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Abstract

Background: Obtaining atomic-scale information about large-amplitude conformational transitions in proteins is a

changeling problem for both experimental and computational methods. Such information is, however, important

for understanding the mechanisms of interaction of many proteins. This paper presents a computationally efficient

approach, combining methods originating from robotics and computational biophysics, to model protein confor-

mational transitions. The capacity of normal mode analysis to predict directions of collective large-amplitude

motions is exploited to bias the conformational exploration performed by a motion planning algorithm. A coarse-

grained elastic network model built on short fragments of three residues is proposed to reduce the dimension of

the problem, and for the rapid computation of normal modes. The accurate reconstruction of the all-atom model

from the coarse-grained one is achieved using closed-form inverse kinematics.

Results: Tests on a set of ten proteins demonstrate the capacity of the method to model conformational transitions

of proteins within a few hours of computing time on a single processor. These results also show that the computing

time scales linearly with the protein size, independently of the protein topology. Further experiments on adenylate

kinase show that main features of the transition between the open and closed conformations of this protein are

well captured in the computed path.
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Conclusions: The proposed method enables the simulation of large-amplitude conformational transitions in proteins

using very few computational resources. The resulting paths are a first approximation that can directly provide

important information on the molecular mechanisms involved in the conformational transition. This approximation

can be subsequently refined and analyzed using state-of-the-art energy models and molecular modeling methods.

Keywords: Protein conformational transitions; elastic network models; normal mode analysis; motion plan-

ning algorithms; inverse kinematics.

Background

Studying conformational transitions in proteins is important for understanding their biological functions,

since such motions are generally related to their capacity to interact with other molecules. However, capturing

this type of dynamic information at the atomic scale is difficult using experimental techniques. Modeling

protein conformational transitions with conventional computational methods is also challenging since, in

many cases, these transitions are rare, slow events. Standard molecular dynamics (MD) simulations with

current computational resources cannot be applied in practice to model large-amplitude (slow time-scale)

conformational transitions. Such simulations require variants of MD methods that enhance sampling of

rare events or that bias the exploration in a given direction (e.g. [1–5]), or, alternatively, to have access to

outstanding computational power [6].

Modeling conformational transitions in proteins has motivated the development of specific methods,

computationally more efficient than MD simulations. Many of these methods (e.g. [7–9]) are based on

the deformation of an initial path toward the minimum energy path between the two given conformations.

Consequently, the performance of these methods is strongly conditioned by the quality of the initial path,

which can be difficult to obtain. Methods to model conformational transitions have also been developed

based on robot motion planning algorithms [10–13]. For the sake of efficiency, these methods usually deal

with simplified molecular models. Therefore, they are mainly aimed at providing qualitative information

about the conformational transition.

The main difficulty to be faced by all types of computational methods to model protein conformation

transitions is the high dimensionality of the space to be explored. In this regard, normal mode analysis

(NMA) [14] is an interesting tool for dimensionality reduction. Indeed, a reduced number of low-frequency

normal modes are a good indicator of the direction of large-amplitude conformational changes [15–18].

Several recent works exploit this property of NMA to enhance the performance of conformational exploration
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methods (e.g. [19, 20]).

This paper presents a variant of the method introduced in [19]. The method combines the rapidly-

exploring random tree (RRT) algorithm [21] and NMA to model protein conformational transitions. The

main novelty presented here concerns the introduction of a multi-scale model for the protein. A coarse-

grained model that considers a single particle per tripeptide is used to define an elastic network on which

NMA is performed. Motion directions provided by the normal modes are then applied to the all-atom model

for a finer conformational exploration. The introduction of this multi-scale model has important outcomes.

Using the coarse-grained model, the number of normal modes is significantly reduced, which greatly decreases

the time required to compute them. Besides, moving between the coarse-grained and the all-atom models

can be achieved accurately and efficiently using methods from robot kinematics [22], without the need of

artifacts such as the RTB approach (rotations-translations of blocks) [23].

Next section presents the overall method, and explains each of the elementary components: elastic

network normal mode analysis, tripeptide-based multi-scale protein modeling, and motion-planning-based

conformational exploration. Then, several types of results that validate the approach and show its good

computational performance are presented for a set of proteins with different sizes and topologies. A more

detailed analysis of results is presented for adenylate kinase. Finally, together with the conclusions, we

discuss possible directions for future work.

Methods

This section presents a new method to model protein conformation transitions. It builds on the combination

of three components. One of these components is NMA performed on a coarse-grained elastic network

model of the protein, which enables very fast computation of normal modes. Indeed, a single particle of the

elastic network is considered for each group of three consecutive amino-acid residues (i.e. one particle per

tripeptide). The all-atom model, which is used to accept or reject sampled states during the conformational

exploration, is accurately reconstructed from the coarse-grained one using closed-form inverse kinematics.

The overall algorithm to compute the conformational transition path proceeds iteratively. At each iteration,

the RRT algorithm is applied to explore linear combinations of normal modes computed from intermediate

conformations along the path. All these elementary components of the method are further explained below.
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Elastic Networks and Normal Mode Analysis

Every molecule has a set of natural vibration modes, called normal modes, that depends on its structure. Each

mode corresponds to a motion pattern, in which all atoms of the molecule move with the same frequency and

in phase, i.e. all passing through the equilibrium and maximum points at the same time. It has been shown

that low-frequency normal modes correspond to collective atomic motions (or domain motions), whereas

high-frequency normal modes correspond to local fluctuations [16,24].

Normal modes can be calculated by diagonalizing the Hessian matrix of the potential energy of the

molecule. For reducing the computational cost of this operation, several works propose to use simplified

potentials and coarse-grained models. An extensively used simplified potential is based on the elastic network

model (ENM) [25], which represents the molecule as a set of particles connected by virtual springs. All the

protein atoms can be considered as particles in this model. However, a coarse-grained representation is

usually applied by considering Cα atoms only, i.e. a single particle per amino-acid residue [16,17]. Moreover,

particles are connected by virtual springs only if the distance between them is less than a user-defined cut-off

distance dcut. The potential energy function of such an elastic network takes the following form:

E =
∑

d0
ij
<dcut

C

2
(dij − d0ij)2

where dij is the distance between particle i and particle j, d0ij is the distance between the two particles at

the equilibrium state and C is the elastic constant. This type of simplified potential has been used in many

works and for very different applications [26–29].

Here, we investigate a further simplification of the ENM. Instead of using Cα atoms, we build the

ENM using a simplified representation based on tripeptides. Figure 1 illustrates the approach. Note that

coarse-grained NMA approaches considering more than one residue per particle have been proposed [23,30,

31]. However, these approaches, which are mainly devised to analyze conformational changes of very large

systems made of protein assemblies, consider rigid-body motions of groups of residues. In contrast, the

approach presented here preserves full flexibility of the protein, which leads to a more accurate modeling of

conformational transitions.

It has been shown that using a simplified ENM does not necessarily lead to a loss of accuracy in the

prediction of motion directions [17, 23]. However, it certainly leads to a reduction in computing time. Note

that using tripeptides instead of Cα atoms reduces the size of the Hessian matrix by a factor of 3, which

significantly reduces the computing time required for diagonalization. This issue is discussed in more details

in the results section.
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The anisotropic network model (ANM) approach, as described in [24, 32], is adopted in this work to

construct the Hessian matrix from the positions of the particles of the tripeptide-based model. Each 3 × 3

sub-matrix corresponding to the interaction between two particles is computed as follows:

Hij = − C

d2ij

(xj − xi)(xj − xi) (xj − xi)(yj − yi) (xj − xi)(zj − zi)
(yj − yi)(xj − xi) (yj − yi)(yj − yi) (yj − yi)(zj − zi)
(zj − zi)(xj − xi) (zj − zi)(yj − yi) (zj − zi)(zj − zi)


Hii = −

∑
j|j 6=i

Hij

If the distance between particles i and j is more than the cut-off distance dcut, then the whole 3× 3 matrix

is replaced by zeros. The Hessian matrix is then diagonalized to compute the eigenvalues and eigenvectors.

Each eigenvalue and eigenvector pair corresponds to one normal mode, where the eigenvalue defines the

mode frequency and the eigenvector defines the motion direction for each particle in the elastic network.

Multi-Scale Model

Tripeptide-based Model

The multi-scale modeling approach applied in this work is based on a decomposition of the protein chain

into fragments of three amino acid residues, which we refer to as tripeptides. The reason for choosing such a

subdivision is that the backbone of a tripeptide involves 6 degrees of freedom (three pairs of angles φ, ψ)1,

and thus, an analogy can be made with a 6R mechanism like a robotic manipulator [22]. Reference frames

attached to the N atom in the backbone of the first residue and to the C atom in the last residue define

respectively the base-frame and the end-frame of the 6R mechanism. Since tripeptides are linked through

rigid peptide bonds, the location of the end-frame of tripeptide i can be determined from the base-frame

of tripeptide i + 1 by a constant transformation. Given the location of the base-frame and the end-frame,

the conformation of a tripeptide backbone can be determined by inverse kinematics. Consequently, the

conformation of the whole protein backbone can be determined from the pose of a single reference frame

attached to each tripeptide2. In the following, we will refer to these reference frames as (oriented) particles.

They are the particles in the coarse-grained ENM. Further explanations on this tripeptide-based modeling

approach can be found in [33], where the model is used for the implementation of move classes within Monte

Carlo methods.

1Bond lengths and bond angles, as well as peptide bond torsions are considered to have constant values.
2The affirmation is true for all the protein backbone except two short fragments at the N-terminal and C-terminal ends of

the chain, which require a particular treatment.
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Reconstructing the All-Atom Model

The interest of the decomposition of the protein into tripeptides explained above is that closed-form inverse

kinematics (IK) can be applied to reconstruct the protein backbone conformation from the coordinates of the

particles. The IK solver applied in this work has been adapted from the method developed by Renaud [34].

This solver is based on algebraic elimination theory, and develops an ad-hoc resultant formulation inspired

by the work of Lie and Liang [35]. Starting from a system of equations representing the IK problem, the

elimination procedure leads to an 8-by-8 quadratic polynomial matrix in one variable. The problem can then

be treated as a generalized eigenvalue problem, as proposed in [36], for which efficient and robust methods

such as the Schur factorization can be applied. Note however that our approach is not dependent on this

solver, so that other IK methods (e.g. [36, 37]) could be applied.

In general, the IK problem for a 6R serial kinematic chain has a finite number of solutions (up to 16 in

the most general case). All the solutions correspond to geometrically valid conformations of the tripeptide

backbone with fixed ends defined by the pose of the particles. However, when the goal is to simulate

continuous motions, the closest conformation to the previous one (i.e. the one before a perturbation applied

to the particles) has to be selected in order to avoid jumps in the conformational space. If none of the

solutions remains within a distance threshold that depends on the perturbation step-size, the IK problem is

considered to have no solution.

The explanations above concern only the reconstruction of the all-atom model of the protein backbone

from the coarse-grained tripeptide-based model. Side-chains are treated separately, using a simple method

based on energy minimization as explained below.

Path Finding Algorithm

The proposed method works by iteratively creating short portions of the conformational transition path

between two given conformations of a protein, which we will refer to as qinit and qgoal. The steps of the

algorithm are summarized in Algorithm 1. At each iteration, the normal modes of a root conformation qroot

are computed (qroot for the first iteration is qinit). These normal modes are then used to bias a short RRT

exploration, which is run until the protein moves a predefined distance toward the target conformation qgoal.

Further details on the conformational exploration performed by the RRT algorithm are given below. The

closest node in the tree qclose to qgoal is then identified, and the path between qroot and qclose is extracted and

saved. All the conformations in this path are guaranteed to have a collision-free backbone3, which generally

3Cβ atoms are considered to be part of the backbone.
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Algorithm 1: Compute Pathway

input : Initial conformation qinit, final conformation qgoal and minimum distance to target dtarget

output : The transition pathway p

begin
qroot ← qinit;
while RMSD(qroot, qgoal) > dtarget do

a ← Compute NormalModes(qroot);
t ← Build RRT(a, qroot, qgoal);
qclose ← ClosestToTarget(t, qgoal);
qroot ← Minimize(qclose);
p ← Concatenate(p, qroot);

end

Algorithm 2: Build RRT

input : Initial conformation qroot, final conformation qgoal

output : The tree t

begin
t ← InitTree(qroot);
while not StopCondition(t, qgoal) do

qrand ← Sample(t);
qnear ← BestNeighbor(t, qrand);
qnew ← ExpandTree(qnear, qrand);
if IsValid(qnew) then

AddNewNode(t, qnew);
AddNewEdge(t, qnear, qnew);

end

implies getting acceptable energy values after a short minimization to rearrange side-chain conformations.

Such an energy minimization procedure is performed on qclose, which will be the root conformation in the

next iteration. The algorithm keeps iterating until a predefined distance dtarget from qgoal is reached. The

resulting path is defined by the sequence of minimized conformations qclose at each iteration. If a finer

grained path is required, other intermediate conformation can be extracted from the sub-paths computed at

each iteration. These conformations may require energy minimization to rearrange side-chains, as it is done

for qclose.

Implementation Details

The RRT algorithm iteratively applied in Algorithm 1 performs the same steps as the basic RRT [21]. The

steps are sketched in Algorithm 2. At each iteration, a conformation qrand is randomly sampled. Note that
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qrand is not required to be a feasible conformation. Then, the tree is searched for a conformation qnear, which

is the closest conformation to qrand. A new conformation, qnew, is generated by moving a predefined short

distance from qnear towards qrand. The new conformation is added to the tree if it does not violate feasibility

constraints, which in the present work are limited to geometric constrains related to no atom overlapping

and no bond breaking. The difference with respect to the basic RRT algorithm concerns the implementation

of the methods for sampling conformations, searching the nearest neighbor, and expanding the tree, which

are specific to the particular settings: the use of the multi-scale model of the protein, and the application of

NMA to bias the exploration. The particularities of these three methods are explained next.

Sampling Random Conformations

The idea is to generate a random sample qrand that allows the RRT to explore the conformational space using

information given by the normal modes. This operation is performed on the coarse-grained model, thus using

the set of particles. Hence, qrand is not an all-atom conformation, but an array of particle positions. These

positions are generated by moving the particles from qroot in the directions given by a linear combination of

normal modes with randomly sampled weights. More precisely:

- A sequence of 3n random weights wj are sampled in the range [-1, 1], where n is the number of particles,

being 3n the number of normal modes4.

- The new positions of the n particles are computed by a linear combination of all the randomly weighted

modes as follows:

qrand = qroot +
3n∑

f ∗ wj ∗ aj

where aj refers to each normal mode, and f is an amplification factor used to push the sampled

conformation away from qroot (this factor is the same for all the normal modes). Note that since the

normal modes are not normalized, low frequency modes have larger norm. Thus, they contribute more

significantly in the sum.

Finding Nearest Neighbors

Nearest neighbor search is also performed using the coarse-grained model. Indeed, the computed distance

is the root mean squared deviation (RMSD) of the particle positions. An additional bias is used in our

4Actually, the number of normal modes is 3n− 6, since 6 degrees of freedom correspond to rigid-body motions of the whole
set of particles.
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implementation to pull the exploration towards the target conformation. The biased distance is computed

as follows:

d(q, qrand) = RMSD(q, qrand)
RMSD(q, qgoal)

RMSD(qinit, qgoal)
.

In this work, we have implemented a simple brute-force algorithm to find qnear. However, more sophis-

ticated nearest neighbor search algorithms based on space partitioning techniques (e.g. [38]) could be used

to reduce the number of performed distance computations.

Generating New Conformations

In order to generate qnew, all particle positions in qnear are linearly interpolated towards qrand with a

predefined distance k. Given these new particle positions, the all-atom model corresponding to qnew is

generated using IK. We apply an iterative process that solves IK for every tripeptide ti using the new

positions of particles pi and pi+1. If no IK solution is found for a tripeptide or if the solution found involves

atom collisions, the pose of particle pi+1 is slightly perturbed for a new trial. Note that, in addition to the

particle position, a small perturbation is also applied to the orientation, since the problem can be due to

restraints caused by the current orientations of the particles. This process is repeated until a collision-free

IK solution is found or a maximum number of trials is reached. If this process fails to find a collision-free

IK solution for any tripeptide, failure is reported and the RRT algorithm goes back to the random sampling

step.

After generating IK solutions for all the tripeptides, the only remaining parts of the protein backbone

to be addressed are the two terminal fragments. The pose of these fragments is adjusted such that they are

in accordance with the new poses of the first and last particles respectively. Random perturbations can be

applied to the two end fragments in order to remove possible collisions.

The generated conformation qnew is guaranteed to satisfy hard geometric constraints since, as mentioned

before, every generated tripeptide conformation is checked for collisions. However, in order to speed-up

computations, side-chains are excluded in this test (only Cβ atoms are considered). This is because side-

chains are known to be very flexible, and resolving possible collisions along the paths can be done in a

post-processing stage. Hence, any side-chain collision is assumed to be resolved during the minimization

step at the end of each short RRT execution, as mentioned above.
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Results and Discussion

This section discusses several experiments aimed to validate the proposed method and to evaluate its per-

formance. First, the question concerning the accuracy of the tripeptide-based elastic network model is

addressed. Then, results are presented on conformational transitions computed for a set of ten proteins with

different sizes and topologies. Finally, further results on adenylate kinase are presented and compared to

available data on the transition between the open and closed forms of this protein.

Validating the Coarse-Grained ENM

Previous works (e.g. [16,17]) have shown that simple ENMs built using Cα atoms perform as well as ENMs

built using the all-atom model when studying the dynamic properties of proteins with NMA. Here, we

compare the performance of the proposed tripeptide-based model with the Cα-based model for predicting

directions of conformational transitions. A set of seven proteins listed in Table 1 was used for this comparison.

These proteins were also used in related work [17] for the validation of the Cα-based ENM.

For evaluating the capability of normal modes to predict directions of conformations transitions, we use

the notion of overlap as proposed in related work [17]. The overlap Ij between a normal mode j and an

experimentally observed conformational change between two conformations (open and closed) qo and qc is

defined as a measure of similarity between the conformational change and the direction given by the normal

mode j. It can be computed as follows:

Ij =

∣∣∣∣∣
3n∑

aij∆qi

∣∣∣∣∣[
3n∑

a2ij

3n∑
∆q2i

]1/2
where ∆qi = qoi − qci measures the difference between the particle coordinates in conformations qo and qc,

aij corresponds to the ith coordinate of the normal mode j, and n is the number of particles. A value

of 1 for the overlap means that the direction given by the normal mode matches exactly the conformational

change, whereas a value around 0.2 or less means that the normal mode is unable to provide any meaningful

prediction.

Before conducting the comparative analysis, we need to determine an optimal cutoff distance for the

tripeptide-based ENM. A good cutoff distance should create an elastic network that correctly captures

the topology of the protein. For Cα-based models, 8 Å is generally used, since this cutoff distance has

been empirically shown to provide the best results in most cases. It can be intuitively inferred that the
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same cutoff distance may not be the optimal choice in our case, because distances between particles of the

tripeptide-based model are larger than distances between Cα atoms. To determine the optimal value, we

have measured and compared overlap values for the seven proteins with cutoff distances between 8 and 34 Å.

Figure 2 shows the average overlap value achieved for each cutoff distance over the seven proteins. The

overlap value considered for each protein is the best one found among the overlap values of all the normal

modes. As can be clearly seen in the figure, the highest averages are for cutoff distances of 15, 16 and

17 Å. This is coherent with the optimal distance of 8 Å suggested for Cα-based models because, although

tripeptides involve three consecutive Cα atoms, they usually adopt conformations that are not fully extended.

This means that the optimal cutoff distance for the tripeptide-based model is expected to be less than three

times the optimal cutoff used for the Cα-based model. The tripeptide-based ENMs for four of the proteins

in Table 1, using a cutoff distance of 16 Å, are represented in Figure 3. The figure shows that the main

typological features of the proteins appear in the coarse-grained model.

Table 2 shows overlap values using a cutoff distance of 16 Å , and compares them to the values presented

in [17] for the Cα-based ENM using a cutoff distance of 8 Å. In the table, columns labeled “Open” correspond

to the case of moving from the open to the closed conformation and columns labeled “Closed” are for the

opposite case. It is clear that both ENMs provide comparable overlap values, which means that our simplified

ENM is also able to capture the topological information necessary for computing normal modes that correctly

predict motion directions. Note that the overlap values can even be better if the best cutoff distance for

each protein is used instead of always using 16 Å.

Importantly, such a similar performance in terms of overlap is obtained with a significant reduction of

the computational cost. Since the computational complexity of the Hessian matrix diagonalization is O(n3),

the reduction of n by a factor 3 provides a theoretical gain of more than one order of magnitude. We have

confirmed this theoretical gain with some experiments that show that the time required to compute the

normal modes with our coarse-gained model ranges from 0.05 seconds to 0.9 seconds, while using the Cα

model may require up to several minutes (detailed results are not presented here).

Finding Conformational Transitions

Experimental Setup

We have applied the proposed method to compute conformational transition pathways for the ten proteins

listed in Table 3, and represented in Figure 4. For each protein, at least two experimental structures

corresponding to different conformations are available in the Protein Data Bank (PDB) [39]. The difference
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between these conformations involves large-amplitude domain motions. The ten proteins are varied in size

and topology, as well as in the type of domain motions they undergo. This variability presents a challenge

for the method, and makes the achieved results indicative of its performance and its scalability.

As mentioned in the previous section, each iteration of the method performs a short RRT exploration.

In the current implementation, each RRT exploration runs until the protein has moved 0.3 Å Cα-RMSD

towards the goal. This distance is gradually reduced to 0.15 Å as the distance to the goal becomes smaller.

The reason is that the speed of convergence tends to decrease when approaching the target conformation,

and recomputing normal modes more frequently provides better results in this situation. The exploration

is stopped after a certain number of iterations (4000 in our case) if the distance stopping condition is not

satisfied first. This additional stopping condition is introduced to prevent too long runs of RRT when it is

unable to move the required distance towards the goal.

Once the RRT exploration stops, the closest conformation to the goal is identified and submitted to an

energy minimization procedure aimed at generating better side-chain conformations. We have used in our

experiments the AMBER software package [40] for energy minimization.

Results

Table 4 summarizes the results achieved by the proposed method for the set of ten proteins. In this table,

Cα-RMSDend is the distance between the goal conformation and the closest conformation found by our

method. The table also shows the total computing time and the partial time required by RRT. Timetotal

includes TimeRRT plus the time needed for computing the normal modes and running minimizations at each

iteration. Finally, the number of iterations indicated in this table refers to the number of times normal

modes have been computed. In all of the simulations, the RRT exploration takes more than 90% of the

total time spent by the method. Note that simulations were run on a single core of an AMD Opteron 148

processor at 2.6 GHz.

Our method was able to model the conformational transition in all cases, reaching conformations very

close to the given goal conformations. Figure 5 shows superimposed structures5 of open and closed forms of

the proteins (qinit and qgoal), and of the closed form and the last conformation of the computed transition

path (qgoal and qfinal). The distances between the final and goal conformations are below 2 Å (measured

using Cα-RMSD) for all the tested proteins with the exception of DDT and GroEL. Note that 2 Å RMSD

corresponds to the current resolution of accurate experimental methods for protein structure determination.

5Structure superimpositions and images have been done using PyMOL [41].
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Even for the two proteins presenting worst results, DDT and GroEL, the superimpositions of the final and

goal conformations shown in Figure 5 display their high similarity. Note that the method could have reached

closer conformations to the goal, however, the strategy in our simulations was to stop when the distance to

the goal reached a very slow convergence rate.

We have analyzed the relationship between the size of the protein and the computing time required by

our method to model the conformational transition. Since the lengths of the transition paths are different for

the different proteins, we have measured the time required to move 1Å along these paths. Results presented

in Table 5 and Figure 6 show a linear scalability, which is an interesting property. Note that the topology

of the protein seems to have no or little influence on the performance of the method. This is an important

advantage with respect to the method presented in [19], which showed some difficulties when dealing with

relative motions of domains connected through several linkers due to the internal-coordinate representation

used to model proteins.

Finally, Table 6 shows the percentage of the time spent by our method performing some of the most time-

consuming steps of the RRT exploration. Values are provided for nearest neighbor search (NN), collision

checking (CC), inverse kinematics (IK) and random sampling (RS). An interesting observation in this table is

that nearest neighbor search consumes around 60% of the computing time. This is mainly due to the brute-

force nearest neighbor algorithm used in our implementation. As mentioned before, more sophisticated

nearest neighbor algorithms can be used to overcome this performance bottleneck. The computational

performance could also be improved by using simplified distance metrics that save computing time while

preserving the quality of the exploration (e.g. [42, 43]).

A Closer Look at Adenylate Kinase

Adenylate kinase (ADK) [44] is a widely studied signal transduction protein. Its structure is divided into

three main domains known as: LID, CORE and NMPbind. Several works (e.g. [45,46]) suggest that the LID

and NMPbind domains undergo clear conformational changes, whereas the CORE domain remains almost

unchanged. It has also been suggested that the transition between open and closed conformations of the

protein goes through a two-step process where the NMPbind domain moves less clearly than the LID domain

at the beginning, and then moves at a faster pace as the transition approaches its end [46].

Figure 7 shows the open and closed conformations of ADK (corresponding to PDB IDs 4AKE and 1AKE,

respectively) along with several intermediate conformations generated by our method. As expected, the LID

and NMPbind domains change significantly compared to the CORE domain. Figure 8 shows the displacement
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of the residues along the conformational transition, where darker regions represent larger displacements.

Regions around residues 20-60 and 130-160, which approximately correspond to the NMPbind and LID

domains respectively, are clearly highlighted. It is also clear in the plot that residues of the NMPbind

domain start moving with more significance near the end of the conformational transition, whereas residues

in the LID domain start at an earlier stage, which reflects the two-step nature of the transition discussed

earlier. These results show that the path generated by our method is in agreement with previous results,

including those presented in our previous work [19].

We have also compared intermediate conformations in the computed transition path of the ADK to a small

number of other experimentally solved structures of this protein. These structures correspond to homolog

proteins or mutants with very high sequence identity, and some of them are known to be intermediate

structures between open and closed forms of the protein. Interestingly, four of these structures are very close

to conformations along the transition path. Table 7 shows the distance between each of these structures and

the closest conformation in the transition path. The table also shows the position of the this conformation

in the path. More precisely, the table shows the corresponding iteration number and the percentage of the

path length. 2RH5 (A) is very close to the conformation generated by the first iteration, whereas 1E4Y (A)

is close to the conformation generated by iteration 27 (near the closed structure). 1DVR (A) is also very

close to a conformation toward the beginning of the path (near the open structure), whereas 2RH5 (B) is

a slightly less open structure. These results are comparable to those provided by previous studies [12, 47],

which further validates the proposed method.

Conclusions

This paper has presented an efficient method for computing large-amplitude motions in proteins. The

proposed method makes use of both the ability of normal modes to locally predict motion directions and

the efficiency of the RRT algorithm to explore large spaces. Using normal modes alone would require

performing a large number of iterations, and RRT alone would waste time in exploring irrelevant parts of

the conformational space. Hence, combining the two methods allows overcoming the drawbacks of each

one separately. The proposed approach also relies on the tripeptide-based representation of the protein,

which reduces the number of computed modes and provides an accurate method for switching between the

coarse-grained model and the all-atom model.

Performed experiments show that computing normal modes of a protein using the coarse-grained

tripeptide-based model instead of the Cα atoms to define an ENM does not lead to a degradation in the
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ability to predict motion directions, while the computing time is significantly reduced. Results also show

that the proposed method is able to model large-amplitude conformational transitions in proteins of differ-

ent sizes and topologies, and that computing time scales linearly with the number of residues. Using an

unoptimized implementation, computing time ranges from a few hours in small proteins to a few days in

large ones. This time could be significantly reduced by the implementation of more sophisticated methods

to perform the most costly operations within the RRT algorithm.

An interesting extension that could be implemented to improve the computational performance of our

method is the use of a bi-directional RRT [21], which constructs two trees rooted at the initial and goal

conformations respectively. In additions, a parallelized version of RRT could also provide a significant

performance gain [48]. Finally, using T-RRT [49] instead of RRT could also be an interesting direction for

future work. In this case, the aim will not be to improve the performance in terms of computing time, but

in terms if path quality. Indeed, paths computed with T-RRT should follow more accurately the valleys of

the conformational energy landscape [50].

In this work, we have demonstrated the capacity of the proposed method to compute transition paths

between two given conformations of a protein. However, the approach could also be applied to a more chal-

lenging problem: the prediction of other (meta-)stable states reachable from a given protein conformation.

This more challenging problem would require some extensions, mainly in the definition of scoring functions

to identify interesting intermediate and meta-stable states during the conformational exploration.

List of abbreviations

MD: molecular dynamics; NMA: normal mode analysis; RRT: rapidly-exploring random tree; RTB: rotations-

translations of blocks; ENM: elastic network model; ANM: anisotropic network model; IK: inverse kinematics;

RMSD: root mean squared deviation; PDB: Protein Data Bank.
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Figures

Figure 1 - Illustration of the different models on the ADK protein:

(a) Representation of the all-atom model, (b) the particles of the coarse-grained tripeptide-based model,

(c) representation of the elastic network model.

19



0.2 

0.3 

0.3 

0.4 

0.4 

0.5 

0.5 

0.6 

!" #$" #%" #&" #'" #!" %$" %%" %&" %'" %!" ($" (%"

O
ve

rla
p 

Cut-Off Distance 

Figure 2 - Average overlap over the seven proteins of Table 1

Lines are drawn between the 25th and the 75th percentiles of the overlap values. Average overlap values are

indicated with dots.
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Figure 3 - Tripeptide-based elastic network models

Representation of the all-atom models and the tripeptide-based ENMs for four different proteins.
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Figure 4 - The ten proteins used in the experiments

Representation of open and closed forms of these proteins available in the PDB (IDs are provided in Table 3).
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Figure 5 - Superimposed structures and final conformations of the computed transition path

For each protein, the left image shows the open form (in red) and the closed form (in black), and the right

image shows the closed form (in black) and the final conformations of the computed path (in red).
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Figure 6 - Plot of the results in Table 5

The plot shows a linear relationship between the size of the protein and the time required to compute the

conformational transition path.
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Figure 7 - Different conformations of ADK along the studied conformational transition

The LID domain is shown in blue and the NMPbind domain is shown in red. Images (a) and (f) represent

the start and goal conformations respectively. Images (b) to (e) show intermediate conformations generated

by our method.
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Figure 8 - Displacement of the residues along the conformational transition

The plot shows, using a gray-scale, the displacement of each residue at each iteration relative to the previous

iterations. Darker regions represent larger displacements.
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Tables

Table 1 - Proteins used in the overlap experiments

Protein Residues PDBopen PDBclosed
Che Y Protein 128 3chy 1chn
LAO binding Protein 238 2lao 1laf
Triglyceride Lipase 256 3tgl 4tgl
Thymidulate Synthase 264 3tms 2tsc
Maltodextrine Binding Protein 370 1omp 1anf
Enolase 436 3enl 7enl
Diphtheria Toxin 523 1ddt 1mdt

Table 2 - Comparison between overlap values for Cα-based ENMs and tripeptide-based ENMs

Protein
Cα Overlap Tripeptides Overlap

Open Close Open Close
Che Y Protein 0.32 0.34 0.52 0.34
LAO binding Protein 0.84 0.40 0.53 0.52
Triglyceride Lipase 0.30 0.17 0.26 0.35
Thymidulate Synthase 0.56 0.40 0.49 0.29
Maltodextrine Binding Protein 0.86 0.77 0.90 0.84
Enolase 0.33 0.30 0.40 0.30
Diphtheria Toxin 0.58 0.37 0.48 0.30
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Table 3 - Proteins used in the experiments

Protein Residues PDB IDinit PDB IDgoal Cα RMSD

ADK 214 4ake 1ake 6.51

LAO 238 2lao 1laf 3.73

DAP 320 1dap 3dap 3.78

NS3 436 3kqk 3kql 2.75

DDT 535 1ddt 1mdt 10.96

GroEL 547 1aon 1oel 10.49

ATP 573 1m8p 1i2d 3.78

BKA 691 1cb6 1bka 4.75

UKL 876 1ukl 1qgk 6.17

HKC 917 1hkc 1hkb 3.00

Table 4 - Performance of the method on ten proteins (cf. Table 3)

Protein Cα-RMSDend Iterations TimeRRT Timetotal

ADK 1.56 31 1.82 2.00

LAO 1.32 20 1.52 1.65

DAP 1.31 16 1.78 1.92

NS3 1.29 14 2.82 3.00

DDT 2.88 272 81.54 86.4

GroEL 2.79 142 40.21 42.17

ATP 1.45 30 13.46 14.16

BKA 1.96 74 29.56 31.09

UKL 1.99 80 80.61 82.62

HKC 1.64 38 37.91 39.63
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Table 5 - Relationship between the size of the protein and the computing time

Protein Residues Time (hours)

ADK 214 0.4

LAO 238 0.68

DAP 320 0.79

NS3 436 2.11

DDT 535 10.72

GroEL 547 5.84

ATP 573 6.74

BKA 691 11.17

UKL 876 19.96

HKC 917 28.93

Table 6 - Percentage of the time spent performing the main RRT operations

Protein NN CC IK RS

ADK 57.2% 14.1% 15.0% 6.3%

LAO 51.3% 20.9% 17.0% 5.4%

DAP 50.5% 20.6% 11.0% 12.3%

NS3 67.9% 13.4% 6.6% 8.9%

DDT 64.3% 17.1% 6.9% 9.0%

GroEL 60.4% 17.6% 8.9% 9.8%

ATP 57.3% 20.9% 6.8% 11.9%

BKA 55.1% 16.8% 6.1% 19.3%

UKL 62.9% 15.5% 4.1% 15.5%

HKC 68.9% 5.8% 3.3% 18.2%

Average 59.58% 16.27% 8.57% 11.66%
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Table 7 - Known intermediate structures and their distances to the closest conformation in the computed
transition path.

PDB ID RMSD Iteration Path percent

1DVR (A) 1.48 2 9%

2RH5 (A) 1.80 1 4%

2RH5 (B) 1.91 3 15%

1E4Y (A) 2.20 27 94%

Additional Files

adk.mov — Movie of a conformational transition path for AKD

This movie has been generated with QuickTime and saved in the native file format .mov. It can be viewed

using other video players.

OTHER VIDEOS ....
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