
HAL Id: hal-01977579
https://hal.laas.fr/hal-01977579

Submitted on 10 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Planning Human Centered Robot Activities
Vincent Montreuil, Aurélie Clodic, Rachid Alami

To cite this version:
Vincent Montreuil, Aurélie Clodic, Rachid Alami. Planning Human Centered Robot Activities. 2007
IEEE International Conference on Systems, Man and Cybernetics, Oct 2007, Montreal, Canada. �hal-
01977579�

https://hal.laas.fr/hal-01977579
https://hal.archives-ouvertes.fr


Planning Human Centered Robot Activities

Vincent Montreuil†‡, Aurélie Clodic†, Rachid Alami†
LAAS-CNRS†

7, avenue du Colonel Roche
31077 Toulouse Cedex 4, France

Université Paul Sabatier‡
118, route de Narbonne
31062 Toulouse, France

firstname.lastname@laas.fr

Abstract— This paper addresses high-level robot planning
issues for an interactive cognitive robot that has to act in
presence or in collaboration with a human partner. We describe
a task planner called HATP (for Human Aware Task Planner).
HATP is especially designed to handle a set of human-centered
constraints in order to provide ”socially acceptable” plans that
are oriented toward collaborative task achievement. We provide
an overall description of HATP and discuss its main structure
and algorithmic features.

I. INTRODUCTION

Task planning is treated here as a mean to endow the
robots with high-level decisional autonomy. Given a goal
state (or a task) the robot is able to find a plan i.e. a (partially
ordered) sequence of ground operators that satisfies it. Once
a plan has been found the robot uses it to execute actions
associated to planned operators. Chosen task planning for-
malism must be adapted to the application the robot will be
involved in.

In this paper we address interactive and collaborative
robots. In this kind of applications a robot and human partner
act collaboratively in a shared environment implying that the
robot must act in a safe way to ensure physical safety of
its partners but also to ensure their mental comfort. This
last characteristic must be considered during execution (for
example by producing adapted movements [1], [2]) but also
during high-level decisions. We adopt here a three-layered ar-
chitecture (see [3] for an example), the highest layer of such
an architecture is called deliberative layer and is composed
of two components: the supervisor and the planner. The
supervisor is responsible for decisions during execution and
calls the planner when it needs to get a ”procedure” to realize
goals. We are developing both a supervisor called SHARY
[4], [5] and a task planner called HATP (Human Aware Task
Planner) especially designed for human-robot collaborative
task achievement. SHARY embeds an explicit representation
of the robot human partner as well as a context-dependent
task refinement process that integrates collaborative task
execution.

II. CONTEXT AND OBJECTIVES

Human-Robot Interaction (HRI) raises a number of chal-
lenges for robots at different levels (perception, decision
making, motion planning and execution, etc.). It is thus
important to identify the requirements that are specific to
task-planning in this context. In [6] ten challenges for

human-robot teamwork have been identified. Among these
challenges several can be considered as associated to the
robot planning abilities. Indeed, an interactive robot must be
able to:

• signal in what tasks it can/wants participate,
• act in a predictable way to ensure human understanding

of what it is doing,
• reveal its status and its intentions,
• negotiate about tasks with its human partner in order to

determine roles and select how to perform the tasks,
• deal with “costs” and “utility” by taking into account

time, resources, social rules, as well as human partner
abilities and preferences.

Intentions and status expression: In order for the robot
to act by ”expressing” intentions we have designed a hierar-
chical execution controller based on Joint Intention Theory
[7]. This controller is based on a task hierarchy. Hierarchical
task decomposition enables the robot to associate monitors to
different task abstraction levels and to detect situations that
invalidate or may cause the irrelevance of the current plan.
Starting from this, we have chosen the Hierarchical Task
Network (HTN) formalism which is particularly adapted
in this case. In this formalism, each non atomic task can
be decomposed into subtasks permitting thus to get a task
hierarchy. This hierarchical aspect has been also used in
dialogue planning [8]. This approach uses the ”recipes” of
the SharedPlans formalism [9], [10] to produce a hierar-
chical structure showing intentions of agents involved in
the dialogue allowing, thus, to produce adapted segments
of discourse. Another advantage of the HTN formalism
is its procedural aspect which features have been largely
shown in programming language such as OpenPRS [11] or in
multiagent reactive systems such as STEAM [12] and ABL
[13].

Agent abilities and preferences: Considering HTN for-
malism allows us to provide adapted structures to the super-
visor but it does not guarantee that the produced plans are
optimal according to agents abilities/preferences which is a
key point to produce acceptable plans. Indeed, HATP must
consider that a human partner H is capable of but dislikes
doing a specific action a by promoting plans in which a is
not done by H .

Social aspects of the plan: Consideration of abilities
and preferences is not sufficient to ensure that produces



plans are ”socially acceptable”. Indeed, agent abilities and
preferences permit a local optimization of the plan but do
not ensure that undesirable situations or combinations of
actions will raise. To prevent that HATP must promote plans
avoiding such situations.

Plan Negotiation: A task planner used by an interactive
robot will have to produce plans for both the robot and
its human partners. This does not mean that the robot will
assign tasks to humans but it will propose a way to do
them and wait for a validation from its human partners. In
this context, there are two important key points to allow
a good plan negotiation: (1) how the robot will introduce
the plan to its partners and (2) how permitting a partial
validation of the plan. Beyond interface issues, point (1) can
be considered in HATP by giving it the feature to make plan
abstractions. These abstractions are produced using notions
of public/private plan parts as in Joint Activities [14] or in
SharedPlans theory [9], [10]. Point (2) corresponds to the
case of partial validation of the plan. Considering this, we
want HATP to be able to consider partial plan structure as
an input which will be completed to find a plan complying
with the human requests.

Real time constraints: HATP is created to be used on
board of robots. So, it is clear that it has to satisfy real
time constraints. Indeed, if the robot takes too much time
to produce high-level decisions, it would lead to the non-
reactivity of the robot. This ”passivity” in front of human
requests may make the human partner feel that the robot
misunderstand the request or is lost in its thoughts.

III. HATP FORMALISM
A. Agent Model

In order to represent abilities and preferences, the model
of an Agent ai is a set of couples {< Aai

k , Cctxt
k >}. Aai

k

is an action that can be done by Agent ai and Cctxt
k is the

context dependent associated cost. This cost represent a mix
of action utility and difficulty to realize it. For each action
Aai

k in a plan we add to the plan score Cctxt
k evaluated in

the current context. A cost is always positive.

B. Social rules

As said in section II, we have to take into account social
rules in social evaluation of plans. So, we have defined a
social rule as a couple < Sk, P ctxt

k >. Sk is the description
of the social rule and P ctxt

k the associated context dependent
penalty. For each violated social rule Sk in a plan we add
to the plan score P ctxt

k evaluated in the current context. A
penalty is always positive. In HATP, social rules are defined
as patterns in the plan structure or in the fact database. We
have defined different kinds of social rules:

• undesirable states,
• undesirable sequences of actions,
• bad decompositions,
• effort balancing,
• control of intricacy,
• abstraction legibility.

Each kind of social rule has a specific description.

1) Undesirable state: This social rule describes states of
the world which can be socially unacceptable. For example,
an undesirable state can be the situation in which the robot
has in hands a cleaning object and food at the same time.
More formally, an undesirable state is a conjunction of facts.

2) Undesirable sequence: This social rule describes spe-
cific combinations of actions in the plan which can conduct
to a feeling of unpleasantness for the human partner. For
example, a plan in which the robot puts down an object and
its human partner picks it up immediately after can make a
bad feeling on human side. More formally, an undesirable
sequence is a couple < Seq,CO > in which Seq is the
sequence by itself (i.e. actions and links between them) and
CO a set of conditions that must be true during Seq.

3) Bad decompositions: This social rule describes the fact
that specific ways to do given tasks must remain possible but
they must be used only if it is necessary. For example, if the
robot has to put down an object for someone on a piece of
furniture, it is better to do it on the furniture instead of putting
it inside the furniture. A bad decomposition is a pattern to
detect during refinement process.

4) Effort balancing: This social rule is associated to the
fact that to be acceptable a plan must be almost optimal
without implying that one agent has to do everything. In
this sense, we penalize plans in which there is an unbalance
between agent efforts.

5) Control of intricacy: This social rule tries to avoid in-
tricate human-robot task achievement with a high number of
inter-dependencies and synchronization steps. Indeed, such
plans might be fragile and uncomfortable from the human
point of view who will feel ”dependent” on synchronization
with the robot and ”locked-in” an automaton. To avoid
that we penalize plans containing too much synchronization
steps.

6) Abstraction legibility: This social rule is linked to plan
negotiation. If the produced plan abstraction used for negotia-
tion is too complicated it will make a bad HRI and a difficulty
for the human partner to understand robot intentions. So, we
penalize plans whit complicated abstractions.

We dot not claim that we have integrated all the necessary
notions in HATP. Our aim is to design a generic platform
that will allow to integrate other notions. For instance, an
interesting idea is the notion of empathy raised in [15]. This
could be useful to allow the task planner to produce plans
taking into account human partners personalities.

C. Plan social score

The social score of a plan P is evaluated as follows:

S(P ) =
∑
ai∈P

Cctxt
ai

+
∑

sk∈P

P ctxt
sk

In this equation action ai is a part of P and sk is a violated
social rule k in P . The social score of a plan P is the sum
of costs of all its actions added to the sum of penalties of
all violated social rules in P . Therefore the goal is to find
plans with the sufficient low score.



Fig. 1. HATP plan structure: the Refinement Tree and the Time Projection

IV. HATP PLAN STRUCTURE

A HATP plan is composed of two elements. The first one
is used to keep a trace of selected decompositions during
the HTN exploration, we call it Refinement Tree (it will be
called only Tree in section V). The second one is used to
determine the course of actions for each involved agents, it
is composed of several time-lines of actions with causal links
between these actions, we call it Time Projection (it will be
called only Projection in section V). These two structures
are illustrated by Fig. 1.

A. The Refinement Tree

The role of its structure is to maintain the instance of
the HTN exploration for the current problem. Each node of
the Refinement Tree is composed of partially ordered tasks.
Each task in a Refinement Tree node is decomposed in its
turn until all leaves are actions. Each task in the Refinement
Tree is associated with a tag illustrating its current status
(SATISFIED or UNSATISFIED).

B. The Time Projection

The Time Projection corresponds to the lowest level plan.
It is composed of several time-lines of actions, one for each
agent involved in plan realization. We make the assumption
that one agent can do only one action at a given moment.
Using HTN formalism to make plans with parallel actions
has been already studied. An useful solution is based on
combination of a HTN and a Simple Temporal Network

Fig. 2. HATP planning process threads

(STN). This approach has been recently studied in [16]
and in SIADEX planner [17]. The possible simultaneity of
two actions a1 and a2 is characterized by a lack of time
constraints between their start and end timepoints i.e. (1) by
the lack of causal links between them in the Refinement Tree
and (2) by the lack of common resources needed by these
two actions.

V. HATP ALGORITHM

HATP planning process is composed of three threads
as illustrated on Fig. 2. One thread is responsible of the
refinement search, when it has found a possible valid plan it
transmits it to the thread responsible of complete evaluation
and storage of plans. The refinement thread is also connected
to a chronometer which role is to stop refinement process
when available time has been consumed. This chronometer
is necessary to ensure satisfaction of HATP real time con-
straints as seen in section II. Algorithm described in this
paper is that of the refinement thread.

HATP algorithm presented in this section is considerably
inspired from SHOP2 procedure [18]. The main difference
is that in HATP we do not manipulate only a task set but
also a tree. HATP main procedure is provided by algorithm
1. In this procedure we start by making a partial evaluation
of the current couple (Tree, Projection) (line 1). If necessary
we apply branch and bound optimization (lines 2-4). If not
we search all Tree nodes with the UNSATISFIED status and
without UNSATISFIED predecessors (line 6). If resulting set
is empty we call storePlan(Tree, Projection) procedure and
we make a backtrack to search a new plan (lines 8-9). If
resulting set is not empty, we create branches in exploration
tree if necessary (lines 14), we select a task and apply the
appropriate procedure (lines 15-21).

The storePlan procedure makes a complete evaluation of
the new possible plan and, if it is valid and better than the
best plan actually in memory, stores it in Stock. Stock is
just a sorted list of found plans, the sort criteria of this list
is the plan score. The applyAction procedure checks action
preconditions, if they are false we backtrack procedure is
called, else modifications linked to the action are applied
and Projection is updated. The applyTask procedure checks
task preconditions and determines possible decompositions
making branches in the exploration tree for each of them, one
of this branch is chosen and Tree is updated accordingly.



Algorithm 1 HATP main procedure
Require: Tree, Projection

1: c ← partial evaluation(Tree,Projection)
2: if ∃ plan P in Stock and c > evaluation(P ) then
3: cut current branch in exploration tree
4: backtrack and goto 1
5: end if
6: TL ← {t ∈ Tree nodes | t is UNSATISFIED and t has

no UNSATISFIED predecessors}
7: if TL = ∅ then
8: call storePlan(Tree,Projection)
9: backtrack and goto 1

10: else
11: if cardinality(TL) = 1 then
12: task ← member of TL
13: else
14: create branches in exploration tree
15: select a branch and update task accordingly
16: end if
17: if task is an action then
18: call applyAction(task,Tree,Projection)
19: else
20: call applyTask(task,Tree,Projection)
21: end if
22: goto 1
23: end if

VI. HATP IMPLEMENTATION

Using first promising tests [19] done with SHOP2 planner
[18] we have validated our approach and have made some
implementation choices. HATP implementation is done in
C++. To get a fast planner able to be used on line, we
have made the choice to use the same compilation process
as JSHOP2 [20]. We make a domain-specific planner from
domain-independent templates combined with a domain de-
scription. The user describes his HTN1 and compiles it to
produce C++ specific code and make a specific executable.
To permit problems definition on line, HATP is designed as a
multi-threaded system with a main server translating orders
coming from a client thread.

In the current state, several domain-independent templates
have been implemented and tested: the hierarchical system of
decompositions is ready, the system is able to determine an
abstraction of the plan for negotiation. Plan evaluation based
on social constraints is under development. HATP will be
soon connected to a scheduler able to provide a numerical
estimation of plan execution. This will be done through an
interface between HATP and a temporal planning library
borrowed from IxTeT [21].

VII. RESULTS

An illustrative scenario: We have defined a simulation
scenario containing ”fetch-and-carry” aspects with several

1More details about HATP syntax are available in http://www.laas.
fr/∼vmontreu.

Fig. 3. An illustrative scenario

objects. We start at the situation illustrated by Fig. 3, robot is
at the door, bob is at the sofa and wants to drink something
on the sofa. This task involves a conjunction of three goals:
(1) bob must have a glass, (2) bob must have a bottle and (3)
bob must reach the sofa if he is not at it. The glass is in a
closed cupboard and the bottle is on the table. Social rules in
this small example can be: we do not want to have a bottle
put on the sofa, to have the cupboard opened after getting the
glass is not desired and we penalize the fact that the robot
puts down an object and the human picks it up just after (we
prefer the robot to give the object to the human). This small
example is more difficult as it appears, indeed, there is a lot
of choices to do about agent roles, task realization way and
order in which task will be realized. This last point makes the
search space exploded and so increases a lot computational
time.

Produced plans: In order to illustrate the gain obtained
by taking into account explicitly human-centered constraints,
we compare HATP with an efficient task planner. We have
run this scenario with SHOP2 with cost notions but without
penalties linked to social rules. The best plan found by
SHOP2 in 30s is illustrated by Fig. 4. It is important to
note that plan parallelization is done in a second step. The
produced plan seems to be composed of disordered actions
making a feeling of confusion. If we look at Bob time-line
we can see that he will participate superficially to several
tasks without achieving anyone. Moreover we can see that
there is a lot of synchronization steps in the plan making it
fragile. Finally, we can see that the robot transmits the bottle
to Bob by putting it down on the sofa forcing Bob to pick
it up whereas it would have been better (for richness of the
HRI) to give it.

Using HATP approach we have obtained the plan illus-
trated by Fig. 5. HATP takes about 16.5s to explore all
possibilities and it produces a more legible plan, easier to
understand and in which efforts seem to be more directly
oriented toward goal realization. The different issues raised
by the first plan we studied have disappeared especially
because HATP has allocated Bob to goal (1) of the plan and
Robot does almost everything in goal (2). The abstraction
provided by HATP for plan negotiation is illustrated by Fig.
6. In this abstraction we have a subtree of the Refinement Tree



Fig. 4. a plan produced by a classical HTN planner

Fig. 6. An abstraction produced by HATP

in which individual plans have been cut (they are considered
as private) and shared plans are public. It is important to
note that although only the abstraction is presented to the
human partner, the robot has in memory all the plan until
Time Projection. This will be useful to introduce monitors
to check and to influence human partner commitment during
plan execution.

Partial structure as input: In order to illustrate the
feature of HATP to take as input partial structures, consider
the case where Bob said ”I will get the glass by myself and
you will bring me the bottle”, high level decompositions of
part (1) and (2) are imposed and we produce the same plan
in only 3.9s.

Plan quality during planning process: Fig. 7 shows the
number of plans added in the stock during planning time
with and without human constraints. We remind that plans
are added to the stock only if they are better than the best
plan currently in memory. It means that each new plan added
in the stock increases the quality of the final plan.

VIII. CONCLUSIONS AND FUTURE WORKS

We have described in this paper a task planner called
HATP designed for interactive and collaborative robotic
applications. It is able to produce socially acceptable plans
for several agents by making a social evaluation of plans. We
have provided several details on its implementation and have
illustrated its results with an example. All HATP features
are not implemented yet, but the implementation has been
designed to facilitate future improvements. Although HATP
is actually not used on board of a robot, it has been designed

Fig. 7. Plans stock during planning time

for this and it will be done as soon as all its features will be
implemented.

Future work on HATP will be on three aspects: (1)
introduction of heuristics in the hierarchical decomposition
system to explore the most promising parts of the solution
space first, (2) the ability for the user to define a set of various
constraints associated to the problem to influence choices
made by HATP and (3) the introduction of monitoring in the
plan to anticipate task performance control that will be used
during execution. The aspect (1) is very important. Relevance
of a heuristics is shown by results on Fig. 7, we can see on
it that best plans are found at the end of exploration, so we
can expect than with a heuristics we would be able to search
in that part of the solution space first reducing thus time
needed to plan. The aspect (2) will be very useful to increase
richness of plan negotiation. The aspect (3) will allow the
robot to anticipate task realization and so, to insert task
performance monitors. Thus, the robot will be able to check
at specific moments that its human partner is still involved
in task realization and so that the task is still relevant.

IX. ACKNOWLEDGMENTS

The work described in this paper was conducted within
the EU Integrated Project COGNIRON and was funded
by the European Commission Division FP6-IST Future and
Emerging Technologies under Contract FP6-002020.

REFERENCES

[1] S. Nonaka, K. Inoue, T. Arai, and Y. Mae, “Evaluation of human sense
of security for coexisting robots using virtual reality,” IEEE Int. Conf.
on Robotics and Automation, 2004.

[2] E. A. Sisbot, R. Alami, T. Simeon, K. Dautenhahn, M. Walters,
S. Woods, K. L. Koay, and C. Nehaniv, “Navigation in presence of
humans,” IEEE-RAS Int. Conf. on Humanoid Robots, Humanoids2005,
Tsukuba, Japan, 2005.

[3] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An
architecture for autonomy,” Int. Journal of Robotics Research, Special
Issue on Integrated Architectures for Robot Control and Programming,
vol. 17, no. 4, 1998.

[4] A. Clodic, V. Montreuil, R. Alami, and R. Chatila, “A decisional
framework for autonomous robots interacting with humans,” IEEE
Int. Workshop on Robot and Human Interactive Communication (RO-
MAN), 2005.

[5] R. Alami, R. Chatila, A. Clodic, S. Fleury, M. Herrb, V. Montreuil, and
E. A. Sisbot, “Towards human-aware cognitive robots,” The Fifth Int.
Cognitive Robotics Workshop (The AAAI-06 Workshop on Cognitive
Robotics, COGROB), 2006.



Fig. 5. a plan produced by HATP

[6] G. Klein, D. D. Woods, J. M. Bradshaw, R. R. Hoffman, and P. J.
Feltovich, “Ten challenges for making automation a ”team player” in
joint human-agent activity,” IEEE Intelligent Systems, vol. 19, no. 6,
pp. 91–95, 2004.

[7] P. R. Cohen and H. J. Levesque, “Intention is choice with commit-
ment,” Artificial Intelligence, vol. 42, no. 2-3, pp. 213–361, 1990.

[8] K. E. Lochbaum, “A collaborative planning model of intentional
structure,” Comput. Linguist., vol. 24, no. 4, pp. 525–572, 1998.

[9] B. Grosz and S. Kraus, “The evolution of SharedPlans,” Foundations
and Theories of Rational Agencies, 1999.

[10] B. J. Grosz and S. Kraus, “Collaborative plans for complex group
action,” Artificial Intelligence, vol. 86, pp. 269–358, 1996.

[11] F. F. Ingrand, R. Chatila, R. Alami, and F. Robert, “PRS: A high level
supervision and control language for autonomous mobile robots,” in
Proc. of the IEEE Int. Conf. on Robotics and Automation, Minneapolis,
USA, 1996, pp. 43–49.

[12] P. Scerri, D. V. Pynadath, L. Johnson, P. Rosenbloom, N. Schurr, M. Si,
and M. Tambe, “A prototype infrastructure for distributed robot-agent-
person teams,” The Second Int. Joint Conf. on Autonomous Agents and
Multiagent Systems, 2003.

[13] M. Mateas and A. Stern, “A behavior language: Joint action and
behavioral idioms,” Book chapter in Life-like Characters. Tools, Affec-

tive Functions and Applications, eds H. Prendinger and M. Ishizuka,
Springer, 2004.

[14] H. H. Clark, Using Language. Cambridge University Press, 1996.
[15] A. Tapus and M. J. Mataric’, “User personality matching with hands-

off robot for post-stroke rehabilitation therapy,” in Proc. of the 10th Int.
Symposium on Experimental Robotics, Rio de Janeiro, Brazil, 2006.

[16] N. Yorke-Smith, “Exploiting the structure of hierarchical plans in
temporal constraint propagation,” in Proc. of the National Conf. on
Artificial Intelligence (AAAI), Pittsburgh, USA, 2005, pp. 1223–1228.

[17] L. Castillo, J. Fdez.-Olivares, O. Garca-Prez, and F. Palao, “Efficiently
handling temporal knowledge in an HTN planner,” 16th Int. Conf. on
Automated Planning and Scheduling, 2006.

[18] D. Nau, T. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and
F. Yaman, “SHOP2: An HTN planning system,” Journal of Artificial
Intelligence Research, pp. 379–404, december 2003.

[19] V. Montreuil and R. Alami, “Report on paradigms for decisional
interaction,” LAAS-CNRS, Tech. Rep., 2005.

[20] O. Ilghami, “Documentation for JSHOP2,” Department of Computer
Science, University of Maryland, Tech. Rep., 2006.

[21] M. Ghallab and H. Laruelle, “Representation and control in IxTeT, a
temporal planner,” in Proc. of Artificial Intelligence Planning Systems,
Chicago, USA, 1994, pp. 61–67.


