts the information about the state
variables using the concepts of Shannon entropy an mutual
information [4], and, in the end, maximizes a “size” crite-
rion such as the determinant or trace of the inverse of the
one-step ahead posterior state covariance matrix [5]. Other
information-theoretic controllers have been applied to infor-
mation retrieval on some targets [6], robot guidance towards
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areas of maximum uncertainty [7], control of a robot-mounted
camera to optimize depth estimation [8], or sensor parameters
selection (e.g., zoom or attitude) for scene analysis [9, 10].

In robot audition, information-based control is sparser.
Motion planning was proposed in [11] to improve speech
recognition from a monaural robot. Sound localization was
improved in [12] by moving microphones deployed in the
environment. Recently [13], a robot equipped with a micro-
phone array has been controlled to improve occupancy grid
based source localization, by using dynamic programming.

Our single-source localization strategy is organized into
three layers [14]. The first stage estimates the source azimuth
from the short-term analysis of the binaural stream. The sec-
ond stage assimilates these azimuths over time and combines
them with the motor commands into a stochastic filter, lead-
ing to the posterior probability density function (pdf) of the
head-to-source relative situation. The paper focuses on the
third stage, which aims at controlling the head motion to im-
prove the quality of the fusion performed in the second stage.
Simulations and real-life experiments illustrate the approach.

2. PRIOR WORK

This section recalls the azimuth estimation of a single source
[15] and the incorporation of the head motion [16] so as to
get a Gaussian mixture approximation of the head-to-source
pdf. The reading of [14] is strongly recommended. In the se-
quel, random variables/processes and corresponding samples
are written using similar lowercase letters.

2.1. Short-term extraction of directional cues

The left and right microphones are termed R1 and R2.
The interaural transfer function is known over an adequate
range of source azimuth and frequencies. The frame {F =
(O, ~ex, ~ey, ~ez)} is attached to the head, with ~R1O = ~OR2.
R1, R2 and the pointwise emitter E lie on a common hori-
zontal plane. The source and sensor noises are modeled as
random processes satisfying reasonable hypotheses (Gaus-
sianity, zero-mean, band-limited, “local stationnarity”. . . ).
From [15], on the basis of the channel-time-frequency de-
composition yk of the binaural signal on a sliding window



ending at time k, the short-term maximum likelihood θ̂k of
the source azimuth θk comes as the argmax of a “pseudo like-
lihood” p(yk|θk). It is obtained by replacing in the genuine
likelihood of the unknown variables the most likely spectral
parameters of the source as a function of its azimuth, thanks
to a notable separation property.

2.2. Fusion of audio information with motor commands

A discrete-time stochastic state space equation is set up,
uniting the velocity control vector uk ∈ R3 (2 translations
and 1 rotation) of the head to the head-to-source situation
xk ∈ R2. A theoretically sound Gaussian mixture square
root unscented Kalman filter (GMsrUKF) is defined so as to
incorporate the above pseudo likelihood p(yk|θk) (where θk
comes as a static function of xk) [16] and compute a Gaus-
sian mixture approximation of the posterior pdf p(xk|y1:k) =∑Ik

i=1 w
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kN (xk; x̂

i
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i
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weight, mean and covariance of each hypothesis. Contrarily
to several particle filters, a self-initialization as well as poste-
rior covariance consistency is ensured, so that front and back
are disambiguated, and both range and azimuth are faithfully
recovered.

3. TOWARDS AN INFORMATION-BASED
SENSORIMOTOR FEEDBACK

An information measure can be defined from the posterior
pdf p(xk|y1:k) at time k, which captures all the information
on the head-to-source situation held in the measurements.
The one-step ahead control problem is studied, consisting in
determining the control vector u∗k such that the information
in p(xk+1|y1:k+1), averaged over the (unknown) possible
values of the next measurement yk+1, is maximized. Two
simplifications make the problem tractable: p(xk|y1:k) is re-
duced to a single Gaussian pdf N (xk; x̂k|k, Pk|k), e.g., by
keeping its most probable hypothesis or by computing its
moment-matched approximation; in the definition of u∗k, the
next channel-time-frequency decomposition yk+1 is traded
for a scalar vector zk+1 satisfying a closed-form measurement
equation zk+1 = g(xk+1) + vk+1, with v the measurement
noise. Henceforth, the Woodworth-Schlosberg formula for
interaural time difference approximation over a spherical
head [17] is selected for g(.) and thus guides the exploration.
u∗k is then defined on the basis of p(xk|z1:k) defined as
N (xk; x̂k|k, Pk|k) and on the above measurement equation.
Once this control signal is applied, the next state posterior
pdf p(xk+1|y1:k+1) is computed from the GMsrUKF de-
scribed in §2.2. Then, one defines again p(xk+1|z1:k+1) as
equal to p(xk+1|y1:k+1) and the whole process is repeated to
determine u∗k+1.

3.1. Information measures and control input

Let w, x be two random variables with pdfs p(w), p(x). The
differential entropy h(x) of x embodies its uncertainty, in that
the lower h(x) the higher the information in x. The mutual
information I(w, x) (≥ 0 by definition) measures the amount
of information w contains about x [4]. They are defined by

h(x)=−
∫
p(x) log p(x)dx; I(w,x)=

∫∫
p(w,x) log

p(w,x)
p(w)p(x)

dwdx.

Ifw and x are conditioned on the event that a random variable
v takes a given value, then the entropies/information are de-
noted by h(w|v), h(x|v) and I(w, x|v). The following rule,
somewhat similar to [18], holds.

Theorem 1 Decomposing the negative logarithm of the pos-
terior pdf p(xk+1|z1:k+1) as

− logp(xk+1|z1:k+1)=− logp(xk+1|z1:k)−log
(
p(zk+1|xk+1)
p(zk+1|z1:k)

)
,

and taking its expectation conditioned on z1:k (which involves
the joint pdf p(xk+1; zk+1|z1:k)), leads to

Ezk+1

{
h(xk+1|z1:k+1)

}
= h(xk+1|z1:k)−I(xk+1; zk+1|z1:k)

Exk+1

{
h(zk+1|xk+1)

}
= h(zk+1|z1:k)−I(xk+1; zk+1|z1:k),

with h(xk+1|z1:k+1), h(xk+1|z1:k), h(zk+1|xk+1),
h(zk+1|z1:k) the entropies of the next filtered state pdf, the
next predicted state pdf, the observation law, the next pre-
dicted measurement pdf, and I(xk+1; zk+1|z1:k) the mutual
information of the next state and measurement conditioned
on the sequence of measurements up to current time.

In view of the mutual information positivity, the inequal-
ity Ezk+1

{
h(xk+1|z1:k+1)

}
≤ h(xk+1|z1:k) holds. Given

p(xk+1|z1:k), minimizing Ezk+1

{
h(xk+1|z1:k+1)

}
boils

down to maximizing I(xk+1; zk+1|z1:k).
The entropy of a multivariate normal distribution comes

as an increasing affine function of the log-determinant of its
covariance matrix [4]. So, h(zk+1|xk+1) only depends on
the variance of the noise vk+1. In view of the (nonlinear)
Kalman equations that could be used to assimilate the mea-
surement zk+1 for exploration, h(xk+1|z1:k+1) does not de-
pend on zk+1. As the prior state dynamics defines a rigid
body motion of the head, the entropy h(xk+1|z1:k) of the pre-
dicted state is equal to h(xk|z1:k) and does not depend on uk
if the dynamic noise is neglected. So, the following holds.

Theorem 2 Finding a control input u∗k which minimizes the
entropy h(xk+1|z1:k+1) of the next filtered state pdf is equiva-
lent to maximizing the mutual information I(xk+1; zk+1|z1:k)
of the next predicted state and measurement, or to maximizing
the entropy h(zk+1|z1:k) of the next predicted measurement
pdf, that is,

u∗k = argmin
uk

h(xk+1|z1:k+1) = argmax
uk

I(xk+1; zk+1|z1:k)

= argmax
uk

h(zk+1|z1:k).



The Kalman filter equations lead to the approximations
ẑk+1|k and Sk+1|k of the predicted measurement mean and
covariance. Considering that p(zk+1|z1:k) is approximated
by the Gaussian pdf N (zk+1; ẑk+1|k, Sk+1|k), the entropy
h(zk+1|z1:k) can be rewritten as an increasing affine function
of the log-determinant of Sk+1|k.

3.2. Geometric interpretation

Theorem (2) can be interpreted geometrically. Given a head-
to-source situation (Figure 1.a), the 2D Gaussian approxi-
mation of the next filtered state pdf resulting from the fu-
sion of the next predicted state pdf with the measurement
is represented for various positions: when the sensor is still
(Figure 1.b); when after a sensor motion, the interaural axis,
supported by ~ey (resp. the boresight direction, supported by
~ez), is parallel to the small axis of the confidence ellipse as-
sociated to the predicted state pdf (Figure 1.c) (resp. (Fig-
ure 1.d)). Importantly, the Woodworth iso-ITD are not uni-
formly distributed along the azimuths. They are more con-
centrated along the direction of ~ez which defines the auditive
fovea, while they are sparser along the interaural axis ~ey .

The variance of the predicted measurement is low when
the ellipse is intersected by a few number of iso-ITD (Fig-
ure 1.b-c). In this case, the measurement uncertainty due to
noise corresponds to a wide spatial sector. Consequently, the
measurement update cannot significantly improve the infor-
mation in the filtered state pdf. The more iso-ITDs intersect
the ellipse associated to the predicted state pdf, the higher the
variance of the predicted measurement. For instance, when
the small axis of this ellipse is parallel to the auditive fovea
(Figure 1.d) or when the head gets closer to the source, the
measurement uncertainty due to noise corresponds to a nar-
row cone. Then, the fusion of the predicted state pdf and of
the measurement results to a strong increase in the informa-
tion of the filtered state pdf.

3.3. Feedback control by gradient ascent strategy

As the robot only undergoes rigid body motions, the prob-
lem is reduced to find, from the head-to-source situation at
time k characterized by N (xk; x̂k|k, Pk|k), the adequate fi-
nite translation {Ty, Tz} and rotation {φ} which maximizes
the variance of the next predicted measurement pdf Sk+1|k.
An expression Sk+1|k = Fk(Ty, Tz, φ) of this variance with
respect to the motion variables is then necessary. In practice
this expression has no closed form. An analytic derivation
of an approximation of its gradient around

−→
D0 = (0, 0, 0)T

is proposed so as to point out the direction of its steepest as-
cent. Using successive first order Taylor expansions and the
unscented transform, an analytic approximation

Fk

(−→
D0 +

−→
du
)
= Fk

(−→
D0

)
+
−−→
∇Fk

(−→
D0

)T −→
du

(a) (b)

(c) (d)
Fig. 1. Geometric view of the fusion process for different mo-
tion strategies. The blue frame F : (O, ~ex, ~ey, ~ez) is attached
to the binaureal head (represented with its “ears”). The sound
source real position is pointed with a yellow square. The grey
confidence ellipse is related to the current posterior head-to-
source pdf. The measurement space is materialized by the
Woodworth iso-ITDs. The blue ellipses are associated with
the next predicted state pdf (after applying the velocity com-
mand to the head, which is 0 in b). The green sector/cone
describes the spatial uncertainty due to measurement noise.
The red ellipse sketches the confidence ellipsoid associated to
the next filtered state pdf, after the incorporation of the Wood-
worth ITD for the source position.

can be written when an infinitesimal motion vector
−→
du =

(dTy, dTz, dφ)
T is applied around

−→
D0. Therein, Fk(

−→
D0) is

the variance of the predicted measurement without any dis-
placement, and dk =

−−→
∇Fk(

−→
D0) is the gradient of Fk eval-

uated at
−→
D0, i.e., the direction of steepest ascent of the next

predicted measurement variance. Note that the function Fk+1

is not the same as Fk due to the incorporation of the obser-
vation yk+1. In other words, the strategy does not consist in
iteratively maximizing a function by the gradient method.

4. SIMULATIONS AND REAL-LIFE EXPERIMENTS

4.1. Evaluation of the method

Simulations have been conducted to test the validity of
the method (Figure 2). The GMsrUKF coupled with the
Woodworth-Schlosberg measurement equation for exploratory
control have been implemented in MATLAB. The filter fre-



(a) (b) (c) (d)
Fig. 2. Audio-motor localization of a sound source by moving the sensor towards the gradient direction of Fk. (a): Self-
initialization. (b): Front-back ambiguity with no motion. (c): Information-based motion towards the sound source. (d) Entropy
of the moment-matched approximation of the posterior state pdf along time for different control strategies: pure rotation (red),
circular trajectory around the sound source (green) and information based strategy (blue).

quency is 20Hz and a new control input is updated every
100ms. The ground truth position of the sensor is depicted
with a blue frame equipped with head and ears while the
sound source position is plotted with a red square. Blue el-
lipses represent 99% confidence regions associated with the
various hypotheses of Gaussian mixture approximation of the
state posterior pdf. Several scenarios have been considered
so as to compare the efficiency of the command strategy (Fig-
ure 2.d). During the transient mode, the proposed strategy
is not better than purely rotational or circular open-loop mo-
tions, because it is based on a single Gaussian pdf which does
not capture all the hypotheses of the Gaussian sum approxi-
mation of the posterior state pdf. When only one hypothesis
remains, the decrease is more significant. The plotted final
entropy of the moment-matched approximation of the gen-
uine posterior state pdf reaches a steady state value which
is much lower than the steady state value of this entropy for
other motions.

4.2. Real life experiment

The live experiments have been conducted on the robot Jido
which is a MP-L655 platform from Neobotixr. The KEMAR
binaural head and torso from G.R.A.S.r is embedded on it.
The head has been equipped with a homemade controllable
azimuth dof on its neck (Figure 3). The software architecture
is based on the ROS middleware, and involves the GenoM3
module generator [19]. The speaker emits a white noise fil-
tered with 1 kHz bandwidth band-pass filter whose central
frequency is 1 kHz. Due to space reasons, active localiza-
tion results as well as technical complements on the gradi-
ent derivation, are shown on http://homepages.laas.
fr/danes/ICASSP2016.

5. CONCLUSION AND PROSPECTS

This paper has presented a feedback control scheme for active
binaural localization. The method has been assessed in simu-
lations as well as on an embedded auditory platform. An on-

Binaural Sensor

brushless motor

Robot base

Sensors and
actuators Functional Level

JIDO base computer

Localization
Framework

Locomotion control

Binaural audio 
stream server

Head rotation control

Fig. 3. Audition robot architecture. All the curved shapes
are ROS or GenoM3/ROS nodes. The binaural audio stream
server publishes binaural data from the KEMAR head. The
localization framework implements the three-step strategy. It
sends commands the head rotation control node and to the
robot locomotion control node.

going prospect is to implement a complete gradient or New-
ton algorithm on each Fk so as to find the admissible optimal
finite translation and rotation. The nature of local optimums
will be also investigated.

Multi-step method will then be considered. For instance,
a criterion based on the expectation of the differential entropy
over several steps could be used to guide the motion, in the
vein of [20]. The guidance will thus be viewed as a multi-
step optimization problem where the objective is to find a se-
quence of the robot commands u? = {uk, uk+1, ..., uk+N}
so as to improve the localization over N -steps. The resolu-
tion may rely on Partial Observable Markov Decision Pro-
cesses incorporating reward functions based on information
analysis [21] or on other optimal control techniques.
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