Fran Cois F Elix Ingrand

Michael P George
email: george@aaii.oz.au

Managing Deliberation and Reasoning in Real-Time AI Systems

This paper describes some recent research 1 on architectures for situated (embedded) systems that need to deliberate and reason in real time. One of the most di cult problems in the design of such a r c hitectures is how to manage the reasoning performed by such a system while still meeting the real-time constraints of the problem domain. We present a n a r c hitecture, based on the Procedural Reasoning System (PRS), that provides mechanisms for the management and control of deliberation and reasoning in real-time domains. In particular, we s h o w h o w deliberation and reasoning strategies can be represented in the form of metalevel plans, and describe an interpreter that selects and executes these in a way that retains bounded reaction time. In addition, this approach a l l o ws us to represent di erent t ypes of situated systems by v arying the metalevel deliberation strategies. Finally, w e provide some statistical measures of performance for one such t ype of situated system applied to a complex real-time application.

Introduction

The design of reasoning and planning systems that are situated (embedded) in real-time, dynamic environments has recently been the focus of expanded research e orts in arti cial intelligence. A critical issue is to identify the architectural features that would enable such systems to exhibit rational behavior in these domains. In this paper, we describe a uniform architecture that we believe addresses many of the di cult problems in this area.

Computer systems, like h uman beings, have resource limitations: they have only partial knowledge of their environment and bounded computational (or reasoning) capabilities. When the systems are situated in dynamic environments, these limitations become important, because the environment m a y c hange in signi cant w ays while a system attempts to gather more information or to reason about what actions to pursue, given the information it already has. If the system (or agent) does not act in a timely manner, it may not be able to recover from a deteriorating situation or may miss positive opportunities.

This paper has appeared in the Proceedings of the 1990 DARPA W orkshop on Innovative Approaches to Planning, San Diego, CA 1 This research is supported by the National Aeronautics and Space Administration, Ames Research C e n ter, under Contract No. NAS2-12521.

One way to cope with stringent time constraints is to determine ahead of time how the system should act in every possible situation Kaelbling, 1987 Rosenschein and[START_REF] Rosenschein | [END_REF]]. H o wever, in domains requiring complex responses to di erent patterns of events, it is unlikely that such precompilation of plans of action will be practically possible. In such cases, the system must be able to reason about what courses of action to pursue as it observes the changing environment and performs its various tasks.

In particular, at any g i v en time, the system will have t o decide what tasks are important enough to initiate or continue, choose among the various means for accomplishing each task, and determine how to order the chosen tasks for execution. In some cases, these decisions may be relatively simple and straightforward. But in other cases they may i n volve consideration of the likelihood of success of the task, the utility of performing the task, the resources required, the task's expected execution time, the availability and reliability of information upon which t h e performance of the task depends, the task's dependence on other tasks that are also to be performed, etc.

Moreover, these deliberative tasks themselves are subject to the same constraints on time and information as any other task the system is performing. Thus, the agent will need to decide when and how to seek more information, when and how to deliberate, and when to simply go ahead and act on the basis of whatever reasoning and deliberation it has already performed using whatever information it has at the time. And these deliberations, in turn, need to be reasoned and deliberated about.

An important question, then, is to determine how o n e can design a situated system that provides for the execution and management of such deliberative processes, yet meets the real-time demands and information constraints of its environment. In this paper, we describe how one such a r c hitecture, the Procedural Reasoning System (PRS), provides the mechanisms for handling this problem.

An Architecture for Situated Deliberation

The architecture of a PRS module or agent consists of (1) a database containing the system's current beliefs about the world (2) a set of current goals (3) a library of plans, called Knowledge Areas (KAs), which describe particular sequences of actions and tests that may be performed to achieve given goals or to react to certain situations and (4) an intention structure, consisting of a partially] ordered set of all those plans chosen for execution. An interpreter or inference mechanism manipulates these components, selecting an appropriate plan (KA) based on system beliefs and goals, placing those selected KAs on the intention structure, and nally executing them. PRS interacts with its environment both through its database, which acquires new beliefs in response to changes in the environment, and through the actions that it performs as it carries out its intentions. Di erent i nstances of PRS, running asynchronously, can be used in an application that requires the cooperation of more than one subsystem.

The PRS interpreter runs the entire system. From a conceptual standpoint, it operates in a relatively simple way. A t a n y particular time, certain goals are established and certain events occur that alter the beliefs held in the system database. These changes in the system's goals and beliefs trigger (invoke) various KAs. One or more of these applicable KAs will then be chosen and placed on the intention structure. Finally, PRS selects a task (intention) from the root of the intention structure and executes one step of that task. This will result in either the performance of a primitive action, the establishment of a new subgoal, or the conclusion of some new belief.

At this point t h e i n terpreter cycle begins again: the newly established goals and beliefs trigger new KAs, one or more of these are selected and placed on the intention structure, and again an intention is selected from that structure and partially executed.

PRS has several features that make it particularly powerful as a situated reasoning system, including: (1) the semantics of its plan (procedure) representation (2) its ability to construct and act upon partial (rather than complete) plans (3) its ability to pursue goal-directed tasks while at the same time being responsive t o c hanging patterns of events in bounded time (4) its facilities for managing multiple tasks in real-time (5) its default mechanisms for handling stringent real-time demands of its environment and (6) its metalevel (or re ective) reasoning capabilities. Some of these features have been discussed in earlier reports and papers [START_REF] George | [END_REF]George and Ingrand, 1990aGeorge and Ingrand, 1990b[START_REF] George | [END_REF][START_REF] Rao | [END_REF]. In this paper, we consider in more detail the way the system architecture supports deliberative reasoning and provide some statistics on the system's real-time performance capabilities.

Making Decisions in Real Time

At each i n terpreter cycle, the changing beliefs and goals of PRS trigger certain KAs (plans) which, upon execution, either perform certain primitive actions or modify the internal state (the beliefs, goals, and intentions) of the system. At this level of abstraction, PRS acts like a situated automaton [START_REF] Rosenschein | [END_REF]].

However, one of the most critical aspects of the PRS architecture is the way in which its beliefs, goals, and intentions evolve a n d c hange over time. It is here that a n umber of strong commitments in the design of PRS have been made and these, we believe, are crucial to its successful performance as a situated, real-time system.

Given that the system needs to be able to deliberate in various ways and at various times, one of the most dicult problems to overcome is how to reduce the amount o f potential deliberation that need be undertaken. In particular, how can we a void deliberation on every action (internal or external) taken by the system, and, recur-sively, h o w can one avoid or reduce deliberation on those deliberation processes themselves?

Most existing situated reasoning systems use one or a combination of the following approaches:

1. The system does not allow a n y form of deliberation| the considerations important t o s u c h deliberation are compiled into the triggering parts of the plans or knowledge sources themselves [START_REF] Firby | Adaptative Execution in Complex Dynamic Worlds[END_REF]] 2. The deliberation is performed at one level only and is done at every cycle irrespective of the constraints on time and information existing at that moment i n time Hayes-Roth, 1989] 3. The deliberation occurs at one level only and is performed by a separate module of the system, unconstrained by the real-time demands of the application and thus not bounded in reaction or response time Dodhiawala et al., 1989[START_REF] Fehling | [END_REF]Hayes-Roth, 1989]. PRS takes a quite di erent approach. We consider that the rst task of the system should be to keep the number of options open to deliberation under control. T o a c hieve this, the PRS interpreter uses certain default decisionmaking mechanisms that are stringently bounded in execution time. For example, once a certain means has been chosen for achieving a particular goal, and as long as the system has not already failed to achieve the goal using those means, that means will not be r econsidered | despite possible changes in the environment t h a t m a y indicate the existence of better options. These optionreducing decision mechanisms execute in bounded time and, in most real-world situations, substantially reduce the set of options available for deliberation. Some of the more important of these mechanisms are discussed elsewhere [START_REF] George | [END_REF].

Of course, even after this ltering of options, some options remain open to consideration. Furthermore, the ltering may h a ve removed some options that should really have been considered more carefully. T h us, it is necessary to provide the system with a capability for performing a possibly unbounded amount of deliberation and for reconsidering some of the options that have possibly been discarded by the default decision mechanisms.

In PRS, both of these tasks are achieved by the use of so-called metalevel KAs. Metalevel KAs use exactly the same knowledge representation as application-level KAs they di er only in that they operate on the system's internal state (i.e., its beliefs, goals, and intentions)2 rather than the external world.

The metalevel KAs are brought to bear on any particular problem by means of their invocation criteria. These criteria may depend both on conditions obtaining in the external world and, more typically, on conditions relating to the internal state of the system. Such conditions might include, for example, the applicability o f m ultiple KAs in the current situation, the failure to achieve a certain goal, or the awakening of some previously suspended intention.

The body of a metalevel KA can be used to represent a n y kind of decision-making procedure and can be of arbitrary complexity. H o wever, because it is executed in the same manner as any other KA, it will be interrupted whenever any external events modify the system's beliefs or goals. The system can thus continue to react in bounded time, irrespective of the complexity of the decision procedure. This is unlike other existing situated reasoning systems, whose bound on reaction time is determined by the complexity of the decision-making procedures incorporated in the system.

Moreover, further metalevel KAs can be invoked to make decisions about the decision-making procedures themselves. Again, the representation of these higher levels of metalevel procedures is as for any other procedure, and the system's reaction time remains bounded. Of course, one has to be careful in the design of such metalevel procedures if one wants the system to respond to events | rather than just notice them | in some given time frame.

It is also important to note that the decision-making behavior of PRS is strongly in uenced by t h e c hoice of the invocation conditions of metalevel KAs. For example, if these conditions are such that the decision-making metalevel KAs are frequently invoked, PRS will act in a cautious manner, spending more time making decisions than otherwise [START_REF] Bratman | Plans and resource-bounded practical reasoning[END_REF]. If, on the other hand, these metalevel KAs are rarely invoked, PRS will act in a bold manner, rapidly choosing its actions in response to the changing world in which i t i s e m bedded. Thus, by v arying the metalevel KAs, we can study different t ypes of situated systems and determine which are best suited for which problem domains.

The question remains as to how t o i n voke the metalevel KAs and how to ensure their execution as appropriate. We look at this problem in the next section.

Invoking MetaLevel Procedures

Our aim in designing PRS was to hardwire as little as possible into the interpreter i.e., to make it as simple as possible. This provides us with the potential to investigate many di erent t ypes of agents simply by v arying the default decision procedures and the metalevel KAs.

The main loop of the system interpreter determines which KAs are applicable and chooses which to place on the intention structure. It can be viewed as the topmost metalevel KA it is the nal arbiter of which KAs reach the intention structure and thus which can be executed.

The major problem is how to allow KAs to be deliberated upon by other metalevel] KAs and how to place the chosen ones on the intention structure. The basis of our approach is to allow the main interpreter loop to place at most one KA on the intention structure and to require that it be placed at the root of that structure.

At rst sight, this seems unduly restrictive|one often wants to attend to more than one task, and one often wants to order these tasks for later execution rather than have them executed immediately (which placing KAs at the root of the intention structure entails). The way around this problem lies in the metalevel KAs: these are the means by which one can place multiple intentions on the intention structure and order them as one pleases.

The next problem is how t o a c t u a l l y i n voke metalevel KAs. The di culty is that, while some of the invocation conditions of metalevel KAs will be known at the beginning of each selection cycle, others (such as the number of KAs applicable at a given moment) can only be deter-mined part way through this cycle. The way i n w h i c h w e solve this problem is to allow the system to continue to re ect on its changing beliefs about its own internal state within a single cycle of the interpreter, breaking out of this self-re ection only when the process of KA activation ceases.

Figure 1 shows a simpli ed version of the main interpreter loop. Its purpose is to select a KA, place it on the intention structure, and invoke its execution (of which w e have more to say later). The basic idea of the algorithm is that the system continuously re ects on itself until no new KAs are applicable. When this state is reached, a KA is chosen at random from those applicable at the previous re ection cycle. If there are no KAs to choose from (i.e., the set of applicable KAs is empty), the execution phase is invoked and the outer cycle repeated. Otherwise, the chosen KA is placed on the intention structure, the execution phase invoked, and the outer cycle repeated.

To enable this scheme to work, the system has to determine which KAs are applicable on each self-re ection cycle. This information becomes a new system belief. In particular, on each cycle, the system concludes a belief about the set of KAs applicable on that cycle, expressed as (soak x), where x is the list of applicable KAs. It is then determined whether or not the acquisition of this new belief (i.e., (soak x)), and possibly other events, triggers any new metalevel] KAs. If it does, the system acquires a new belief about the applicability of these metalevel KAs. In fact, it does so simply by u p d a t i n g t h e belief (soak x) so that the list x now c o n tains exactly those metalevel KAs that are now applicable. (The previous belief about applicable object-level KAs is removed from the database and so, in a sense, is forgotten. However, if needed, it can be captured in the variable bindings of the invoked metalevel KAs.)

As PRS places no restrictions upon the invocation conditions of metalevel KAs, it is quite possible that more than one metalevel KA will be invoked at this stage. If this happens, we shall now be left with the problem of deciding which of these metalevel KAs to invoke. There a r e a n umber of possible solutions to this problem. One would be simply to select one of the metalevel KAs at random, on the assumption that all are equally good at making the decision about which object-level KAs should be invoked. Another alternative w ould be to preassign priorities to the metalevel KAs and to invoke the one with the highest priority. H o wever, in keeping with our aim of providing maximum exibility, the solution we c hose to adopt is to allow further metalevel KAs to operate on these lower-level metaKAs in the same way t h a t t h e lower-level metaKAs operated on the object-level KAs.

The process of invoking metalevel KAs is thus continued until no further KAs are triggered. At that point, there may still be a set of applicable KAs from which t o choose. It is then, and only then (i.e., only after failing to nd any more applicable metalevel KAs) that we select one of these KAs at random.

Thus it is seen that, when more than one KA is applicable, and in the absence of any information about what is best to do, the system interpreter defaults to selecting one of these KAs at random. With no metalevel KAs, the system would thus randomly select one of the applicable object-level KAs. However, one usually provides metalevel KAs to help make a n i n f o r m e d c hoice about the object level KAs. The applicable metalevel KAs themselves are subject to the same default action (i.e., one return Exit the re ective loop. else Else, intend one of the KAs selected r andomly, (intend (select-randomly previous-soak))

Go and execute something in the intention structure, will be randomly selected) unless there are yet other metalevel KAs available to make a c hoice among them. In the end, at some level in the meta-hierarchy, the default action will be taken.

Once selected, the chosen KAs must be inserted into the intention structure. If a selected KA arose due to an external goal or a new belief, it will be inserted into the intention structure as a new intention at the root of the structure. For example, this will be the case for any metalevel KA that is invoked to decide among some set of applicable lower-level KAs. Otherwise, the KA instance must have arisen as a result of some subgoal of some existing intention, and will be \grown" (i.e., attached) as a subKA of that intention. Finally, w e are left with the execution phase. This is relatively straightforward. First, an intention at one of the (possibly multiple) roots of the intention structure is selected for further execution. The next step of that intention will comprise either a primitive action or one or more unelaborated subgoals. If the former, the action is directly initiated if the latter, these subgoals are posted as new goals of the system. 3While we h a ve focused above on metalevel KAs that react to changes in the type or number of applicable KAs, other beliefs about the environment o r t h e i n ternal system state can trigger other kinds of metalevel KAs. For example, beliefs about changing intentions could trigger metalevel KAs to reorder the intention structure, or beliefs about failed goals could trigger a metalevel KA to deliberate on the utility of reattempting the goal.

Measures of Performance

De nitions of real-time systems revolve around the notion of response time. For example, Marsh and Greenwood Marsh and Greenwood, 1986] de ne a real-time system as one that is \predictably fast enough for use by t h e p r ocess being serviced," and O'Reilly and Cromarty O 'Reilly and Cromarty, 1985] require that \there is a strict time limit by which the system must have produced a response, regardless of the algorithm employed." This measure is most important in real-time applications if events are not handled in a timely fashion, the operation can go out of control.

Response time is the time the system takes to recognize and respond to an external event. Thus, a bound on reaction time (that is, the ability of a system to recognize or notice changes in its environment) is a prerequisite for providing a bound on response time. PRS has been designed to operate under a well-de ned measure of reactivity. Because the interpreter continuously attempts to match KAs with any newly acquired beliefs or goals, the system is able to notice newly applicable KAs after every primitive action it takes. Some useful performance metrics for evaluating the performance of real-time situated systems are provided by [START_REF] Dodhiawala | Real-time AI systems: A de nition and an architecture[END_REF]. Not all of these are of relevance in the applications to which PRS has so far been applied, but the following ve p r o b e s p r o vide important measures of performance:

1. sending-time(e) is the time at which a n e v ent e is signalled 2. receiving-time(e) is the time at which e is received by the system 3. begin-ack-time(e) is the time at which e is noticed by the system 4. end-soak-time-cycle(e) is the time at which all the events occurring in the same cycle as e have been noticed and the corresponding set of applicable KAs determined 5. event-execution-time(e) is the time at which t h e r s t action following KA selection has terminated 6. event-response-time(e) is the time at which the execution of all the procedures initiated by e has terminated. Then we de ne: R1 = receiving-time(e) { sending-time(e), R2 = begin-ack-time(e) { receiving-time(e), R3 = end-soak-time-cycle(e) { begin-ack-time(e), R4 = event-execution-time(e) { end-soak-time-cycle(e), R5 = event-response-time(e) { sending-time(e) Assuming a bounded number of events occurs in any time interval, we can prove that R1, R2, R3, and R4 are bounded. R1 is the time used to communicate the event to the system and is bounded by de nition of the communication function (independently of PRS). The operations performed in R3 and R4 form a cycle, so R2 i s a c t u a l l y bounded by R3 + R4. So if we p r o ve that R3 and R4 are bounded, we can conclude that R2 is also bounded.

R4 is bounded by the maximum time required to execute the longest primitive action in PRS or the time required to post a goal. The time to post a goal is bounded by de nition. Therefore, the bound on R4 is determined by the choice of primitive actions and thus by the user. As the user can choose any l e v el of granularity h e o r s h e desires, this bound can be made arbitrarily small. (In the application described below, a maximum action execution time of one second was found to be quite satisfactory, though other applications may w ell require ner granularity.)

R3 is the time used by the system to parse the invocation part and the context part of relevant KAs. As we have a bounded number of events and a bounded number of KAs, we can guarantee that R3 is bounded. 4 To estimate the bound on R2, let p be an upper bound on the execution times of the primitive actions that the system is capable of performing. Also assume that n is an upper bound on the number of events that can occur in unit time, and that the PRS interpreter takes at most time t to select the set of KAs applicable to each e v ent occurrence. The maximum reactivity delay, R , i s t h e n given by R = p +y t, where y is the maximum number of events that can occur during the reaction interval. We have y = R n and thus obtain R = p=(1 ; nt) where we assume that t < 1=n. This means that, provided the number of events that occur in unit time is less than 1=t, PRS will notice every event that occurs that is capable of triggering some KA] and is guaranteed to do so within a time interval R .

Because metalevel procedures are treated just like a n y other, they too are subject to being interrupted after every primitive metalevel action. Thus, reactivity is guaranteed even when the system is choosing between alternative courses of action or performing deliberations of arbitrary complexity.

R5 is the time one would like most to see bounded. However, as the time taken to respond to an event c a n be arbitrarily large, no such guarantee can be given in general. Let's consider this in a little more detail.

Having reacted to some event, it is necessary for the system to respond to this event b y performing some appropriate action. As the system can be performing other tasks at the time the critical event is observed, a choice has to be made concerning the possible termination or suspension of those tasks while the critical event i s h a ndled. Furthermore, if there are a number of di erent w ays in which the event can be handled, it might be necessary to choose among those alternatives.

Such c hoices can be made by appropriate metalevel KAs. However, in general, these decision procedures may 4 As selection of KAs does not involve a n y general deduction beyond uni cation and evaluation of a Boolean expression, an upper bound does indeed exist. take a n u n bounded amount o f t i m e t o r e a c h a decision. There are two possible ways to overcome this problem. One is to require that all decision procedures complete in a bounded time. In many domains, this provides adequate decision-making capability and yields a bound on response time. As a particular case, it is not di cult to construct metalevel KAs that yield the same functionalities as Ladder Logic. 5Alternatively, one could construct a special metalevel KA to act as a task scheduler. This KA would have the capability to preempt all executing decision tasks (and any other tasks for that matter) within a bounded time and to begin execution of an event handler. It could utilize whatever information was available (such a s a n y incremental decisions made by a n ytime decision algorithms [START_REF] Dean | [END_REF]) to select the most appropriate event h a ndler and the manner in which to suspend or terminate other tasks. It could also take i n to account the di erent constraints on response time that may exist in di erent situations. The only requirement i s t h a t t h i s K A h a ve a guaranteed upper bound on execution time.

In summary, PRS is guaranteed to react to critical events in a bounded time interval. With appropriate metalevel and application-level KAs, it is also possible to guarantee a bound on response time.

Experimentation

As mentioned earlier, one of the valuable features of this design is the ability to realize di erent t ypes of situated systems by v arying the default decision rules and the metalevel procedures. In particular, one could then examine the behavioral properties of di erent t ypes of agents in di erent e n vironments. We h a ve begun this process by creating one particular type of agent [START_REF] George | [END_REF]] and applying it to various real-time applications. In this section, we brie y describe one such a pplication and provide statistics on the performance of the system.

The application domain we c hoose for experimentation is the task of malfunction handling for the Reaction Control System (RCS) of NASA's space shuttle. This is a relatively complex propulsion system that is used to control the attitude of the shuttle. A wide range of problems can occur in this system, and, in a normal shuttle mission, no less than four mission controllers are continuously monitoring and controlling its operation.

Two PRS modules (agents) were used for the application. The resulting system was able to detect and recover from most of the possible malfunctions of the RCS, including sensor faults, leaking components, and regulator and jet failures. It is currently under testing at NASA's Johnson Space Center.

The following performance measures have been made on a SUN Sparcstation, with 20 megabytes of central memory, running Sun Common Lisp, development E n vironment 4.0.0 Beta-0, Sun4 Version for SunOS 4.0. The code was not optimized by the compiler, and the probing itself a ects system performance (the probes de ned in Section 5 are activated for every event and goal posted by P R S) .

For the series of tests given below, we ran the following RCS scenarios: a pressure transducer failure, a regulator Figure 2 shows some statistics on the run. The Percent measurement indicates how busy the PRS agents were. During the six minutes, RCS ran for 31 seconds, and IN-TERFACE for 2 minutes 29 seconds. Clearly, e a c h PRS module has plenty of time to work on other problems. (On this machine, with this con guration, this application can be run three times faster than real time without any difculty). The Facts, Metalevel Facts, Goals and Messages indicate the ow of input to the two PRS modules. We have separated metalevel facts, such a s (soak ...), a n d application facts. The statistics on the goals and messages refer only to the application level. Relevant-KAs represents the number of relevant KAs (selected by t h e indexing mechanism as being potentially applicable) and Applicable-KAs represents the number of KAs that were actually applicable. Intentions indicates the number of intentions the PRS agent has formed, and Satis ed G o als in DB represents the number of goals that were directly satis ed in the database (and thus did not require KA activation).

Figure 3 shows the values of R2, R3, and R5 (see Section 5). All the values are given in sixtieths of a second. The average R2 are usually very low (a few sixtieths of a second), and even the maximum values stay under one second.6 R3 is also quite small and never exceeds one second. The values of R5, which represents response time, are very di cult to interpret. This is because many o f the procedures executed in the RCS application are supposed to \wait" for certain external events to occur. For example, certain procedures require the system to wait for the pressure to drop under 300 psi, or to wait for the astronauts to ip a switch.7 Nevertheless, the experience of and the evaluation of the system by mission controllers show that PRS executes its procedures much faster than either an astronaut or a mission controller could. Moreover, in this application, metalevel KAs have been written to ensure that the most important procedures get executed rst, thus guaranteeing that the response time is shortest for the most urgent procedure George and Ingrand, 1990b 7 Review of related works Some researchers have sought to deal with resource limitations in dynamic environments by considering all contingencies at design time. This approach o b viates the need for explicit reasoning at execution time: all such reasoning is e ectively compiled into the structure of the executing program [START_REF] Agre | [END_REF]Brooks, 1986Firby, 1 9 8 9 Rosenschein and Kaelbling, 1986Kaelbling, 1987]. I t i s very likely that these techniques are optimal in certain applications. However, many researchers believe that, in complex domains, the knowledge-compilation approach will lead to brittle, in exible systems if used without any real-time deliberative processing D'Ambrosio and [START_REF] Fehling | [END_REF]Doyle, 1988Pollock, 1989].

Blackboard architectures have been used in certain systems that are intended to perform real-time behavior [START_REF] Dodhiawala | Real-time AI systems: A de nition and an architecture[END_REF][START_REF] Hayes-Roth | Intelligent monitoring and control[END_REF]. They use a collection of knowledge sources (tasks) sharing a common data structure. There are a number of interesting features of these systems that could be important in providing fast response in real-time domains that do not require signi cant amounts of deliberation. However, in current b l a c kboard systems, the actions carried out by the system are not interruptible. This poses serious problems for maintaining realistic bounds on reaction time whenever complex or lengthy tasks need to be performed George and Lansky, 1 9 8 6]. Keeping the blackboard consistent when knowledge sources are asynchronous is also a serious problem that has yet to be addressed. In addition, most blackboard architectures use an agenda of pending tasks that are run serially. The problem is that the agenda manager (i.e., the component that deliberates on what tasks to execute, how to execute them, and when to execute them) is invoked in each cycle and for each task present on the agenda. Thus it runs with considerable overhead, again seriously restricting the real-time capabilities of the system. Moreover, it is di cult to include any lengthy deliberation procedures in blackboard architectures, and there are no mechanisms for reasoning about the deliberation processes themselves.

Schemer- II Fehling and Wilber, 1989] is in some way similar to PRS, but utilizes speci c managers and handlers (deliberation processes) to control the system. As with the blackboard approach, these task handlers cannot reason about themselves. Consequently, t h e a r c hitecture is not as general or exible as PRS. Howeve r , i t i s a n i nteresting approach a n d m a y be optimal for some real-time domains.

Conclusion and Future Developments

In this paper, we h a ve attempted to show h o w the uniform knowledge representation for both application-level knowledge and metalevel knowledge, the default decision rules, and the algorithm used for handling metalevel procedures provide a good framework for managing deliberation and reasoning in real-time environments. We have presented some results regarding the real-time performance of the system when used in a real application (RCS), and brie y reviewed some related works.

Although we h a ve p r e s e n ted an architecture that supports real-time deliberation and reasoning, we h a ve s o far not investigated how di erent default decisions and di erent metalevel strategies a ect system behavior nor have w e examined su cient real-time domains to determine which kind of situated system best suits which kind of domain. The current R CS application used a set of default decision rules and metalevel procedures that proved to be particularly successful in that domain. While we believe these to be of wide applicability, that conjecture has yet to be tested.

Of particular interest would be to incorporate as metalevel procedures various algorithms that have r ecently been proposed for deliberating in real-time environments. These include the work of Whitehair and Lesser on approximate reasoning Lesser et al., 1 9 8 9], Dean and Boddy's work in anytime algorithms [START_REF] Dean | [END_REF], and the work of a number of researchers Agogino and Ramamurthi, 1989 Horvitz et al., 1 9 8 8 Russell and Wefald, 1989] in decision-analysis techniques.

We i n tend to explore some of these issues in our future research. In particular, by v arying metalevel strategies, we aim to experiment with di erent t ypes of system (such as the IRMA agent a r c hitecture Bratman et al., 1 9 8 8]) i n di erent kinds of environments, thus leading to a better understanding of situated systems and agent rationality.

(

 Figure 1: KA and Intention Selection in PRS

Figure 3 :

 3 Figure 3: R2, R3, and R5 f o r t h e R CS application

 (loop Loop continuously. do (loop for soak = (set-of-applicable-ka) Set soak to the set of applicable KAs when (or previous-soak soak) do (conclude-fact `(soak ,soak)) Post the soak metalevel fact if (null soak) No new KAs are applicable then if (null previous-soak) If previous soak is empty then either no KAs were r elevant or there is nothing to do (no new goals). then Continue to execute the intentions in the Intention Structure

(activate-intention-structure)

].

	R2 R3 R5 R2 R3 R5 R2 R3 R5 R2 R3 R5	RCS Numb e r o f f a c t sAverage Distribution Maximum 486 3.04 6.34 42. 486 2.55 4.38 36. 7 2222.37 2630.15 6863. Number of goals Average Distribution Maximum 202 0.57 2.03 21. 202 2.16 3.77 26. 186 341.21 783.54 5983. INTERFACE Numb e r o f f a c t sAverage Distribution Maximum 2982 4.23 13.14 94. 2982 5.84 10.67 52. 124 441.20 479.65 2355. Number of goals Average Distribution Maximum 1257 0.42 1.05 21. 1257 1.88 2.23 41. 1165 33.11 115.06 1494.
		Average= x, Distribution = r P n i=1 (x i ;x) 2 n;1 Maximum= max(x1 : : : x n) and

It is important to note that these include beliefs goals, and intentions toward various properties of the system state, such as the number of applicable KAs at the current t i m e point, the success or otherwise of a particular KA instance, the ordering of the intention structure, or the status of some speci c intention.

In fact, the execution algorithm is somewhat more complicated than we indicate here. For example, it needs to handle in di erent w ays the failure and success of attempting to accomplish its goals, what goals need to be reestablished, etc.

Ladder Logic is one of the most widely used program languages for real-time systems.

The high maximum value can be explained by the quantum (300 ms) of the scheduler used under SUN lisp 4.0. That means that if both PRS modules are runnable, one will have to wait at least 300 ms before getting a chance to run.

 7 These waits are asynchronous and do not block system execution.