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Introduction 
Dependability evaluation of computer systems is 

intended to estimate the presence, creation and 
consequences of faults on dependability and to 
facilitate whenever possible, their removal or 
tolerance. It is usually implemented by means of 
ordinal or probabilistic evaluation techniques. 

Ordinal evaluation consists in analyzing the link 
between faults (i.e., failure causes) and their effects 
on system behavior. Its aim is to identify possible 
system design weaknesses. 

Probabilistic evaluation of dependability encom-
passes both model-based and measurement-based 
techniques. Model-based evaluation includes both 
analytical and simulation models. The difference 
between the two approaches concerns mainly: i) the 
abstraction level usually considered for describing 
(modeling) the behavior of the system and ii) the 
assumptions attached to the distributions of the 
stochastic processes governing the parameters of the 
model. In this paper we will primarily refer to 
analytical modeling. Measurement encompasses both 
the observation of a real-life system in operation 
(termed as field measurement here) and controlled 
experimentation where faults are deliberately injected 
into the target system so as to accelerate the 
characterization of its faulty behavior, usually referred 
to as fault injection experiments. 

Numerous proven methods and techniques have 
been successfully developed and used. These 
techniques are complementary and are well-suited for 
various life-cycle phases of computer systems:  
• Ordinal evaluation techniques constitute a powerful 

tool for qualitative system analysis. They are 
recommended for the early design phases to 
minimize the cost of design modifications (if any). 

• Analytical modeling is very useful and popular to 
support the selection of a dependable architecture 
for a computer system during the design phase. 

Also, once the system architecture is selected, 
detailed modeling provides a powerful tool for the 
evaluation of the dependability measures 
(availability, reliability, etc.) of the system under 
consideration (in development or in operation). In 
the latter case, modeling needs the support of fault 
injection and field measurement. 

• Field measurements provide helpful support for 
understanding real phenomena (information on 
actual error/failure behavior and on possible system 
bottlenecks) and for quantifying dependability 
measures. Even if there is no better way to 
understand the system dependability than by field 
measurement, analysis of field data can be 
performed only when the system is already in 
operation, which could be considered as too late as 
only little improvements can be performed at this 
stage in case of identification of any problem. 
Indeed, feedback from field data from previous 
systems is very helpful for the development of 
current products. Measurements provide good 
support for system reliability improvement. 

• Fault injection on a prototype system is usually 
performed during system validation. It provides 
valuable information on specific behaviors of the 
system (or components of the system) in presence of 
faults. In particular, it allows understanding of the 
effects of injected faults on the target system and the 
evaluation of the efficiency of fault-tolerance 
mechanisms (see e.g., [Arlat et al 1993]. Fault 
injection is recommended for newly developed 
systems or for Commercial-Of-The-Shelf (COTS) 
components for which no (or not enough) 
dependability information is available from the field. 
This paper elaborates on the work presented in 

[Laprie et al. 1998] and [Arlat et al. 2001]. Emphasis 
is put on the first three sets of techniques, namely 
ordinal evaluation, analytical modeling and field 
measurements, whose main features are outlined in 
the next three sections. 



 

 

1. Ordinal evaluation 
Ordinal evaluation methods can be broadly divided 

into two main categories constructed either from the 
causes to reach the effects, so as to determine the 
consequences on the system of component failures or 
— from the effects to the causes —, to identify causes 
at the component level of system failures. The two 
main approaches representative of these two families 
are respectively: i) Failure Mode, Effects (and 
Criticality) Analysis — referred to as FME(C)A, and 
the Fault Tree method, equally known as Cause or 
Defect Trees. 

The exact meaning of "criticality of a failure mode" 
is context dependent. Indeed, the criticality of a 
failure mode depends on numerous parameters: 
severity (or gravity) of the failures considered, 
probability of the latter's occurrence, possibility of 
detecting early signs, urgency of the conservatory 
measures needed, etc. Of these parameters, the first 
two have become very popular as they allow 
criticality levels to be defined as couples (e.g., 
gravity, probability of occurrence). Note as well that 
the product — or any similar operation — between 
these two magnitudes to "compute" criticality should 
not be effected: indeed, gravity is an ordinal 
magnitude whose values only make sense relative to 
each other, while a probability is a quantitative 
magnitude endowed with absolute meaning. System 
criticality is then defined as the highest criticality 
level of its failure modes: for each failure mode listed 
in accordance with severity levels, the maximum 
permitted probability of occurrence of a failure 
corresponds, therefore, to a criticality less than or 
equal to that of the system, equality being usually 
secured for the most severe failure modes (and even 
systematically secured, when the most severe failure 
mode corresponds to the occurrence of catastrophic 
failures whose consequences are in no way 
commensurate with less severe failures).  

The rest of this section describes the FME(C)A and 
Fault Tree techniques. 

1.1 FME(C)A 
FME(C)A [CEI 1985, Leveson 1991] is an 

inductive approach whose basic principle is to 
analyze, for each component, the consequences of 
possible errors so as to identity systematically all the 
component failure modes as well as the consequences 
of these failures for the system. 

Usually, FMECA relies on the functional structure 
of the system and makes it possible to highlight 

design weaknesses "if any" in the system with respect 
to safety. It can address all design stages, or even an 
operational system but it is often preferable to apply it 
as soon as possible during the life cycle to minimize 
the costs of design modifications. However, its use at 
an early stage in the development process is rather 
delicate, as the lack of precise knowledge of the real 
structure of the system and of the failure modes, etc. 
becomes a major hurdle. 

The general principle used for the application of 
the method consists in including the following items 
in a table — after listing the various failure modes 
based on the functional or structural description of the 
system—, and for each failure mode of each 
component: 
• its possible causes; 
• its effect: it can only act on the behavior of the 

component itself (local effect), or propagate up to 
system level (global effect); 

• the means of detection that can be employed; 
• corrective actions to be implemented, more 

particularly, when dealing with a catastrophic failure 
mode; 

• criticality of the failure mode: this aspect is not 
always taken into account yet, being simply referred 
to as FMEA. 
When iterating the application of the method on a 

subcomponent, the omission of certain failure modes 
of the component to which it belongs may be 
revealed. Indeed, the failure modes of the higher-level 
component appear as combinations of subcomponents' 
failure modes. In particular, the latter having global 
effects must necessarily correspond to failure modes 
of the higher-level component. 

The tables summarizing FMECA are useful for the 
design, as they support certain choices and permit the 
early detection (and modification) of several 
drawbacks. They equally provide a valuable medium 
during system validation because they highlight the 
salient features to be tested and allow a cause, an 
elementary failure mode of the component to be 
associated with an effect when a system failure is 
reported. Nevertheless, the FMECA-based approach 
features three main limitations: 
• it addresses the failure modes one after the other (to 

avoid the combinatorial explosion of the analysis), 
thereby failing to factor in multiple failures (whose 
importance is no longer in need of a demonstration);  

• it supposes that all failure modes of the system 
components have been determined (which may be 
problematic in practice); 



 

 

• it calls for a great deal of information to be handled, 
particularly in the case of complex systems (which 
are precisely those for which safety is required); the 
latter point has become less cumbersome thanks to 
process computerization. 
FMECA applied to the software primarily tries to 

plan the effects of design faults. A software FMECA 
established on the basis of the specification and 
preliminary design may turn out to be very fruitful 
and at various levels of the life cycle: 
• during software development by guiding online 

error detection or even fault tolerance strategy which 
has to be selected; 

• during software validation, by focusing the tests on 
certain modules or critical failure modes; 

• during software operation and maintenance by 
facilitating on the one hand, the definition of 
monitoring procedures and on the other, the 
understanding of the origin of a failure observed in 
operation. 
Although applications of FMECA to the software 

are difficult to estimate in practice because only a 
limited number of papers have been published on this 
subject, these methods are potentially interesting 
given their relative cost with respect to software 
development cost, and the lessons that can be drawn 
as to the attention which will have to be paid, during 
validation, to components identified as critical or to 
the online error detection or even fault tolerance 
strategy. 

1.2 Fault trees 
This is a deductive technique that allows 

combinations of events likely to lead to an undesirable 
event, such as a catastrophic failure, to be traced. 
Fault Trees frequently complement the FMECA. 
Thus, combinations of failures that had been 
overlooked by FMECA can be considered. Fault Tree 
may also be easier to run in the early phases of the 
development process and can be implemented as soon 
as the requirement analysis has been completed to 
represent, at a high level of abstraction, the different 
scenarios of occurrence of an undesirable event likely 
to affect dependability. 

A Fault Tree consists in two successive levels of 
events connected by gates ("AND", "OR" logic 
operators). Each event at the output of a given gate is 
obtained by combining the events located at the input 
to this gate. The undesirable event analyzed is the tree 
root. The Fault Tree construction principle relies on 
breaking down each event encountered, starting from 
the root event, up to events considered elementary. An 

event can be regarded as elementary when it is either 
independent of the others or when its probability of 
occurrence can be estimated, or simply when one does 
not intend to, or cannot, break it down further. 

The Fault Tree computes the minimum "cuts:" for 
its operation: a cut is a set of events that can lead to 
the undesirable event at the tree root; a cut is said to 
be minimal when it contains no other. The study of 
these minimal cuts permits to highlight the critical 
events relative to the occurrence of the undesirable 
event. 

With respect to software design fault, Fault Trees 
have been employed in the first phases of software 
development [Hourtolle 1987], to detect critical 
software functions, avoid specification faults and 
guide the implementation of fault tolerance techniques 
[Leveson 1991]. Thus, a Fault Tree is constructed for 
each catastrophic failure. It allows identification of 
the software critical functions and its critical failure 
modes (events contained in minimal cuts) for which 
software fault tolerance techniques have to be 
implemented. 

2. Analytical Modeling 
Analytical modeling relies on the description of the 

system behavior taking into account failure and repair 
of hardware and software system components and 
interactions between them. Measures of dependability 
are assessed by allocating stochastic probabilities or 
rates to model parameters. Analytical models have 
long been recognized as a determining factor for 
rational decision making when considering different 
possible architectures or maintenance policies during 
the design of hardware fault-tolerant systems.  

Given the ease of modeling they provide, 
particularly with respect to stochastic dependencies 
between system components, state-space models 
constitute the prevailing type of model for evaluating 
dependability measures. Markov chains are the most 
commonly used state-space models to model system 
dependability as they also allow evaluation of various 
measures related to dependability and performance 
(i.e., performability measures) based on the same 
model, when a reward structure is associated to them. 
The resulting model is referred to as Reward Markov 
model  

To facilitate the generation of large state-space 
models, high-level specification languages such as 
Generalized Stochastic Petri Nets (GSPN) and their 
off-springs are generally used. In particular, the 
association of a reward structure leads to Generalized 
Stochastic Reward Petri Net (GSRPN) that can be 



 

 

automatically converted to Reward Markov models 
[Trivedi et al. 1994]. GSRPNs allow a compact 
representation of the behavior of systems involving 
synchronization, concurrency and conflict 
phenomena. Also, they provide means for structural 
verification of the model. 

Evaluation is achieved in three main closely related 
phases: 
• The choice of the dependability measures to be 

evaluated.  
• The construction of one (or several) model(s) 

describing the behavior of the system. 
• The processing of the model(s) to evaluate 

dependability measures. 
In the following, the most salient trends related to 

the choice of dependability measures and to model 
construction are briefly described as numerous 
software packages have been devised over the last 
twenty years to assist model processing (e.g., see 
[Trivedi et al. 1994]). Surveys of the problems related 
to techniques and tools for dependability and 
performance evaluation can be found for example in 
[Reibman & Veeraraghavan 1991] and [Trivedi et al. 
1994]. 

2.1 Dependability Measures to be Evaluated 
Dependability covers a wide range of measures: 

reliability, availability, maintainability, safety, etc.. 
The measures to be evaluated greatly depend on the 
field of application of the computing system 
considered (for example: availability for a 
telecommunication system, reliability for a space 
probe, safety for the on-board control in a 
transportation system, etc.). To identify dependability 
measures, the behavior of a computing system can be 
schematically depicted by taking into consideration 
two states of the service delivered: proper and 
improper. Transitions between these states are 
governed by the failure processes (from a proper 
service to an improper one) and the restoration 
processes (from an improper service to a proper one).  

The main measures are aimed at characterizing the 
time of proper service delivery. Two main categories 
of measures are distinguished [Laprie 1995]: 
• Measures that characterize the sojourn time in the 

state where the proper service is being delivered 
(before reaching the improper service state): these 
correspond for example to reliability and MTTF that 
measure the time of proper service delivery prior to 
a failure. 

• Measures that characterize the delivery of proper 
service with respect to the alternation of proper and 

improper services: these encompass the various 
forms used to measure availability (time instant, 
interval-of-time, or asymptotic). 
Most current computing systems feature several 

performance levels and thus, several modes of 
services (proper and improper) can be distinguished. 
According to the viewpoints considered to evaluate 
dependability, there exist two main (extreme) cases 
for which the system features: 
• several modes of proper service completion and a 

single mode of improper service; 
• a single mode of proper service delivery and several 

modes of improper service. 
A particularly interesting case pertaining to the 

second category of systems is that of systems 
exhibiting two modes of improper service following 
failures with different levels of severity (benign and 
catastrophic). This allows the measures linked to the 
evaluation of safety of these systems to be obtained 
within the very same framework. Thus, safety 
represents the measurement of time in the safe states 
(proper service delivery and benign failure) prior to a 
catastrophic failure. A hybrid measure can be defined 
that measures the delivery of a proper service relative 
to the alternation “proper service-improper service” 
following a benign failure. The advantage of this 
measure lies in that it allows for the system 
availability prior to the occurrence of a catastrophic 
failure to be quantified, and hence, supports the 
assessment of the usual trade-off between reliability 
(or availability) and safety [Essamé et al. 1997]. 

2.2. Model Construction  
Modeling requires the knowledge of the system 

architecture (i.e., system composition and interactions 
between the various components), error detection and 
fault-tolerance mechanisms (if any) and maintenance 
policies. At the model level, the associated 
phenomena are represented by their occurrence rates 
(failure, repair, error propagation) or conditional 
probabilities (error detection coverage, recovery 
coverage, maintenance efficacy).  

The main problem posed by the establishment of a 
Markov chain truly representative of the behavior of a 
complex system is that of controlling the explosion in 
number of states. Several techniques have been 
published to address this problem; they can be 
grouped into two categories: “largeness avoidance” 
and “largeness tolerance” techniques [Trivedi et al. 
1994]. 

Largeness Avoidance Techniques try to circumvent 
the generation of very large models. The basic idea is 



 

 

to construct small sub-models that can be processed in 
isolation. The results of the sub-models are integrated 
in a single overall model that is small enough to be 
processed. From a practical point of view and to the 
best of our knowledge, most of these techniques are 
efficient when the sub-models are loosely coupled and 
become hard to implement when interactions are too 
complex. Also, largeness avoidance by means of 
truncation of the least important states (i. e., states 
with very small probabilities) can be used to 
complement efficiently largeness tolerance techniques 
as in [Muppala et al. 1992]. 

The main objective of Largeness Tolerance 
Techniques is to master the complexity of the 
generation of the global system model through the use 
of concise specification methods and automated 
generation of the model. The specification consists of 
a set of rules allowing an easy construction of the 
Markov chain. These rules are based on either a) in-
house formalisms or b) well-known formalisms such 
as GSPNs or their off-springs.  

GSPNs and their off-springs appear as a general-
purpose approach to the specification and construction 
of a complex system in a modular way. The basic idea 
is to generate the model of a modular system by 
composition of the sub-models of its components; 
they are referred to as model composition techniques. 
In addition to the GSNP formalism, these techniques 
make use of composition rules for sub-model 
interfacing and integration to facilitate model 
generation, master the complexity and preserve the 
formalism properties. Several model composition 
techniques have been published (e.g., see [Meyer & 
Sanders 1993], [Rojas 1996], [Kanoun & Borrel 
1996], [Fota et al. 1999b], [Bondavalli et al. 1999], 
[Rabah & Kanoun 1999]) and numerous evaluation 
tools using GSPNs and their offsprings have been 
developed. 

GSPNs and their off-springs have been used to 
model real-life systems such as air traffic control 
systems [Fota et al. 1999a, Kanoun et al. 1999], space 
applications [Bondavalli et al. 1997] and RAID 
storage system [Santonja et al. 1996]. 

The evaluation of real-life systems requires the 
knowledge of numerical values of the model 
parameters that can be provided either from field data 
(i.e., failure and repair rates) or from controlled 
experiments (i.e., coverage factor, various proportions 
of failure modes). Sensitivity analyses allow 
identification of the most significant parameters to be 
estimated from the field or from controlled 
experiments. 

3. Experimental Evaluation 
Measuring a real-life system means recording 

naturally occurring errors and failures in the system 
while it is running under user workloads. Analysis of 
such field data can provide valuable information on 
actual error/failure behavior, quantify dependability 
measures and identify system bottlenecks. Field 
measurement involves three main steps: data 
collection, data validation and data processing.  

Data collection consists in the definition of what to 
collect and how to collect the data. The kind of data to 
be collected is directly linked to the kind of behavior 
to be analyzed and to the quantitative measures to be 
evaluated to characterize such behavior.  

Data validation consists in analyzing the collected 
data for correctness, consistency, and completeness. 
This consists in particular in filtering-out invalid data 
and in coalescing redundant or equivalent data. 
Usually, the collected data contains a large amount of 
redundant and irrelevant information, as well as 
incorrect or incomplete information. Such problems 
have been observed in several studies, e.g. see 
[Kaâniche et al. 1990, Levendel 1990, Buckley & 
Siewiorek 1995, Thakur & Iyer 1996]. Thus, 
preliminary investigation of the data must be 
performed to classify this information and to facilitate 
subsequent analyses. Once invalid data is filtered-out 
and data is coalesced, the basic dependability 
characteristics of the target system can be identified 
through data processing.  

Data processing consists in performing statistical 
analyses on the validated data to identify and analyze 
trends and to evaluate quantitative measures that 
characterize dependability. Descriptive statistics can 
be derived from the data to analyze the location of 
faults, errors and failures among system components, 
the severity of failures, the time to failure or time to 
repair distribution, the impact of the workload on the 
system behavior, the coverage of error detection and 
recovery mechanisms, etc. Commonly used statistical 
measures in the analysis include frequency, 
percentage, probability distribution, and hazard rate 
function. Basic statistical techniques can be applied to 
estimate the mean, variance, and confidence intervals 
of the parameters characterizing these measures (e.g., 
see [Kendall 1977] for comprehensive statistical 
methods). More sophisticated analyses can also be 
performed using trend tests [Kanoun & Laprie 1996] 
and analytical modeling. 

Software faults, and more generally design faults, 
have become the major dependability bottleneck. This 



 

 

is confirmed by field data collected on largely 
deployed systems,, e.g., see [Gray 1990, Moran et al. 
1990, Cramp et al. 1992, Wood 1995]. For example, 
the analysis of field failures in Tandem computer 
systems between 1985 and 1990 [Gray 1990] revealed 
that more than 60% of system failures reported in 
1989 were due to software. Accordingly, many 
experimental studies focused at the analysis of 
software-related errors. The analysis and modeling of 
software errors to provide feedback to the 
development process have been addressed in several 
papers, e.g., [Musa et al. 1987, Lyu 1995, Kanoun et 
al. 1997, Murphy & Levidow 2000]. Several 
experimental studies have been published to support 
the analysis of software error characteristics and the 
modeling of the impact of software failures on 
dependability, e.g. [Levendel 1990, Kenney & Vouk 
1992, Kaâniche et al. 1994, Chillarege et al. 1995]. 
The issues addressed in the above mentioned work 
include: i) categorization of software errors; 
ii) monitoring of software processes and products 
through the use of trend tests and statistical quality 
control, and iii) evaluation of quantitative measures 
characterizing the software failure intensity and time 
to failure using reliability growth models. 

Analyses of the software behavior, based on the 
observed failure data, allow identification of possible 
weakness. Once identified, these weaknesses can be 
adduced. Reliability analyses help the manager to 
anticipate the software behavior. Using results drawn 
to past experience, (s)he can plan more efficiently the 
development process. In this context, a program of 
software reliability improvement is an element of a 
more general software process maturity effort.  

In addition to specific experiences, several papers 
and books have already been published advocating 
and defining methods for improving software process 
based, among other things, on data collection (see 
e.g., [Musa 1998; Kanoun 2001]).  

One of the most common objections to software 
reliability programs is their cost. The relationship 
between the level of dependability required and the 
associated cost is a complicated one as it includes 
such factors as the supplier's rework cost, the 
maintenance cost and the failure consequences to the 
user. However, past experience has shown the cost of 
fixing a fault uncovered during operation to be at least 
one order of magnitude higher than the cost of the 
same fault detected during development. When the 
costs to the user and the negative impacts to the 
producer reputation are included the effect is 
magnified. 

The benefits from a reliability improvement 
program sometimes cannot be perceived in a single 
product lifecycle. In that case, the cost of a reliability 
program has to be regarded as an investment for 
subsequent systems rather than as an overhead for a 
single system. Usually the gains are substantial — 
even if they are not always immediately felt. It is 
worth noting that all the companies that have followed 
a well-defined program for improving software 
process and quality agree on the fact that the benefits 
are worthwhile. However, it is very difficult to 
partition the gains according to the methods used 
(e.g., the relative impact of fault prevention and fault 
removal techniques is very difficult to be assessed).  

By way of example, the results obtained through 
the quality program started at AT&T's International 
DEFINITY PBX [Donnelly et al. 1992], based, 
among other things, on software reliability evaluation 
show reduction factors of:  
• 10, in customer-reported problems. 
• 10, in maintenance cost. 
• 2, in the test interval.  
• 3, in new product introduction interval. 

It can be argued that the reported examples concern 
large and well-established companies working most of 
the time on large software projects. This is true. 
However, more recently published experiences show 
that following well-organized measurement programs 
is also worthwhile for small organizations (see e. g., 
[Kautz 1999] or [Grable et al. 1999]). Nevertheless, 
the data collection program should be adjusted to 
small companies to suit the company products, goals 
and means.  

 

4. Conclusion 
This paper presented the state-of the-art in 

dependability evaluation based on ordinal analyses, 
analytical modeling and field measurements. We have 
focused on salient trends for each technique 
considered alone. Indeed, system dependability is 
usually evaluated based on the combined use of all the 
presented methods that are advantageously 
complemented by fault injection techniques. 
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