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Abstract—In human-robot interaction, a robot must be
prepared to handle possible ambiguities generated by a human
partner. In this work we propose a set of strategies that allow a
robot to identify the referent when the human partner refers to
an object giving incomplete information, i.e. an ambiguous de-
scription. Moreover, we propose the use of an ontology to store
and reason on the robot’s knowledge to ease clarification, and
therefore, improve interaction. We validate our work through
both simulation and two real robotic platforms performing two
tasks: a daily-life situation and a game.

I. INTRODUCTION

In daily human interactions, where people refer to objects
(“Look at the bike”), sometimes the utterance does not con-
tain sufficient information to be understood correctly. That
is, ambiguities concerning the referent can occur (“Which of
the two bikes visible to me does she mean?”). To establish
an efficient exchange of information and thus communicate
meaning, these ambiguities have to be resolved. Humans
employ several basic strategies in order to clarify such
ambiguities, and they do so efficiently and smoothly. First,
by applying internal cognitive strategies; and only later, when
those proved unsuccessful, verbal inquiries should come into
play.

In human-robot interaction, the robot must be prepared
to handle possible ambiguities generated by the human
partner. We believe that a robotic system should include
a clarification strategy which allows to find the referent
autonomously if possible, for two reasons. First, humans
are not always aware of when they create ambiguities and
therefore, they will expect that the robot will be able to
solve them internally. And second, a robot that is not able to
solve ambiguities by itself would have to constantly inquire
the human for clarification which would result in a tedious
human-robot interaction.

One disambiguation strategy applied by humans is to take
the other’s visual perspective into consideration. Studies in
developmental psychology demonstrate that even very young
children rely on the speaker’s visual access. They take into
account that others might see things they themselves do not

see [1]. When two objects are available to the child and
the adult can only see one of them, they understand that
whenever the adult is looking for an object, she can only
refer to the one she cannot see [2]. This ability to engage in
visual perspective taking is thus one fundamental strategy in
solving referential ambiguities among humans.

In the field of human-robot interaction, few work has
been done on applying perspective-taking mechanisms for
ambiguity resolution. Trafton et al. in [3], [4] proposed a
system by which the robot is able to figure out which of
several cones the human is referring to in different situations
(visible/not visible for one of the interacting agents). Berlin
et al. [5] focused on the use of visual perspective taking
skills for learning from a human teacher. Visual perspective
taking has been also used to aid action recognition between
two robots [6]. In the present work, we propose the use of
visual perspective taking based on the work presented in [7]
to ease clarification of referential utterances in scenarios with
multiple objects.

However, we believe that apart from this fundamental
cognitive mechanism of visual perspective taking, the robot
should be provided with means to extract and clarify as much
information from both the environment and the speaker’s
utterance as possible. For instance, the speaker might refer
to a specific frame of reference, which can be observer-
relative (as in the case of referring to an object “on the right”)
and thereby producing ambiguities comparable to the ones
just discussed. Alternatively, the speaker might specify the
location of the desired object in relation to another object (“X
is inside of Y”’). Finally, he might provide information about
specific features like the object’s size or color. This work,
therefore, is additionally directed at supplementing the robot
with mechanisms covering such demands.

In particular, we introduce an approach for finding the
referent based on a set of descriptors when incomplete
information has been provided (incomplete in the sense of
ambiguous information, i.e. more than one object fulfills the
given description). To this end, the robot should reason based
on the its current knowledge about the world and interact



with its human partner, if required, in order to obtain further
information that will allow the robot to identify the referred
object. The robot’s current knowledge of the world is based
on the description of objects in the environment and assump-
tions about the visual access of its human partner. A first
attempt was introduced in [8]. The novelty of the work here
is that the robot’s knowledge is represented by an ontology.
The advantage of using an ontology is that it is not only
used as a central knowledge repository, but more importantly,
that it provides a semantic level allowing a certain degree of
reasoning on the stored knowledge. To validate our approach,
we present two types of tasks: a daily situation where a
human ask for an object using ambiguous information, and
a game, which exploits the reasoning ability of the robot
through the the use of the ontology. We must remark that we
do not aim at dealing with natural language understanding
or conversational reasoning. Our work is mainly centered on
finding the “right” discriminants to ground the referent.

The paper is organized as follows. Section [lI| goes through
the different types of information that compose the knowl-
edge of the robot used in this work. Next, in Section
we describe our ontology-based approach for finding out the
referent. Integration and validations scenarios are detailed
in Section and finally, conclusions and future work are
presented in Section

II. THE ROBOT’S KNOWLEDGE

In this section we describe the different sources of infor-
mation that take part of the robot’s knowledge (about the
world and the agents in) that are used in this work. This
complete set of information is then used to disambiguate
between different objects.

A. Visual Perspective Taking

Visual perspective taking refers to the ability for visually
perceiving the environment from other’s point of view. This
ability allows us to identify the referent in situations when the
visual perception for one person differs from the other one.
In developmental psychology, one typical example consists
of two similar objects in a room (eg. two balls) where both
are visible for the child, but only one is visible for the adult.
Thus, when the adult asks the child to hand over “the ball”,
the child is able to correctly identify which ball the adult
is referring to (i.e. the visible one from the adult point of
view), without asking.

The robot computes the visibility information for each
object (or agent) in the environment with respect to each
agent. This information is stored in each agent’s cognitive
model (we will come back to this aspect in Section [[II-A).

In [9], [8] we present a model-based approach for im-
plementing visual perspective taking abilities. In this ap-
proach, 2D perspective projections of the 3D environment
(Figure [Tp,b) is used to determine if an object is visible
to an agent. We first obtain the projection of the isolated
object (Figure [Tk, the blue box), and we compare it with the
“real” projection of the scene which considers occlusions of
the evaluated object (Figure [Id, the teddy bear is partially
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Fig. 1. (a) An example of the environment, (b) human visual perspective,
(c) free relative projection and (d) visible relative projection.

occluding the blue box). A visibility ratio of the object is then
computed by comparing both images. An object is visible to
an agent if the ratio is over a given threshold.

Yet in order to obtain a visual perspective, the actual visi-
bility alone is not enough. We believe that visual perspective
taking ability is not restricted to what the other person is
seeing in a given moment, but also what he “can” see with
a minimal effort (with only moving the eyes or the head).
To model the potential visibility of an object we compute
the visibility ratio while turning the head of the agent model
towards the object.

In order to enrich the visual perspective model and reason
on the human’s focus of attention, the placement of the object
respect to the human’s vision is also computed. According
to human’s gaze direction and object’s position, we compute
whether the object is within the human’s focus of attention
(FOA), field of view (FOV) or out of field of view (OOF).
Figure illustrates the object visibility placements for an
agent.

B. Spatial Perspective Taking

Spatial perspective taking refers to the qualitative spatial
location of objects (or agents) with respect to a frame (eg.
the keys on my left). Based on the frame of reference, the
description of an object varies. Humans mix perspectives
frequently during interaction. This is more effective than
maintaining a consistent one, either because the (cognitive)
cost of switching is lower than remaining with the same
perspective, or if the cost is about the same, because the
spatial situation may be easily described from one per-
spective rather than another [10]. Ambiguities arise when
one speaker refers to an object within a reference system
(or changes the reference system, i.e., switches perspective)
without informing her partner. For example, the speaker
could ask for the “keys on the left”. Since no reference
system has been given, the listener would not know where
exactly to look. However, asking for “the keys on your
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Fig. 2. (a) Object visibility placements around the agent. (b) Relative
placements around the agent through space discretization.

left” gives enough information to the listener to understand
where the speaker is referring to. The reference system has
to be defined properly because the terms of reference (left,
right, above,...) are identical in different systems [11]. On
the contrary, when using an exact, unambiguous term of
reference to describe a location (eg. “go north”) no ambiguity
arises.

In this work, we use two types of the frames of refer-
ence: egocentric (from the robot perspective) and addressee-
centered (from the human perspective). Thus, given an object
and the referent, we can compute the spatial locations the
following way (see Figure 2] for illustration). We divide the
space around the referent into four regions: front, left, right
and back. The number of these regions are doubled with the
distinction of near and far from the referent in the center.
These regions are separated by arbitrary angle values relative
to the referent orientation. Depending of the task the number
of regions can be increased to 16 to include a more precise
spatial placement information (e.g. “near front right”, “far
back left”). Figure [2] illustrates an example.

C. Symbolic Location Descriptors

Symbolic location descriptors allow the robot to compute
spatial relations between objects in the environment. The
system infers symbolic relations between objects from 3D
geometric world representation. In this work we propose the
use of three basic symbolic relations between each pair of
objects. However, their inverse relations can be automatically
computed enlarging the symbolic descriptions easily.

IsIn: This relationship indicates if an object (or an
agent) is inside of another object. It is computed by
testing if the bounding box of 3D model of an ob-
ject is “completely inside” of the bounding box of an-
other object. The resulting relationship is expressed as
Bottle IsIn TrashBin. Its inverse relation corre-
sponds to TrashBin Contains Bottle.

IsOn: The “On” relationship indicates if an object (or
an agent) is placed on top of another object. The compu-
tation of this relation is achieved by testing if the lower
end of the bounding box of an object is placed higher
than the top of the bounding box of another object; and
lower than an arbitrary value (this value depends on the
errors of the object perception system. If the errors are
high and the objects appear to be floating then the value
can be increased). The resulting relationship is expressed
as Red-box IsOn Blue-box. Its inverse relation cor-
responds to Blue-box IsUnder Red-box.

IsNextTo: This relationship tests if an object (or an agent)
is next to another object. The geometric computation is
based on the distance between two objects and their relative
placement: if neither one of the objects is placed higher
or lower; if neither one of the objects is inside the other;
and if the distance between both objects is not greater than
the longest dimension of the bigger object, then objects are
bound with next to relation. This relation is expressed as
Bottle IsNextTo Cup. There is no inverse relation, but
symmetric, i.e. Cup IsNextTo Bottle.

D. Feature Descriptors

Objects have features (like color, size, shape, texture, etc.)
that allow us to distinguish one from another. Besides, we can
also categorize objects in different classes and refer to their
class as a descriptor. For example, a glass is an object that can
be classified based on its purpose in different ways, such as
a beer glass, a wine glass, a water glass, a champagne glass,
and others. However, the wine glass can also be subdivided in
two categories, white wine glass and red wine glass. Hence,
in a scenario with three glasses (a champagne glass, a white
wine glass and a red wine glass), simply asking for “the
glass” would bring out ambiguities. Asking for “the wine
glass”, still would produce confusion. The only unambiguous
feature description would be asking for “the red wine glass”
instead.

In the current approach, the robot cannot perceive these
type of features by itself (due to limitations in perception,
which is not the focus of our work). Thus, we have to
explicitly inform them to the robot. So far, this information
is loaded into the ontology during initialization.

III. ONTOLOGY-BASED CLARIFICATION PROCESS

Given a complete or incomplete statement, the goal is to
determine the referent based on the current knowledge of the
robot. In this section we first introduce the ontology used in
our robot for storing and reasoning on its knowledge, and
then the ontology-based approach for resolving the referent.

A. ORO - The Ontology

ORO (the “OpenRobot Ontology” server) is a cen-
tral knowledge repository that stores, manages, processes
and exposes knowledge for the robot. It internally re-
lies on W3C RDF-derivate OWL Description Logics to
formally represent statements on the world as triples
<subject> <predicate> <object>. It uses two
open-source libraries: Jena for storage and manipulation of
statements and Pellet first-order logic reasoner to classify,
apply rules and compute inferences on the knowledge base.

ORO defines an initial upper ontology for human-aware
robotics called OpenRobots Commonsense Ontology. This
initial ontology contains a set of concepts, relationships
between concepts and rules that defines the “cultural back-
ground” of the robot, i.e. the a priori known concepts.
Currently, this commonsense knowledge is focused on the
requirement of human-robot interactions in everyday envi-
ronments, but contains as well generic concepts like thing,



Thing

Plant Animal
plantl animall animal2 animal3
hasColor ea|ts eats hasColor hasColor
green banana grass yellow white
Fig. 3. Ontology example. Names with first capital letter correspond to

classes; bold names, to properties; and italic names, to instances.

object, location and relationships between those. The
common-sense ontology design relies heavily on the standard
OPENCYC upperontology for the concepts naming, thus
ensuring a good compatibility with other knowledge bases.
Figure [3 illustrates an example.

Besides simply storing and reasoning about knowledge,
ORO offers several useful features for human-robot inter-
action. One advantage offered by the ORO architecture is
that independent cognitive models for each agent can be
maintained. When the robot interacts with a new agent, a
separate RDF triple storage is created to store the robot’s
knowledge about the agent’s perception. For instance, in the
case of perspective taking, we compute the visibility and
spatial information about the world from each agent point
of view, and store it in their own cognitive models. Having
separate cognitive models allows us to store and reason on
different models of the world.

B. Clarification Algorithm

The ontology is first initialized with the description of the
environment represented by object features as defined in Sec-
tion [[I-D] which is considered the robot’s initial knowledge
about the world (along with the common sense concepts).
During interaction, the robot’s knowledge is updated with
the incoming information from the geometric reasoning,
i.e. visual perspective taking, spatial perspective taking and
symbolic locations descriptors. Based on all this information,
and a given partial (or complete) description of an object
(list of attribute-value pairs), the robot is able to identify
the referred object the following way (Algorithm 1). First it
obtains all objects that fulfill the initial description. Based
on the result it either succeeds (obtains one single object),
fails (no object with that description could be found) or
obtains several objects. In this latter case, a new descriptor
is added to the initial description and the process starts
over again. Failure occur when the description does not
match any object from the robot’s knowledge. This could
be because the robot’s knowledge is incomplete (the human
refers to an unknown descriptor or descriptor value) or due
to inconsistent information (human’s and robot’s beliefs are
different).

Let us take a look at an example to better understand the
overall process. Suppose there are two bottles on a table,
b1, a red glass bottle and by, a green plastic bottle. The

Algorithm 1 clarify(description)

1: objectL «— get_obj_with_desc(description)
if length(objectL) == 1 then
return first(objectL)
else if length(objectL) == 0 then
return no_object_found
else
description — add_descriptor(description)
return clarify(description)
end if

R A A S o

human asks the robot for a bottle: “Give me the bottle”. Thus,
the initial description corresponds to the single element list:
[(type,bottle)]. Since both objects fulfill this description,
a new descriptor is required. Suppose we add the color
information. In this case, the new description corresponds to
the list [(type, bottle), (color, red)]. The algorithm ends
now indicating that the object is identified as by, the red glass
bottle.

In order to add a new descriptor (attribute-value pair) two
alternatives are available: directly asking the human for a
new descriptor, or automatically searching a new attribute
and ask the human for its value. In the latter case, we need
to automatically find the best discriminant for the current list
of objects being evaluated (objectL in the algorithm).

Finding a discriminant: We have implemented a set of
semantic categorization functions in ORO. One of them
consists on looking for discriminants, i.e. descriptors that
allow a maximum discrimination among a set of individuals.
In the example above, considering the attributes type, color
and material, ORO would return color and material as
discriminants, since their values are unique for the given set
of objects.

We distinguish two types of discriminants. Complete dis-
criminants are those attributes (or properties) that totally
discriminate the set of individuals. In other words, proper-
ties whose values can uniquely identify those individuals.
However, they are not always available. First, because two
or more individuals may share the same value, and second,
because not all individuals may share the same properties.
Thus, we refer to partial discriminants those that “better”
split the set of individuals in different subsets based on some
criteria.

The algorithm to determine the type of discriminant avail-
able (Algorithm 2) has the following steps (to better follow
it, we base its description on the ontology example illustrated
in Figure We search a discriminant for the following
individuals: planty, animaly, animals and animals). First
we obtain the direct properties for all the individuals, i.e. we
do not consider all the hierarchy of properties (line[I). In the
example, plant; has two superclasses (plant and thing),
but we only take the most direct one (the class plant). Next,
we compute the number of individuals per property (line [)
and the number of different values for that property (line [3).
If there is more than one different value for the property
(in other words, if not all individuals have the same value),



then we consider that property as a potential discriminant
(lines[6]and [7). Finally, we sort the list of potential properties
following two criteria (the first one being more important
than the second one): based on the number of individual
occurrences (i.e. the most individuals are covered by that
property, the better) and based on the values occurrences (i.e.
the more distinct values, the better). The best discriminant
corresponds to the first element of the sorted list. If several
properties are equal, return all of them.

In our example, the algorithm would return the class name
as the partial discriminant. If we only consider the instances
of the class Animal, it would return two properties equally
discriminant: {hasColor,eats}. It should be noted that
this way of proceeding does not respect the open world
assumption. We believe that the robot should only reason
bases on his current knowledge.

Algorithm 2 get_discriminant(individuals)

1: P« get_properties(individuals)
2: P «— nil

3: for all p € P do

4 njpg < nb_ind_with_prop(p)
5. Nye < nb_diff _values(p)

6: if 1,4 > 1 then

7 P — append([p, Nind, nval])
8: end if

9: end for

0: sort(P)

1: return first(first(P)

IV. INTEGRATION AND VALIDATION TASKS

In order to validate our approach, we have use two types of
tasks. The first one corresponds to a daily-life situation where
a human asks the robot for an object providing only partial
information, while the second one is focused on a child
game: the Spy-Game. Figure illustrates the scenario for
both tasks. The relevant objects of the scenario are described
through the features presented in Section [[Il Table [I] shows
some of the objects indicating wether the description is
manually given or computed. For example, the information
provided for the object orange-bottle is that it belongs to
the class Bottle and that its color is orange. Based on the
knowledge in the common sense ontology, the robot can infer
it is also a Tableware, and that its shape is cylindrical. The
remaining descriptors (location, spatial and visual perspec-
tive taking) are automatically computed through geometric
reasoning. In both tasks, the agents communicate by using
screen and keyboard.

Both tasks have been performed in simulation as well
with two robotic platforms: Jido and HRP-2. We first briefly
describe the integration of the approach into our robotic
platforms, and then both scenarios will be explained in detail.

A. Integration

The whole system is integrated into both robotics platform
as components of the LAAS architecture [12]. In order to

[ Clarification Module ]

OpenRobots
Ontology
Geometric
Reasoner

Object Human Robot
Recognition detection Manager
| | |
I | I

Cameras Motion Capture Controllers

<

Fig. 5. The general architecture of the system.

acquire and keep a coherent model of the environment,
three main modules are used: the Object Recognition Module
detects and localizes objects through markers; the Human
Detection Module localizes and tracks the human looking
orientation through motion capture cameras; and the Robot
Manager Module provides the robot’s current configuration.
The Geometric Reasoner constantly updates its 3D envi-
ronment while ORO is updated when required. Figure [3]
illustrates the architecture of the system.

B. Task 1: Which one?

In this task we are considering a daily situation where
the human needs an object and asks the robot pass it over.
The human query either provides complete information,
i.e. based on the description the referent is identifiable, or
partial information resulting in an ambiguity, i.e. more than
one object matches the description. An immediate response
from the robot is required to keep the interaction going.
In the first case, the robot can directly hand the object
since only one object matches the description. However, in
case of more than one object matching the query, the robot
should try to solve the ambiguity efficiently and user-friendly
with the help of its internal reasoning processes. Based on
the algorithm presented in Section the robot tries to
automatically find out a complete discriminant that will allow
it to solve the ambiguity in one single question (asking for the
attribute’s value). If no complete discriminant is available, it
is an efficient strategy to ask the human for more specific
information (e.g., an attribute-value pair) resulting in a fast
referent identification. Figure [6] describes three situations
where the human participation of the human and the type
of information provided is varied.

C. Task 2: Spy-Game

This game is based on the traditional children game “I
Spy”. The idea is to discover the object (which should be
visible) or concept one of the participants is thinking of by
asking questions such as: “Is it green? Is it a machine? Is
it on your left?”, etc. When playing, children exploit their
knowledge about the world while categorizing and describing
objects through useful discriminants.



Id Type Color Shape Location Robot Spatial PT Human Rob\(l)ltsualHl:;rman
purple-ball ball purple sphere on shel f1 back near front far false false
orange-bottle | Bottle, Tableware | orange | cylinder | on big_table | front right near | front left near true false
blue-bottle Bottle blue cylinder | on big_table front left near front near true true
red-bottle Bottle red cylinder | in trashbin front right far back left near | false false
orange-box GameObj, Object | orange cube on accesskit front near front left near true true

TABLE 1

EXAMPLE OF OBJECTS’ DESCRIPTIONS. IN BOLD, INFORMATION GIVEN AT INITIALIZATION. ALL OTHER DESCRIPTORS ARE AUTOMATICALLY

COMPUTED BY THE GEOMETRIC REASONING OR INFERRED FROM THE ONTOLOGY ON-LINE.

(d

()

Fig. 4. Scenario for validation tasks. Top row pictures correspond to the real environment, while the rest are snapshots of the modeled environment. @
and [A(d)] describe the overall scenario, while (b} show the robot’s and [i(c)] f(1)] show the human’s visual perspective.

The Spy Game (see Figure [7] for an example) starts with
the human user giving a first hint that corresponds to the
initial description indicated in the algorithm introduced in
Section [lII-B| The robot tries to figure out the object automat-
ically searching for discriminants (complete or partial) and
querying the human for their values until either discovering
the object or giving up (if no object was found with the final
description).

V. CONCLUSIONS AND FUTURE WORK

Grounding the referent is essential for a robot to interact
with humans. Humans constantly generate and solve ambi-
guities, and therefore, they expect that robots will be able
to do so as well. Thus, we believe that it is important to
include various clarification strategies helping the robot to
better understand its human partner. However, to interact
successfully with a human partner, the knowledge and rea-
soning processes available to the robot are critical. In this
work we have presented different sources of information to
feed the robot’s knowledge, as well as an ontology to store,
manage and reason on it. We have introduced an algorithm

that allows the robot to detect and solve ambiguous situations
arising in natural interaction. Two application tasks have been
described: a Spy Game and a object identification game.
The validation tasks were successfully performed both in
simulation and on two different robot platforms (HRP-2 and
Jido).

Although we have performed a step forward in solving
ambiguities, there is still a lot of work to do. The most
immediate one is to integrate the use and recognition of
deictic gestures, such as pointing and showing (humans use
these types of gestures) as another source of information
for clarification. Next, we also plan to include comparative
reasoning among a set of objects to identify properties such
as: the bigger one, the nearest one, the tallest, etc. Finally,
we also plan to extend the robot’s knowledge by learning
new concepts based on the descriptions obtained when failure
occurs.
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