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ABSTRACT - This paper is devoted to an overview of software fault tolerance by means of design diversity, i.e.
the  production  of  two  or  more  systems  aimed  at  delivering  the  same  service  through  separate  designs  and
realizations. The first section is devoted to a unified presentation of the approaches for software-fault tolerance; in
addition to the recovery blocks and N-version programming methods, a third type of approach is identified from
the careful examination of current,  real-life systems: N self-checking programming. In the second section, the
three approaches to software fault tolerance are analyzed with respect to two viewpoints: dependability and cost.
The third section is devoted to the definition and analysis of architectures aimed at tolerating both hardware and
software faults.

INTRODUCTION

There exist two largely differing approaches to software fault tolerance, depending on the forecasted aim, either preventing a
task failure to lead to the system complete disruption, or ensuring service continuity. In the former case, an erroneous task will
be detected as soon as possible, and will be halted in order to prevent error propagation; this approach is often termed as fail-fast
[Gra 86, Gra 90]. The latter case necessitates the existence of at least another component able to fulfill the task, designed and
implemented separately from the same specification; this approach thus requires  the use of  design diversity.  This paper  is
devoted to software fault tolerance based on design diversity.

Design-fault tolerance by means of design diversity is a concept which traces back to the very early age of informatics: see
the quotations relative to Babbage's work in [Avi 79, Ran 86]. Closer to us, after its (re-)inception in the 70's [Elm 72, Fis 75,
Ran 75, Che 78], software fault tolerance by design diversity has become a reality, as witnessed by the real-life systems and the
experiments reported in [Vog 86]. The currently privileged domain where design diversity is applied is the domain of safety-
related systems. In such systems, an extreme attention is paid to design faults, where the term "design" is to be considered in a
broad  sense,  from  the  system  requirements  to  realization,  during  initial  system  production  as  well  as  in  possible  future
modifications. Design faults are indeed a source of common-mode failures, which defeat fault tolerance strategies based on strict
replication (thus intended to cope with physical faults), and have generally catastrophic consequences.

Pre-computer realizations of safety-related systems were classically calling for diversified designs, i.e. the production of two
or more  variants of a system or equipment intended to fulfil the same function through implementations based on different
technologies. The aim of diversified designs is to minimize as much as possible the likelihood of occurrence of common-mode
failures; a typical  example is provided by a hardwired electronic channel backed by an electro-mechanic or electro-pneumatic
channel. In addition, the systems architecture was based on the  federation  of equipments implementing each one or several
subfunctions of the system; one of the criteria for partitioning the system global function into subfunctions was that a failure of
any equipment should be confined, and should not prevent the global function of the system to be performed, possibly in a
degraded mode. 

The work presented in this paper has been partially supported by AEROSPATIALE and by MATRA MARCONI SPACE in the framework of the HERMES
project (European Space Shuttle) and by the CEC in the framework of the ESPRIT Project "Predictably Dependable Computing Systems".
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When the transition was made to computer technology, the safety-related systems generally kept on the federation approach
[Avi 86]. Each subfunction was then implemented by a "complete" computer: hardware, executive and application software.
Examples of this approach may be found in airplane flight control systems (e.g. the Boeing 757/767 [Spr 80]) or nuclear plant
monitoring (e.g. the SPIN system [Rem 82]). A pre-requisite to confining computer failures is the auto-detection of the error(s)
having led to failure. The auto-detection of errors due to design faults can be achieved through two main approaches:

• acceptance  tests  of  the  results  under  the  form  of  executable  assertions  [And 79,  And 84],  which  constitute  a
generalization and a formalization of the likelihood checks which are classical in process control;

• diversified design leading to two software variants whose results are compared; real-life examples are the Airbus A-
300 and A-310 [Mar 82, Rou 86, Tra 88], or the Swedish railways' interlocking system [Ste 78, Hag 88].

The federation approach generally leads to a very large number of processing elements, larger than what would be necessary in
terms of computing power;  for instance, the Boeing 757/767 flight management control  system is composed of 80 distinct
functional microprocessors (300 when redundancy is accounted for). Although such large numbers of processing elements are
affordable due to the low cost of today's hardware, this approach suffers severe limitations, as a consequence of the subfunctions
isolation, which inhibits the cooperative use of total computer resources:

• limitations to evolving towards new functionalities, due to a restricted exploitation of the software possibilities;

• limitations to the improvement of reliability and safety, due to rigid redundancy management schemes, induced by
the necessity of local redundancies for the equipments.

An additional step towards a better use of the possibilities offered by computers consists in having several subfunctions
implemented by software, supported by the same hardware equipment. Such an approach, which can be termed as integration,
comes up against software failures, which are due to design faults only; adopting the integration approach thus necessitates
software-fault tolerance. Moreover, a joint evolution of some safety-related systems (e.g. the flight control systems) is towards
limited, if any, back-up possibilities, either manual or by non-computer technologies. This is of course an additional incitement
to software fault tolerance, since a safe behavior of the system is then entirely depending on a reliable behavior of the software.
Real-life examples are the NASA's space shuttle [She 78, Cau 81, Gar 81], the Boeing 737/300 [You 84], and the Airbus A-320
[Rou 86, Tra 88].

The paper, which elaborates on [Lap 87, Lap 90], is composed of three sections. The first section is devoted to a unified
presentation of the approaches for software-fault  tolerance;  in addition to the recovery blocks and N-version programming
methods,  a third type of approach is  identified from the careful  examination of current,  real-life  systems: N self-checking
programming.  In  the  second  section,  the  three  approaches  to  software  fault  tolerance  are  analyzed  with  respect  to  two
viewpoints: dependability and cost. The third section is devoted to the definition and analysis of a set of hardware-and-software
fault-tolerant architectures.
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1- APPROACHES TO SOFTWARE-FAULT TOLERANCE

Design diversity  may be defined [Avi 86] as the  production of two or more systems aimed at delivering the same service
through separate designs and realizations. The systems produced through the design diversity approach from a common service
specification are termed  variants. In addition to the existence of at least two variants of a system, tolerance of design faults
necessitates a  decider, aimed at providing an — assumed as being — error-free result from the variant execution; the variant
execution has to be performed from consistent initial conditions and inputs. The common specification has to address explicitly
the decision points, i.e. a) when decisions have to be performed, and b) the data upon which  decisions have to be performed,
thus the data processed by the decider.

The two most well documented techniques for tolerating software design faults are the recovery blocks and the N-version
programming.

In the recovery block (RB) approach [Ran 75, And 81], the variants are termed alternates and the decider is an acceptance
test, which is applied sequentially to the results provided by the alternates: if the results provided by the primary alternate do not
satisfy the acceptance test, the secondary alternate is executed, and so on.

In the N-version programming (NVP) approach [Che 78, Avi 85], the variants are termed versions, and the decider performs
a vote on all versions results.

The term variant is preferred in this paper as a unifying term to the terms alternate or version for the following reasons:

• the term "alternate" reflects sequential execution, which is a feature specific to the recovery block approach;

• the term "version" has a widely accepted different meaning: successive versions of a system resulting from fault
removal and/or functionality evolution; during the life of a diversely designed system, several versions of the variants
are expected to be generated.

The RB and NVP approaches have given rise to a number of variations or combinations, such as the consensus recovery
block [Sco 87], or the t/(n-1)-variant programming scheme [Xu 91].

The hardware-fault tolerant architectures equivalent to RB and to NVP are stand-by sparing (also termed as passive dynamic
redundancy) and N-modular redundancy (also termed as static redundancy), respectively. The equivalent of a third approach to
hardware-fault tolerance, active dynamic redundancy (very popular especially when based on self-checking components, as in
the AT&T ESSs, Stratus systems, etc.), does not appear to have been described in the published literature as a generic technique
for software-fault tolerance. However, self-checking programming has long been introduced (see e.g. [Yau 75]) where a self-
checking program results from the addition of redundancy into a program in order to check its own dynamic behavior during
execution. A self-checking software component is considered as resulting either from the association of an acceptance test to a
variant,  or  from the  association  of  two variants  with  a  comparison  algorithm.  Fault  tolerance  is  provided  by  the  parallel
execution of N≥2 self-checking components.  At each execution of the system so constituted, a self-checking component is
considered as being acting (in the sense of the delivered service, and thus of the effective delivery of the results to the controlled
or monitored application); the other self-checking components are considered as — "hot" — spares. Upon failure of the acting
component, service delivery is switched to a self-checking component previously considered as a spare; upon failure of a spare
component, service keeps being delivered by the acting component. Error processing is thus performed through error detection
and — possible — switching 
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of the results. In what follows, we shall term such a software fault tolerance approach N self-checking programming (NSCP).

Our aim is not so much introducing a new software fault tolerance approach as providing a clear classification of the various
approaches which may be considered.  In  fact,  most of  the real-life  systems mentioned in  the introduction do not actually
implement either RB or NVP, but are based on self-checking software. For instance:

• the computer-controlled part of the flight control systems of the Airbus A-300 and A-310 and the Swedish railways'
interlocking system are based on parallel  execution of  two variants  whose results  are compared,  and they stop
operation upon error detection; 

• the flight control system of the Airbus A-320 is based on two self-checking components, each of them being in turn
based  on  parallel  execution of  two variants  whose  results  are  compared:  tolerance  to  a  single fault  needs four
variants1.

Four additional comments on NSCP:

• when a self-checking software component is based on the association of two variants, one of the variants only may be written for

the purpose of fulfilling the functions expected from the component, the other variant being an extended acceptance test; examples

of such an approach are a) performing computations with a different accuracy, b) inverse function when possible, or c) exploiting

some intermediate results of the main variant as in the "certification-trail" approach [Sul 90];

• as in N-version programming,  the fact that the components are being executed in parallel2 necessitates an input consistency

mechanism;

• the acceptance tests associated to each variant or the comparison algorithms associated to a pair of variants can be the same, or

specifically derived for each of them — from a common specification;

• it could be argued that NSCP is "parallel recovery block"; in our opinion, the RB concept cannot be reduced to the association of

alternates together with an acceptance test: the — backward — recovery strategy is an integral part of it.

Figure 1 gives Petri Net execution models for the three identified strategies for software-fault tolerance. This figure is relative to the layer

where diversification is performed, and thus deliberately omits some mechanisms, e.g. a) recovery points establishment in RB, b) input data

consistency in NSCP and NVP, or c) replication of the decision algorithm (vote) on each of the sites supporting the versions in NVP. The most

significant features of the strategies clearly appear on this figure:

• the differences in the execution schemes, i.e. sequential for RB and parallel for NSCP and NVP;

• the responsibility of each self-checking component in NSCP for the delivery or not of an acceptable result, whereas the judgement

on result acceptability is cooperative in NVP.

1 It is worth mentioning that the two self-checking components (each with two variants) do not exactly deliver the
same service:  when switching from the initially acting component  to the other  one,  the critical  functions are preserved
whereas the non-critical functions are performed in a degraded mode.

2 Although sequential execution of the variants in N-version programming can be theoretically considered, practical
considerations of performance make this possibility as not very likely, except for experiments.
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Figure 1 - Execution Models of the Software-Fault Tolerance Approaches

The table of figure 2 summarizes the main characteristics of the strategies. Of particular interest with respect to the selection
of a strategy for a given application are the judgement on result acceptability and the suspension of service delivery on error
occurrence.
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Figure 2 - Main Characteristics of the Software-Fault Tolerance Approaches

The table of figure 3 summarizes the main sources of overhead,  from both structural  and operational  time viewpoints,
involved in software fault tolerance, for tolerance of one fault. In this table, the overheads brought about by tests local to each
variant such as input range checking, grossly wrong results, etc. are not mentioned: they are common to all approaches (in
addition, they are — or should be — present in non fault-tolerant software systems as well).
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Figure 3 - Overheads Involved in Software-Fault Tolerance for Tolerance of One Fault 
(with respect to Non Fault-Tolerant Software)

6



     Encyclopedia of Software Engineering, Vol.1, J.Marciniak, Ed.in Chief - Wiley Interscience, N°ISBN 0-471-54001-3, 1994, pp.482-503 

2- ANALYSIS OF SOFTWARE FAULT TOLERANCE

This section is aimed at analyzing the approaches to software fault tolerance according to two viewpoints: dependability and
cost.

2.1- Dependability Analysis

2.1.1- Classes of faults, errors and failures to be considered

We shall adopt here the classification and terminology of [Avi 85], i.e. independent faults and related faults. Related faults
result either from a fault specification — common to all the variants — or from dependencies in the separate designs and
implementations. Related faults manifest under the form of  similar errors, whereas independent faults usually cause  distinct
errors, although it may happen [Avi 84] that independent faults lead to similar errors. Similar errors lead to  common-mode
failures, and distinct errors usually cause separate failures. These definitions are illustrated by figure 4.   

Independent

Faults

Related

Faults

Similar

Errors

Distinct

Errors

Common-mode

Failures

Separate

Failures

Figure 4 - Classes of Faults, Errors and Failures 

Emphasis is put on the distinction between the different sources of failures: independent and related faults in variants and
decider. In the analysis, it  is assumed that only one type of fault(s), either independent or related, can be activated at each
execution and produce error(s). In addition, the fault tolerance underlying mechanisms, i.e., a) recovery point establishment and
restoration for the RB, and b) synchronization of the versions, cross check-points establishment and the decision mechanisms for
NSCP and NVP, are not accounted for.

The failures will be classified according to two different viewpoints:

1) with respect to the type of faults whose activation has led to failure:
• separate failures, which result from the activation of independent faults in the variants,
• common-mode failures, which may result from the activation of either related faults or from independent faults

in the decider; we shall distinguish among two types of related faults: a) related faults among the variants, and
b) related faults between the variants and the decider.

2) with respect to the detection of inability to deliver acceptable results:
• detected failures, when no acceptable result is identified by the decider and no output result is delivered,
• undetected failures, when erroneous results are delivered.

It is assumed in the sequel that the probability of fault activation is identical for all the variants of a given architecture. This
assumption is made in order to simplify the notation and do not alter the significance of the obtained results (the generalization
to the case where the characteristics of the variants are distinguished can be easily deduced).
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2.1.2- Analysis of Recovery Block Behavior

The table of figure 5 presents the related- or independent-fault combinations that may affect the RB architecture made up of
two alternates — a primary (P) and a secondary (S) — and of an acceptance test (AT). The table also gives the associated
probabilities of fault activation and the resulting type of failures (either, detected or undetected) when the faults are not tolerated.
For the sake of  conciseness,  when several  permutations of the faulty  software component  correspond to  an identical  fault
characterization, only one fault combination is shown; for example, fault combination 1 of figure 5 covers two permutations,
each having the same probability of activation: qI,RB (1 - qI,RB),  where qI,RB denotes  the probability of  activation of an
independent fault in one of the variants of the recovery blocks. Furthermore, fault combination 1 is tolerated and thus does not
lead to the failure of the RB architecture.

    Fault Combination

 P   S     AT Characterization and Probability Failure

1 (i) ( )   Indep. fault in one alternate: 2 qI,RB (1 - qI,RB) — —

2  i   i    Independent faults in two alternates: (qI,RB)2 S D

3 (* ) (* ) i Independent fault in the AT : qID,RB CM D

4  r   r    Related fault between the alternates: qRV,RB CM D

5 (r) (  ) r Related fault between the alternates CM U

 r   r  r and the AT : qRVD,RB

Faults:  \X(    ): no fault,  \X( i ): independent ,  \X( * )  : no fault or independent,  \X( r ): related,
\X(( )): participate to the permutations, 

Failures:   S: Separate,  CM: Common-Mode  ; D: Detected,  U: Undetected
Figure 5 - Recovery Blocks Fault-Failure Analysis

It is assumed that related faults between the variants manifest under the form of similar errors. However, we assume that
independent faults in the variants manifest under the form of distinct errors3. In particular, this results in the fact that the activation of

two or more independent faults is either tolerated (fault combination 2) or detected (fault combinations 3, 4 and 5).

Fault combination 3 covers all the cases when an independent fault is activated in the decider of the recovery blocks: the acceptance test;

all the cases are grouped in the probability denoted by qID,RB. It is assumed that the AT behaves consistently with respect to each variant (no

error compensation), thus when an independent fault is activated in the AT, a detected failure occurs, since undetected failures resulting from

the activation of a fault in the AT result from the activation of a related fault between the variants and the decider (fault combination 5).

In the case of fault combination 4, the associated probability of activation, denoted qRV,RB, corresponds to a related fault between the two

variants of the RB.

Probability  qRVD,RB covers  all  the  cases  of  activation  of  a  related  fault  between  the  variants  and  the  decider  (fault
combination RB-5). This corresponds to the only fault combination that leads to an undetected failure for RB.

3 Although they could be traced to independent faults, faults leading to similar errors are not distinguishable at the
execution level from related faults and thus they will be merged into the category of related faults.
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2.1.3- Analysis of N-Self-Checking Programming Behavior

The NSCP architecture is made up of 2 self-checking components, SCC, each of them being made up of 2 variants and a
comparator  C).  Although all  4 variants Vi,  i  = 1,…, 4,  are executed simultaneously,  only one SCC is  acting,  i.e.  actually
delivering output results, the other being used as a spare. The two probabilities of fault activation for the two comparators are
assumed to be identical.

The table of figure 6 presents the related- or independent-fault combinations that may affect the NSCP architecture, their
associated probabilities of activation and the resulting type of failure, if they are not tolerated. For sake of conciseness, the
comparators have been omitted in the description of the fault combinations they are not involved in. The presentation of the fault
combinations and the notation used for the associated probability of activation are analogous to the ones used for RB; in the
sequel we focus essentially on discussing of some points which are specific to the NSCP architecture.

      Fault Combination
  acting        spare

V1    V2     V3    V4 Characterization and Probability Failure

   C    C

1 (i)   ( ) ( )   ( ) Ind. fault in a variant: 4 qI,NSCP (1-qI,NSCP)3 — —

2  i     i            Independent faults in 2 variants belonging,

               i     i  either to the active SCC or to the spare SCC: — —

2 (qI,NSCP)2 (1 - qI,NSCP)2

3 (i)   ( ) (i)   ( ) Independent faults in 2 variants belonging S D

to distinct SCCs: 4 (qI,NSCP)2 (1 - qI,NSCP)2

4 (i)   (i)  (i)   ( ) Ind. fault in 3 variants: 4 (qI,NSCP)3 (1-qI,NSCP) S D

5  i     i   i     i  Independent fault in 4 variants: (qI,NSCP)4 S D

6  *      *     *      *   Independent fault in the comparator: CM D

i  i   qID,NSCP  

7            r     r  Related fault between the variants belonging — —

to the spare SCC: q2V,NSCP   

8  r     r             Related fault between the variants belonging CM U

to the active SCC: q2V,NSCP   

9 (r)   ( )  (r)   ( ) Related fault between 2 variants belonging CM D

to distinct  SCCs: 4 q2V,NSCP   

10 (r) (r)  (r)   ( ) Related fault between 3 variants: 4 q3V,NSCP CM U

11  r   r     r     r  Related fault between 4 variants: q4V,NSCP CM U

12  r   r      r     r  Related fault between the 4 variants CM U

r  r  and the comparator: qRVD,NSCP

Faults:  \X(  ): no fault,  \X( i ): independent ,  \X( * )  : no fault or independent,  \X( r ): related,
\X(( )): participate to the permutations, 

Failures:   S: Separate,  CM: Common-Mode  ; D: Detected,  U: Undetected
Figure 6 - N-Self-Checking Programming Fault-Failure Analysis
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As the comparators are assumed to be identical from the failure probability viewpoint, a) the activation of an independent
fault in the comparator is fully characterized by the fault combination 6, which leads to a detected failure, and b) the only case of
related fault between the variants and the comparators to be considered is identified by fault combination 12.

It is important to note that, although they correspond to the activation of a related fault between two variants, the fault
combinations 7 and 9 are respectively, tolerated and detected by the NSCP architecture. All other related-fault combinations
result in undetected failures. 

2.1.4- Analysis of N-Version Programming Behavior

The table of figure 7 presents the related- or independent-fault combinations that may affect the NVP architecture. 

     Fault Combination

V1 V2 V3   V Characterization and Probability Failure

1 (i)  ( )  ( )   Ind. fault in one version: 3 qI,NVP (1 - qI,NVP)2 — —

2 (i)  (i)       Ind. faults in 2 versions: 3 (qI,NVP)2 (1-qI,NVP) S D

3  i    i    i    Independent faults in the 3 variants: (qI,NVP)3 S D

4  *     *     *   i Independent fault in the voter: qID,NVP CM D

5 (r)  (r)  (  )   Related fault  between 2 variants: 3 q2V,NVP CM U

6  r    r    r    Related fault  between 3 variants:  q3V,NVP CM U

7  r    r    r  r Related fault  between the variants CM U
and the voter: qRVD,NVP

Faults:  \X(    ): no fault,  \X( i ): independent ,  \X( * )  : no fault or independent,  \X( r ): related,
\X(( )): participate to the permutations, 

Failures:   S: Separate,  CM: Common-Mode  ; D: Detected,  U: Undetected
Figure 7 - N-Version Programming Fault-Failure Analysis

In this case, it appears that all multiple independent fault combinations and an independent fault in the decider are detected
(fault combinations 2 to 4), and that all related fault combinations lead to undetected failures (fault combinations 5 to 7).

2.1.5- Characterization of the Probabilities of Failure

Figure  8  gives  the  respective  contribution  of  the  probabilities  of  failure  to  the  separate/common-mode  and
detected/undetected failure viewpoints.

As could be expected,  the table shows that,  although the detected failures  may correspond to both separate failures or
common mode failures, the undetected failures correspond to common mode failures.

The comparison of the various failure probabilities of figure 8 is difficult due to the difference in the values of the parameters
characterizing each architecture. However, it is possible to make some interesting general remarks.
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Arch. Detected Failure Undetected Failure 
 

 

S: (qI,RB )2  
RB  CM: qRVD,RB  

CM: qID,RB  + q2V,RB  
 
 

S: 4 (qI,NSCP)2 [1 -  qI,NSCP + 
(qI,NSCP)2

4 ] CM: q2V,NSCP  + 4 q3V,NSCP  
NSCP  + q4V,NSCP  + qRVD,NSCP  

CM: qID,NSCP  + 4 q2V,NSCP  
 

 

S: 3 (qI,NVP )2 [1 - 23  qI,NVP ] CM: 3 q2V,NVP  + q3V,NVP  
NVP  + qRVD,NVP  

CM: qID,NVP   
 

Figure 8 - Detected/Undetected Failures and Separate/Common-Mode Failures

Although a large number of experiments have been carried out to analyze NVP, no quantitative study has been reported on
the reliability associated to the decider, except for some qualitative remarks concerning a) the granularity of the decision with
respect to the variables checked  [Tso 87], b) the magnitude of the allowed discrepancy [Kel 88] and c) the investigation of the
behavior of various voter schemes reported in [Lor 89]. However, it has to be noted that the probabilities associated to the
deciders can be significantly different. Due to the genericity and the simplicity of the functions performed by the deciders of the
NSCP (comparison) and NVP (voting) architectures, it is likely that these probabilities be ranked as follows:

qID,NSCP  ≤ qID,NVP << qID,RB  and  qRVD,NSCP  ≤ qRVD,NVP << qRVD,RB (1)

In the case of separate failures, the influence of the activation of independent faults differs significantly: for RB, the probability of separate

failure is equal to the square of the probability of activation of independent faults, whereas it is almost the triple for NVP and the quadruple for

NSCP4. This difference results from the number of variants and the type of decision used. However, it does not mean that RB and NSCP are

the only architectures that enable some related-fault combinations between the variants to be detected. All related faults in NVP result in

undetected failures5 .

Related faults between the variants has no impact on the probability of undetected failure of the RB architecture, whereas, it is the major

contribution for NSCP and NVP. However, the comparison of the respective probabilities of undetected failures is not an easy task.

The table of figure 9 summarizes the probabilities of failure of the software fault-tolerant architectures considered:

• qS,D,X = P {detected failure of the software fault-tolerant architecture X | execution},

• qS,U,X = P {undetected failure of the software fault-tolerant architecture X | execution},

• qS,X = qS,D,X + qS,U,X = P {failure of the software fault-tolerant architecture X | execution}.

4 Due to the usually low value of the qI,X factors, the influence of separate failures is practically  limited to the
consideration of the (qI ,X)2 terms.

5 It is worth noting that such a singularity is due to the limitation to the analysis of software redundancy for tolerating
one fault; increasing the number of versions would also enable some related faults to be detected as pointed out in section 2.
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Arch. Probability of Failure:  q S,X = q S,D,X + q S,D,X  
 

 

"X" Detected Failure: q S,D,X Undetected Failure: q S,U,X  
 
 

RB  (qI,RB)2  + qID,RB + q2V,RB qRVD,RB  
 

 

4 (qI,NSCP)2 [1 -  qI,NSCP + (qI,NSCP)2
4 ] q2V,NSCP  + 4 q3V,NSCP  

NSCP
 

 
 

NVP 3 (qI,NVP)2 [1 - 23  qI,NVP] + qID,NVP 3 q2V,NVP  + q3V,NVP  + qRVD,NVP 
 

+ qID,NSCP + 4 q2V,NSCP  + q 4V,NSCP  + qRVD,NSCP 

Figure 9 - Probabilities of Failures

The results obtained are in agreement with what has previously been reported in the literature, i.e. that the reliability of a
fault-tolerant software is dominated by related faults (see e.g. [Kni 86, Eck 91]). This is hardly unexpected for anyone who is
familiar with fault tolerance: although the underlying phenomena are different, the limit due to related faults can be compared to
the usual limit in reliability for hardware-fault tolerance brought about by coverage deficiencies (either from a theoretical [Bou
69,  Arn  73]  or  from a  practical  [Toy 78] viewpoint).  However,  the  results  show that  design diversity  indeed  brings  in  a
significant reliability improvement as the impact of independent faults which are the major source of failure in traditional — non
fault-tolerant — software, become negligible. In addition, it has been shown experimentally that some specification faults are in
fact detected during the execution of multi-variant software (see e.g. [Bis 86, Tra 88]), thus reducing the proportion of related
faults leading to failure in a multi-variant software.

2.2- Cost Analysis

This section is aimed at giving an estimation of the additional cost introduced by fault tolerance. Since design diversity
obviously impacts costs differently according to the life-cycle phases,  the starting point  is  the cost  distribution among the
various activities of the life-cycle for a classical, non fault-tolerant, software. This is provided by figure 10, where:

a) The life-cycle model which we have adopted is a simplified one [Ram 84],  an interesting feature of which with
respect to our purpose is that all the activities relating to verification and validation (V&V) are grouped separately.  

b) The three categories of maintenance are defined according to [Swa 76], and cover all the operational life: 
• corrective maintenance concerns fault removal; it thus involves design, implementation and testing types of

activities;
• adaptive maintenance adjusts software to environmental changes; it thus involves also specification activity;
• perfective  maintenance  is  aimed at  improving  the  software's  function;  it  thus  actually  concerns  software's

evolution,  and  as  such  involves  activities  similar  to  all  of  the  activities  of  the  development,  starting from
modified requirements.

c) The cost breakdown for the life-cycle [Zel 79] and for maintenance [Ram 84] are general, and do not address a
specific class of software; however, since we are concerned with critical applications, some multiplicative factors
have to be accounted for, which depend upon the considered activity [Boe 81].
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d) The  last  two  columns,  which  have  been  derived  from the  data  displayed  in  the  other  columns,  give  the  cost
distribution among the activities of the life-cycle in two cases: development only, development and maintenance.
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Figure 10 - Software Cost Elements for Non Fault-Tolerant Software 

From this table, it appears that maintenance does not affect significantly the cost distribution over the other activities of the
life-cycle (the discrepancy is likely to be in fact lower that the accuracy of the obtained figures); so, considering in the following
one case only, say the development case as it refers to the production of software, is in fact general and covers also the whole
life-cycle as we are concerned with relative costs.

In order to determine the cost of a fault-tolerant software, it  is necessary to introduce factors a) enabling the overheads
associated with the decision points and the decider(s) to be accounted for, as well as b) enabling the cost reduction in V&V
induced by the commonalties among variants to be accounted for. These commonalties include actual V&V activities, such as
back-to-back testing, and V&V tools, such as test harnesses. An accurate estimation of such factors is out of reach given the
current state of the art; we however think that it is possible to give reasonable ranges of variations. We introduce the following
factors:

• r: multiplier associated with the decision points, with 1 < r < 1.2;

• s: multiplier associated with the decider, with 1 < s < 1.1 for NVP and NSCP when error detection is performed
through comparison, and 1 < s < 1.3 for RB and NSCP when error detection is performed through acceptance tests;
this difference is aimed at reflecting the different natures of the decider, i.e. the fact that it is specific in the case of
acceptance test, whereas it is generic in the cases of comparison and of vote;

• u: proportion of the testing activities which are performed once for all variants (e.g. provision for test environments
and harnesses), with 0.2 < u < 0.5;

• v: proportion of the testing activities of each variant which take advantage of the existence of several variants (e.g.
back-to-back testing), with 0.3 < v < 0.6;

• w: cost reduction factor for the testing activities performed in common for several variants, with 0.2 < w < 0.8.

13



     Encyclopedia of Software Engineering, Vol.1, J.Marciniak, Ed.in Chief - Wiley Interscience, N°ISBN 0-471-54001-3, 1994, pp.482-503 

The cost of a fault-tolerant software (CFT) with respect to the cost of a non fault-tolerant software (CNFT) is then given by
the following expression:

CFT / CNFT = R + r s S + [N r + (s - 1)] ( D + I ) + r { u s + (1 - u) N [ v w + (1 - v) ] } V

where R, S, D, I, and V refer to the life-cycle activities of figure A.1, and N is the number of variants.

The table of figure 11 gives the ranges for the ratio CFT / CNFT, as well as the average values and the average values per
variant.  In  this  table,  we do not  make a distinction between RB and  NSCP with error  detection by acceptance test:  their
respective differences with respect to the cost issues are likely to be masked by our abstract cost model. 

Number
of faults
tolerated

Fault Tolerance Method N

2
Recovery Blocks

Comparison

Acceptance TestN Self-
Checking

Programming

N-Version Programming

4

3

Recovery Blocks

N-Version Programming

N Self-
Checking

Programming

Acceptance Test

Comparison

3

4

1.33 2.17 1.75 .88

1.78 2.71 2.25 .75

2.24 3.77 3.01 .75

1.78 2.96 2.37 .79

2.24 3.77 3.01 .75

1

2
6

CFT
minCNFT

CFT
maxCNFT

CFT
avCNFT

CFT
avN CNFT

3.71 5.54 4.63 .77

Figure 11 - Cost of Fault-tolerant Software vs. Non Fault-tolerant Software

The results displayed in figure 11 enable the quantification of the usual qualitative statement according to which an N variant
software is less costly than N times a non fault-tolerant software. In addition, the figures which appeared previously in the
literature fall within the ranges displayed in the table:

• the  overhead  for  RB,  for  2  variants,  was  estimated  at  60% for  the  experiment  conducted  at  the  University  of
Newcastle upon Tyne [And 85], that is a ratio CFT / CNFT equal to 1.6,

• the cost of NVP, for 3 variants, in the PODS project [Bis 86] was estimated to 2.26 times the cost of a single variant
program. 
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3- DEFINITION AND ANALYSIS OF HARDWARE-AND-SOFTWARE FAULT-TOLERANT ARCHITECTURES

This section presents examples of architectures providing tolerance to both hardware and software faults. Emphasis will be
put on: a) the dependencies among the software and hardware fault tolerance and b) the impact of the solid and soft character of
the software faults, related to their persistence with respect to the computation process and their recoverability, in the definition
of the architectures.

Two levels of fault tolerance requirements are successively investigated: a) architectures tolerating a single fault, and b)
architectures tolerating two consecutive faults6. The architectures will be identified by means of a condensed expression of the form:

X/i/j/..., were label X stands for the acronym of the software fault tolerance method, X ∈ { RB, NSCP, NVP }, i is the number of hardware

faults tolerated and j is the number of software faults tolerated. Further labels will be added to this expression when necessary.

Due to the scope of the paper, the architectures are described from a deliberately highly abstracted view. As a consequence, distinguishing

features, such as a) the overhead involved by inter-component communication for synchronization, decision-making, data consistency, etc., and

b) the differences in memory space necessary for each architecture, are not addressed. More specific attempts to the definition of hardware-

and-software fault-tolerant architectures have already appeared in the literature, e.g. the work reported in [Kim 84, Kim 89] which extends the

recovery block approach, or in [Lal 88] which is based on N-version programming. 

3.1- Persistence and Recoverability of Software Faults

Consideration of the persistence criterion leads to distinguish  solid and  soft faults. Such a distinction is usual in hardware, where solid

faults are usually synonymous to permanent faults, and soft faults are usually synonymous to temporary faults, either transient or intermittent.

The solidity or softness character of a fault plays an important role in fault tolerance: a component affected by a permanent fault has to be

made passive after fault manifestation, whereas a component affected by a soft fault can be utilized in subsequent executions after error

recovery has taken place. 

Let us now consider software faults of operational programs, i.e. programs which have been thoroughly debugged, where the remaining

sources of problems are likely to be more fault  conditions  rather than solid faults: limit conditions, race conditions, or strange underlying

hardware conditions. As a consequence of a slight change in the execution context, the corresponding fault conditions may not be gathered,

and the software may not fail again. The notion of temporary fault may thus be extended to software, and it has been noted in practice: it has

been introduced in [Elm 72], has been devoted much attention in [Gra 86] and is being used as a basis for increasing diversity among several

variants of the same software in [Amm 87] through the concept of "data diversity". A temporary software fault may then be characterized as a

fault whose likelihood of manifestation recurrence upon re-execution is low enough to be neglected. 

Another, important, consideration to account for is the notion of local and global variables for the components, in relation with error

recovery actions (in the broad sense of the term, including the actions to be performed in order that a failed variant in NSCP and in NVP may

take part to future executions [Tso 86]). Let us call a diversity unit the program comprised between two decision points. As a general rule, it

can be said that recovery necessitates that the diversity units have to be procedures (in the sense that their activation and behavior do not

depend on any internal remanent 

6 These  requirements  can  be  related  respectively,  to  the  classical  Fail Op/Fail Safe  and  Fail Op/Fail Op/Fail Safe
requirements used in the aerospace community for the hardware fault tolerance.
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data). Stated in other terms, all the data necessary for the processing tasks of a diversity unit have to be global data. The globality of the

data for a diversity unit may:

• origin directly from the nature of the application; an example is provided by the monitoring of a physical process (e.g. nuclear

reactor protection [Gme 79]) where tasks are initialized by acquisition of sensor data, and do not utilize data produced in previous

processing steps;

• result from the system partitioning, either naturally, or from the transformation of local data into global data, at the expense in the

latter  case  of  an  overhead  and  of  a  decrease  in  diversity  (the  specification  of  the  decision  points  has  to  be  made  more

precise); a — deliberately over-simplified — example is provided by a filtering function which would constitute a diversity unit:

the past samples should be made part of the global data.

The preceding discussion applies to all of the software fault tolerance methods. It is however noteworthy that some arrangements can be made

to this general rule in some specific, application-dependent, cases. Examples are as follows:

• if the above-mentioned overhead cannot be afforded, or if it is estimated that transforming local data into global data is a too

severe decrease in diversity, an alternative solution exists for NSCP and NVP: eliminate from further processing a failed variant;

• the application of state estimation techniques issued from the control theory (see e.g. [Cag 85]).

As a summary, we shall adopt in the sequel the following definitions for soft and solid faults:

• a soft software fault is a fault which is temporary and recoverable,

• a solid software fault is a fault which is permanent or which cannot be recovered.

Finally, we implicitly considered that decision points were recovery points. Actually, in NSCP and in NVP, a distinction in the decision

points can be made between those which are cross-check points and those which are recovery points, the latter being possibly in a smaller

number than the former [Tso 86].

3.2- Design Decisions when Implementing Design Diversity

Among the many issues which have to be dealt with design diversity [Avi 85, Avi 86], two of them are especially important — and

correlated — with respect to architectural considerations: i) the number of variants, ii) the level of fault tolerance application.

Independently from any economic consideration (see Section 2.2),  the  number of variants to be produced for a given software fault

tolerance method is directly related to the number of faults to be tolerated (see figure 2). It will be seen in this section that the soft or solid

character of the software faults has a significant impact on the architecture only when dealing with the tolerance of more than one fault. It has

also to be reminded that an architecture tolerating a solid fault is also able to tolerate a (theoretically) infinite sequence of soft faults —

provided there is no fault coincidence phenomenon. It is noteworthy that the relation between the likelihood of such faults and the number of

variants is not simple: whether increasing the number of variants will increase or decrease the number of related faults depends on several

factors, some of them being antagonistic [Avi 84, Kni 86]. However, in NVP, an incitation to increase the number of variants is the fact that

two similar errors can outvote a good result  in a three-version scheme, whereas they would be detected in a four-version scheme, thus

providing an increase in safety (situations contrary to safety being defined as corresponding to an undetected error).
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The level of application of fault tolerance encompasses two aspects: a) at what level of detail should be performed the decomposition of

the system into components which will be diversified?, and b) which layers (application software, executive, hardware) have to be diversified?

The answer to the first question should at first sight result from a trade-off between two opposite considerations: on one hand, small size

components enable a better mastering of the decision algorithms; on the other hand, large size components favor diversity. In addition, the

decision points are "non diversity" points (and synchronisation points for NSCP and NVP); as such, they have to be limited: decision points are

a  priori  necessary for  the interactions  with environment  only  (sensor  data  acquisition,  delivery  of  orders  to  actuators,  interactions with

operators, etc.). However, additional compromises may result from performance considerations.

Concerning the layers where to apply diversity, the methods mentioned can be applied to any of the software layers, either of application

software, or of the executive software. They can also be applied to the hardware layer(s) [Mar 82, Rou 86]. The states — with respect to the

computation process — of distinct variants are different. A consequence is that when the variants are executed in parallel (NSCP and NVP),

thus on distinct (redundant) hardware, diversity of a given layer leads to states of the underlying layers which are different, even if they are not

diversified — except of course at the decision points. A decision concerning whether or not layers underlying the application software have to

be diversified or not should include additional considerations, such as determining the influence of the portions of executive software and of

hardware which are specifically designed for the considered application, and what confidence to place on experience validation for those parts

which are off-the-shelf.

3.3- Structuration Principles for the Definition of Architectures

Structuring is a prerequisite to the mastering of complexity. This is especially true when dealing with fault tolerance [And 81, Ran 84, Neu

86].

A usual, and useful, principle when dealing with hardware-fault tolerance is that the fault tolerance mechanisms should go along, and

respect, the structuration of a system into layers [Sie 82]. Especially, it is desirable that each layer be provided with fault tolerance mechanisms

aimed at processing the errors produced in the considered layer, with respect a) to performance considerations in terms of time to recover from

an error and b) to the damages created by error propagation. Implementation of this principle at the hardware layer when dealing with software

fault tolerance necessitates that the redundant hardware components are in the same state with respect to the computation process in the

absence of error. Such a condition can obviously be satisfied only if the variants are executed sequentially, i.e. in the RB approach. 

However, the diagnosis of hardware faults may be made possible by taking advantage of the syndromes provided by the decider(s) of the

considered software fault tolerance method considered.

Another  useful structuration mechanism is the notion of  error confinement  area  [Sie 82].  This notion cannot  be separated from the

architectural elements considered. In relation with the scope of this paper, the architectural elements considered will be:

• the  elements  providing  the  services  necessary  for  an  application  software  to  be  executed,  i.e.  hardware  and  the  associated

executive software; such elements will be termed — abusively, in the sake of conciseness — as hardware components;

• the variants of the application software.

Consideration of both hardware and software faults leads to distinguish hardware error confinement areas (HECAs) and software error

confinement areas (SECAs). In our case, a HECA 
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will cover at least one hardware component and a SECA will cover at least one software variant. It is noteworthy that, due to our definition

of hardware component, a HECA corresponds to the part of the architecture that is made passive after occurrence of a solid hardware fault, and

can thus be interpreted as a Line Replaceable Unit (LRU).

3.4- Architectures Tolerating a Single Fault

Three architectures are considered that correspond to the implementation of the three software fault-tolerance methods of section 1. Figure

12 illustrates the configurations of the SECAs and HECAs for each case. The intersections between the SECAs and the HECAs characterize

the software and hardware fault tolerance dependencies of the architectures.
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Figure 12 - Architectures Tolerating a Single Fault

3.4.1- The RB/1/1 Architecture

This architecture is obtained by the duplication of the RB composed of two variants on two hardware components. Two
variants  and  their  associated  instances  of  the  acceptance  test  constitute  two  distinct  SECAs  and  intersect  each  HECA.
Accordingly, each hardware component is software fault tolerant due to the RB method: the independent faults  in a variant are
tolerated,  while  the related faults   between the variants are detected;  however related faults  between each variant  and the
acceptance test cannot be tolerated neither detected. 

The hardware components operate in hot standby redundancy and execute at each time the same variant. This allows the
design of a high coverage concurrent comparison between the results of the acceptance tests  and the results provided by the
hardware components to handle specifically the hardware faults. It is noteworthy that when a discrepancy between the results of
the hardware components is  detected during the execution of the primary alternate or of the  acceptance test,  it  might be
interesting to call  for the execution of the secondary in order to tolerate the fault (should the fault be a soft  fault).  If  the
discrepancy would persist (what would be the case upon manifestation of 
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a solid fault), the failed HECA could be identified by running diagnosis programs on each HECA, thus, the continuity of
service would be ensured and the failed HECA made passive.

It is worth noting that after this hardware degradation, a) the architecture is still software fault tolerant, and b) the subsequent
hardware faults can be detected either by means of the acceptance test or by the periodic execution of the diagnosis.

3.4.2- Examples of  NSCP/1/1 Architectures

The basic architecture (NSCP/1/1 in figure 12) is made up of:

• four  hardware components  grouped in two pairs  in  hot standby redundancy, each pair  of  hardware components
forming a HECA;

• four variants grouped in two pairs; each pair constitutes a software self-checking component, error detection being
carried out by comparison; each pair forms a SECA.

Each SECA is associated to a HECA. The comparison of the computational states of the hardware components cannot be
directly performed due to the diversification imposed by the variants; however, the comparison between the results of each pair
of variants covers also the two hardware components composing each HECA with respect to the hardware faults (including
design faults); a  HECA is thus also a hardware self-checking component.

In case of discrepancy between the results provided by the paired variants in one HECA, irrespective of the type of fault, the
associated HECA is possibly  switched out and the results are delivered by the other HECA. Should the discrepancy occurs
repeatedly,  characterizing  thus,  a  solid  hardware  fault,  then  the  designated  HECA would  be  made  passive.  The  degraded
structure after this passivation still enables both software and hardware faults to be detected.

Besides  the  nominal  tolerance  of  an  independent  software  fault,  the  architecture  ensures  supplementary  tolerance  and
detection features: a) the tolerance of two simultaneous independent faults in a SECA, b) the  detection of a related fault among
two variants (each pertaining to one of the two disjoint SECAs) and c) the detection of three or four simultaneous independent
software faults.

The NSCP/1/1 architecture corresponds to the principle of the architecture implemented in the Airbus A-320 [Rou 86].
However,  in  some applications,  the  requirement  of  four  variants  would be  prohibitive;  it  is  worth  noting that  a  modified
architecture (NSCP/1/1/m) can be obtained, based on three variants only (Figure 12).

The major significant difference in error processing between the NSCP/1/1 and NCSP/1/1/m architectures can be identified
when considering the activation of a software fault in V2. It is important to note that this would  result in a discrepancy in both
self-checking component, thus implying an associated SECA covering all the four software components and preventing any
software fault tolerance. As this is the only event that can lead to such a syndrome (under the hypothesis of  single independent
fault), the "correct" result is immediately available as the one provided by V1 or V3, hence, the SECA associated to V2 shown
on figure 12. However, as a consequence, all the fault tolerance and detection capabilities of the NSCP/1/1 architecture termed
above "supplementary" are lost.

3.4.3- The NVP/1/1 Architecture

The NVP/1/1 architecture is a direct implementation of the NVP method. It is  made up of three hardware components, each
running a distinct variant. The handling of the hardware faults (including design faults) and of the software faults is common and
performed at the software layer by the 
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decider of the NVP method. Besides the tolerance to an independent fault in a single variant, the architecture allows the
detection of independent faults in two or three variants.

The problem of discrimination between hardware and software faults, in order that the passivation of a hardware component
occurs  only  upon occurrence  of  a  solid  fault,  gives  an  example  of  the  dependency  between  software  and  hardware  fault
tolerance. Due to the soft character considered for the software faults, a diagnosis of (solid) hardware fault could be easily
implemented as  the  monitoring of  a  repeatedly disagreeing hardware  component.  After  passivation of  the failed  hardware
component, the decider has to be reconfigured as a comparator, which thus ensures a fail safe characteristic to the architecture in
case of a subsequent activation of a hardware or  a software fault.

3.5- Architectures Tolerating Two Consecutive Faults

When dealing with the tolerance of two faults, the distinction between soft and solid software faults comes immediately into
play:

• if the software faults can be considered as soft faults, then the number of variants is unchanged with respect to the
architectures aimed at  tolerating one fault; so these architectures will be of the type X/2/1,  X ∈ { RB, NSCP,
NVP },

• if the software faults are to be considered as solid faults, then the number of variants must be increased in order to
cope with the discarding of a failed variant from further execution; so the corresponding architectures will be of
the type X/2/2.

The considered architectures for the tolerance of two faults are displayed on figure 13. According to the above discussion, the
first three architectures (RB/2/1, NSCP/2/1 and NVP/2/1) are characterized by the tolerance of two hardware faults and of a
single software fault. The impact of the solid character of the software faults is illustrated in the case of an architecture using the
NVP method; this structure (NVP/2/2) is designed to tolerate two consecutive (solid) faults in hardware or software.

Prim.Prim.Prim.
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Figure 13 - Architectures Tolerating Two Consecutive Faults
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3.5.1- The RB/2/1 Architecture

This  architecture  is  made  up  of  three  hardware  components  arranged  in  TMR.  Software  fault  tolerance  capability  is
unchanged with respect to RB/1/1 architecture. Upon solid hardware fault manifestation, the architecture is degraded through the
passivation of the corresponding hardware component, thus resulting in an architecture analogous to the RB/1/1 architecture.

Accordingly,  even  if  they  are  basically  useless  in  the  handling  of  the  first  hardware  fault,  local  diagnosis  must  be
incorporated in each hardware component.

3.5.2- The NSCP/2/1 Architecture

This architecture is a direct extension of the NSCP/1/1/m architecture. A supplementary duplex HECA is added that supports
a software self-checking component made up of two variants. A symmetric distribution of the three SECAs among the three
HECAs is thus obtained. It is noteworthy that the fact that all the variants are duplicated allows an instantaneous diagnosis of the
hardware  faults  from  the  syndrome  obtained  by  comparing  the  results  delivered  by  all  the  hardware  components.  The
architecture allows also the detection of simultaneous independent faults in two or three variants.

3.5.3- The NVP/2/1 Architecture

The  NVP/2/1  architecture  is  derived  from  the  NVP/1/1  architecture  by  addition  of  a  hardware  component  without
introducing  another  variant.  In  order  to  maintain the  software  fault  tolerance  capability  after  passivation of  one  hardware
component, it is necessary that at least two instances of each variant pertain to two distinct HECAs. Thus six variant instances
have to be distributed among the four HECAs. A possible configuration7 is the one shown in figure 14.

Among the two distinct variants associated to each HECA, one is active and the other is idle. At a given step, three hardware components

execute three distinct variants and the fourth hardware component executes a replica of one of the variants (V1 in this configuration). Besides

the tolerance to an independent software fault, the architecture allows the detection of two or three simultaneous independent faults.

The tolerance of an independent fault can be obtained by a decision based on a vote in which the knowledge that two variants are identical

is incorporated. The unbalanced numbers of executions of the variants can be used to improve the diagnosability with respect to the hardware

faults by the use of a double vote decision (each vote includes the results of the non duplicated variants and only one of the results of the

duplicated variant); this is illustrated by considering the following cases:

• activation of a hardware fault in one of the hardware components executing the duplicated variant (V1),

• activation of a software fault in the duplicated variant ,

• activation of a hardware fault in one of the hardware components executing the non duplicated variants (V2, V3) or of a software

fault in one of these variants.

In the first case, the fault is of course easily tolerated and diagnosed as the obtained syndrome consists of a) an agreement among the three

results in one vote and b) a discrepancy among the results of the second vote, hence, designating as false the result of the duplicated variant.

In the second case, the decider will identify a non-unanimity in both votes designating as false the results supplied by the duplicated

variant; such a syndrome enables the duplicated variant to be 

7 An enumeration of all the possible combinations reveals 18 solutions.
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diagnosed as failed and thus the "correct" result is immediately available as the one provided by the non duplicated ones.

In the last case, the tolerance is immediate, but the votes do not enable the fault to be diagnosed. Based on the assumption of non recurrent

nature of the software faults, the diagnostic of hardware fault can result from the repeatedly failure of a hardware component. However, it is

worth noting that another form of diagnosis is possible here that would allow to relax this assumption: upon occurrence of a localized fault (i.e.

imputable to either one SECA or one HECA) the next execution step is performed after a reconfiguration of the active variants that matches the

duplicated variant with the identified HECA; the decider will then have to solve one of the two cases identified above. A systematic rotation of

the duplicated variants would also contribute to such a diagnosis.

After  passivation of  a failed hardware component,  the active variants  are  reconfigured so that the SECAs be distributed among the

remaining HECAs in order to form disjoint areas.

Figure 14 shows the distribution of active and idle variants among the three remaining HECAs after passivation of any of the HECAs of

the NVP/2/1 architecture. It is noteworthy that, in each case, the reconfiguration affects only a single HECA. The decision has to be modified

to a vote among the remaining variants and thus the degraded architecture is the same as the NVP/1/1 architecture. 
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Figure 14 - Various Activations of the Variants in the NVP/2/1 Architecture

3.5.4- The NVP/2/2 Architecture: An Example of Architecture Tolerating Two Solid Software Faults.

In order to illustrate the impact of the solid character of the software faults, on the design of architectures tolerating two
faults, we consider the case of the NVP method. The definition of such an architecture requires the provision of four disjoint
HECAs and SECAs, hence the NVP/2/2 architecture. 
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Although, this architecture appears as a direct extension of the NVP/1/1 architecture by addition of one HECA and one
associated SECA, major differences exists in the processing of the errors. The fault tolerance decision is now based on the
identification, among the results provided by the four variants, of a single set of agreeing results made up of two or more results.
Furthermore, after the first discrepancy among the results, the hardware component (and its associated variant) designated as
failed is made passive without any attempt to diagnose the fault as a hardware or software fault. The decision is then modified as
a vote among the remaining versions and the degraded architecture obtained is close to the NVP/1/1 architecture. However, the
same discarding action as the one described above would be carried out upon manifestation of a subsequent  fault.

Besides the tolerance to two consecutive independent software faults, this architecture allows a) to tolerate two simultaneous
independent faults, b) to detect related fault among two variants and c) to detect simultaneous faults in three or four variants.

The  Fault-Tolerant  Processor-Attached  Processor  (FTP-AP)  architecture  proposed  in  [Lal 88]  may  be  seen  as  an
implementation of this hardware-and-software fault-tolerant architecture. In the paper, a quad configuration of the core FTP
architecture is used as a support for the management of the execution of 4 diversified applications software that are run on 4
distinct application processors.

3.6- Summary of the fault tolerance properties of the architectures

The table of  figure 15 summarizes  the main fault  tolerance  properties  of  the architectures  introduced  in  the  preceding
paragraphs. Besides the generic notation identifying the software fault tolerance method, and the number of hardware faults and
independent) software faults tolerated, the table presents for each architecture, the number of hardware components and the
number of variants required. Also, when applicable, some properties in addition to nominal fault tolerance are listed. Finally, the
last field of the table of figure 8 gives the fault tolerance properties of the architecture that is obtained after tolerance of a
hardware fault, that is, when a HECA has been made passive.

3.7- Dependability Analysis of Hardware-and-Software Fault-Tolerant Architectures

The aim of this section is to show how, based on the results of section 2.1, a dependability analysis of hardware-and-software
fault-tolerant architectures can be conducted when adopting a Markov approach. Three architectures are considered that enable
to tolerate a single hardware or software fault: RB/1/1, NSCP/1/1 and NVP/1/1. 

3.7.1- Modeling Method and Assumptions

In order to model the behavior of the architectures the following is assumed:

• only one type of fault(s) can be activated at each execution and produce error(s), either hardware or software,

• after detection and recovery of an error, the variant is not discarded and at the next step it is supplied with the new
input data, i.e. faults are considered to be soft faults,

• constant failure rates are considered for the hardware components and the software-fault tolerant architectures.

Architecture
# of hardware # of

variants
Properties in addition to nominal fault

tolerance
Fault tolerance properties after a
HECA has been made passive

components Hardware faults Software faults Hardware Software

RB/1/1 2 2 Low error latency —
Detection  provided
by local diagnosis

Tolerance  of  one
independent fault

NSCP/1/1 4 4

Tolerance of 2 faults 
in hardware 
components of the 
same SECA

Detection of 3 or 4 

Tolerance of 2 
independent faults in
the same SECA

Detection of 2 
related faults in 
disjoint SECAs

Detection
Detection of 
independent faults
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faults in hardware 
components

Detection of 2, 3 or 4
independent faults

NSCP/1/1/m 4 3
Tolerance of 2 faults 
in hardware 
components of the 
same SECA

— Detection
Detection of 
independent faults

NVP1/1 3 3 Detection of 2 or 3 
faults

Detection of 2 or 3 
independent faults

Detection
Detection of 
independent faults

RB/2/1 3 2 Low error latency — Identical to RB/1/1

NSCP/2/1 6 3
Detection of 3 to 6 
faults in hardware 
components

Detection of 2 or 3 
independent faults

Identical to NSCP/1/1

NVP/2/1 4 3

Detection of 3 or 4 
faults in hardware 
components

Detection of 2 or 3 
independent faults Identical to NVP/1/1

Tolerance of combinations of single fault 
in hardware component and independent 
fault in non-duplicated variant

NVP/2/2 4 4
Detection of 3 or 4 
faults in hardware 
components

Detection of 2 
related faults

Tolerance of 2 
independent faults

Detection of 3 or 4 
independent faults

Identical to NVP/1/1
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Figure 15 - Synthesis of the properties of the hardware-and-software fault-tolerant architectures

Although the use of constant failure rates is quite common for hardware, the use of constant failure rates for the software-
fault tolerant architectures is justified by the results presented in [Arl 88], which can be summarized as follows:

• since a failed variant is not discarded but merely restarted at next execution, the state graphs of the failure behavior of
the considered fault-tolerant software components are strongly connected.

• as  a  consequence,  when constant  execution rates  are considered  for  the  various  activities  (activation,  variant(s)
execution and decision(s)) of the fault-tolerant software,  it  is possible to define equivalent constant failure rates
which  are  obtained  as  the  product  of  the  mean activation  rate  of  the  considered  fault-tolerant  software  by  the
probabilities of failure.
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3.7.2- Models

Architecture behavior can be modeled as indicated by figure 16-a,-b and -c for the RB/1/1, NSCP/1/1 and the NVP/1/1
architectures, respectively.

For the RB/1/1 architecture, hardware and software fault tolerance mechanisms are independent: a hardware failure does not
alter the software fault tolerance capabilities and vice versa. It is assumed that a near-perfect detection coverage can be achieved
for hardware faults since both HECAs run simultaneously the same variant, thus, the coverage considered here for the hardware-
fault tolerance mechanisms corresponds to a localization coverage due to a) the diagnosis program and b) the capacity of the
acceptance test to identify hardware failures.

In the case of the NSCP/1/1 architecture, hardware and software fault tolerance techniques are not independent since the
HECAs and the SECAs match. After the failure of a hardware component, the corresponding HECA (and hence, SECA) is
discarded; the remaining architecture is composed of a pair of hardware components and a two-version software architecture that
form a hardware- and software-fault self-checking architecture.

Detected NCSP Failure
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Failure
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Non Covered Hardware Comp. Failure 

Undetected RB Failure

or Detected RB Failure

 Non Covered Hardware Component Failure

Detected RB Failure
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1
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operational
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2

Undetected RB Failure 

3 Detected Failure3
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1 2

3 Detected Failure3
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Figure 16 - Architecture Behavior
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In the case of the NVP/1/1 architecture, again, hardware and software fault tolerance techniques are not independent: after a
hardware unit has been made passive, the remaining architecture is analogous to the degraded architecture of the NSCP/1/1
architecture.

For both NSCP/1/1 and NVP/1/1 architectures, the hardware faults are tolerated at the software layer through the decision
algorithm (comparison or vote); accordingly, the associated coverage will be accounted for at the software level only and thus
incorporated in the probability of activation of a fault in the decider. 

In the degraded architectures obtained from NSCP/1/1 and NVP/1/1 after failure of a hardware component, the software is
not any more fault tolerant and thus the failure rates of the variants are of significant importance in the failure rate of the
degraded configuration of the application software.

The transition rate from state i to state j is denoted Tij. The expressions of the inter-state transitions of figure 16 are given in the table

of figure 17. The notation is as follows:

• c is the hardware coverage factor of the RB/1/1 architecture, \O(c;
–
) = 1 - c,

• λH,X denotes the failure rate for a hardware component of the architecture X/1/1, X ∈ { RB, NSCP, NVP },

•  λS,D,X and  λS,U,X denote respectively the detected and undetected failure rates for the fault tolerant software X, X ∈ { RB,

NSCP, NVP }; if  γ denote the application software activation rate, then these failure rates can be expressed as functions of the

failure probabilities given in figure 9 (section 2.1.5) as:

λS,D,X = [ qS,D,X ] γ  and λS,U,X = [ qS,U,X ] γ (2)

• λS,D,2V and λS,U,2V denotes respectively the application software detected and undetected failure rates of the NSCP/1/1 and

NVP/1/1 architectures, after an HECA has been made passive; these rates are defined as:

λS,D,2V = [ qS,D,2V ] γ  and λS,U,2V = [ qS,U,2V ] γ (3)

where the detected and undetected failure probabilities of the degraded 2V configuration are defined by:

qS,D,2V = 2 qI,2V (1 - \F(qI,2V;2)) + qID,2V  and  qS,U,2V = qRVD,2V (4)

RB/1/1 NSCP/1/1 NVP/1/1

T12 2 c λH,RB 4 λH,NSCP 3 λH,NVP

T13  2  \O(c;
–
) λH,RB + λS,D,RB λS,D,NSCP λS,D,NVP

T14 λS,U,RB λS,U,NSCP λS,U,NVP
T23  c λH,RB + λS,D,RB 2 λH,NSCP + λS,D,2V 2 λH,NVP + λS,D,2V 

T24  \O(c;
–

) λH,RB + λS,U,RB λS,U,2V λS,U,2V

Figure 17 - Transitions and Associated Failure Rates

3.7.3- Model Processing

Processing models of figure 16, when accounting for the different transition rates of figure 17, enables one to derive the
expressions for the time-dependent  probabilities of detected failure and undetected failure of the considered hardware-and-
software fault-tolerant architectures:  QD,X(t) and QU,X(t),  respectively, X ∈ { RB, NSCP, NVP }. In practice,  two types of
probabilities are of interest:

• the reliability, RX(t) = QD,X(t) + QU,X(t),

• the probability of undetected failure, QU,X(t).
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For missions of short duration with respect to the mean times to failure, these expressions can be simplified to the following approximate

expressions:

RRB (t) ≈ 1 - (2  \O(c;
–
) λH,RB + λS,RB) t QU,RB(t) ≈  λS,U,RB t (5)

RNSCP (t) ≈  1 - λS,NSCP t QU,NSCP(t) ≈  λS,U,NSCP t (6)

RNVP (t) ≈  1 - λS,NVP t QU,NVP(t) ≈  λS,U,NVP t (7)

These expressions show that – as could be expected – the reliability of the RB/1/1 architecture is strongly dependent on the coverage of the

fault diagnosis in the hardware components. Furthermore, it is likely that the hardware component failure rate be greater for the RB/1/1

architecture than for the other ones,  due to the extra memory needed to store the second variant;  also further hardware and/or software

resources would be needed to perform the comparison among the results provided by each hardware processor ensuring thus a near-perfect

detection coverage and storage would be needed for the acceptance test and the diagnosis program.

The expressions also reveal an identical influence of the failure rate of the application software for the three architectures. However, this

has to be tempered by the differences between the associated probabilities identified in section 2.1.5.

CONCLUSION

The emergence of hardware-fault tolerant commercial systems will make more sensitive the influence of design faults on the service

delivered by computing systems to their users. As a foreseeable consequence, software fault tolerance is likely to spread out its currently

privileged domain, i.e. safety-related systems. The approaches and results presented in this paper are thus likely to be accordingly of a wider

field of application.
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