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Abstract— This paper addresses the problem of computing
pathways for a ligand to exit from the active site of a protein.
Such problem can be formulated as a mechanical disassembly
problem for two articulated objects. Its solution requires search-
ing paths in a constrained high-dimensional configuration-
space. Indeed, the ligand passageway inside the protein is often
extremely cluttered so that current path planning techniques
are unable to solve the disassembly problem in reasonable
computing time. The techniques presented in this paper are
based on the RRT algorithm. First we discuss some simple and
general modifications of the basic algorithm that significantly
improve its performance. Then we describe a new variant of
the planner that treats ligand and protein degrees of freedom
separately. This new algorithm outperforms the basic RRT,
particularly for very constrained problems, and is able to
handle models with hundreds of degrees of freedom. We analyze
the effects of each RRT variant via several examples of different
complexity. Although discussions and results of this paper focus
on molecular models, the ideas behind the algorithms are
general and can be applied to path planners for disassembling
articulated mechanical parts.

I. INTRODUCTION

The computational analysis of molecular interactions in
biological systems is a key instrument for the understanding
of life. In this framework, the present paper focuses on the
study of protein-ligand interactions [4]. Most of the com-
putational approaches to this problem address a static view
of the molecular recognition. However, several studies tend
to show that the ligand access/exit to the protein active site
can be very important for the understanding of the biological
mechanism [20], [13]. The difficulty is that computing the
pathway of a ligand to go out from a deep active site to the
surface of a protein (or vice versa) with “classic” molecular
modeling methods [24] is too computationally expensive.

For facing the complexity of computing molecular mo-
tions, molecules can be modeled as articulated mechanisms
[21], [27] and efficient path planning algorithms can be used
to explore their conformational changes [3], [2], [8], [10].
In this paper, the protein-ligand exit problem is formulated
as a mechanical disassembly problem for articulated objects
(see Section II) and an RRT-like algorithm is proposed for
finding solution pathways.

The RRT algorithm, introduced in [17], has been widely
studied and applied to different types of problems in the last
years (see http://msl.cs.uiuc.edu/rrt/ for a general
survey). Numerous variants have been proposed to improve
its performance in general cases (e.g. [18], [5], [25], [19],
[26], [15]) or for particular applications (e.g. [12], [16],
[11]). Section III reminds the principle of the RRT algorithm,
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Fig. 1. Model of a ligand (red-colored) in the active site of a protein. The
passageway from the active site to the surface of the protein is very narrow.
Protein side-chain motions are necessary to permit the ligand exit.

discusses some basic improvements and analyzes their effect
in the constrained high-dimensional problems addressed in
this paper. These basic RRT variants perform reasonably
well for moderately complex instances of the protein-ligand
disassembly problem. However, they fail in more difficult
cases such as the one illustrated in Fig. 1. In this example,
the ligand is extremely cluttered in the protein active site
and significant motions of flexible parts of the protein are
necessary to extract the ligand.

We propose a new RRT variant, called Manhattan-like
RRT (ML-RRT), for disassembly path planning of articulated
objects. The particularity of this algorithm is that the motions
of the different parts are decoupled. Indeed, for the present
application, ligand and protein degrees of freedom are treated
at different levels. The ligand motion is privileged, while
flexible parts of the protein only move if they hinder the lig-
and progression. This new algorithm presents two advantages
with respect to the basic RRT. First, the computing time and
its variance are notably reduced. And second, but not less
important, the flexible parts that have to move for finding a
solution path are automatically identified. Thus, the planner
is able to handle models involving hundreds of potential
degrees of freedom, avoiding user intervention to select
the important ones. The ML-RRT algorithm is presented
in Section IV. This section also shows results that reflect
the performance gain with respect to the improved RRT
discussed in Section III. Several directions for extending ML-
RRT to more complex instances of the disassembly problem
are mentioned in the concluding section (Section V).



II. MECHANISTIC MODEL AND PROBLEM FORMULATION

Within our molecular path planning approach [8],
molecules are modeled as articulated mechanisms. Groups of
rigidly bonded atoms form the bodies and the articulations
between bodies correspond to bond torsions. These torsions
are the molecular degrees of freedom. The atoms are rep-
resented by spheres. Considering a geometric interpretation
of the van der Waals repulsive force, which is the most
important contributor (at short distance) to the molecular
interaction energy, the spheres associated with non-bonded
atoms cannot overlap. Such constraint is a powerful filter
usually applied in conformational search methods [9]. This
collision-avoidance restriction is the motion constraint im-
posed to the mechanistic molecular model. Using such a sim-
plified model of molecules, one can formulate the problem
of computing the pathway to dissociate a molecular complex
as a disassembly problem for articulated mechanisms.

The work presented in this paper focuses on protein-ligand
complexes. A protein is a biological macromolecule com-
posed by one or several long polypeptide chains, generally
folded in a globular manner1. The mechanical model of
a polypeptide is composed by a set of kinematic chains,
which match the bonds of the chemical representation: the
main-chain, or backbone, and the side-chains of the amino
acid residues. In the present work, the protein backbone is
considered as a rigid body with (possibly hundreds of) artic-
ulated side-chains. The ligand is a relatively small molecule,
containing in general a few tens of atoms. We consider fully
flexible ligands, which are modeled as free-flying articulated
objects.

Figure 2 illustrates the mechanical disassembly problem
treated in this paper. By analogy to the molecular disassem-
bly problem, the small moving object is the ligand and the
big object is the protein. The articulated parts in the big
object are the protein side-chains.

1See molecular modeling textbooks (e.g. [24]) for a detailed structural
description of proteins.

Fig. 2. Disassembly problem for two articulated objects. The problem
consists in finding a path to extract the small (red) object from the big one.
Both objects have articulated parts.

III. THE RRT ALGORITHM AND
SOME BASIC IMPROVEMENTS

The techniques presented in this paper are based on the
RRT algorithm. This section first reminds the basic RRT
principle and discusses some issues. Then we propose simple
modifications and show how they improve the performance
of the algorithm through the examples at the end of the
section.

A. Basic RRT Algorithm

The basic principle of the RRT algorithm [17] is to
incrementally grow a random tree rooted at the initial config-
uration qinit to explore the reachable configuration-space and
find a feasible path connecting qinit to a goal configuration
qgoal. At each iteration, the tree is expanded toward a
randomly sampled configuration qrand. This random sample
is used to simultaneously determine the tree node to be
expanded and the direction in which it is expanded. Given a
distance metric in the configuration-space, the nearest node
qnear in the tree to the sample qrand is selected and an
attempt is made to expand qnear in the direction of qrand.
For holonomic systems, the expansion procedure can be
simply performed by moving on the straight-line segment
between qnear and qrand. If the expansion succeeds, a
new node qnew and a feasible local path from qnear are
generated. The key idea of this expansion strategy is to
bias the exploration toward unexplored regions of the space.
Hence, the probability that a node will be chosen for an
expansion is proportional to the volume of its Voronoi region
(i.e. the set of points closer to this node than to the others).
Therefore RRTs are biased by large Voronoi regions to
rapidly explore before uniformly covering the space.

Different strategies can be adopted for the design of path
planners based on the RRT algorithm [18]. One can choose
between an unidirectional or a bidirectional exploration
strategy. An unidirectional planner develops a single tree
from one of the two given configurations, qinit or qgoal,
until the other configuration is reached, while a bidirectional
technique constructs one tree from qinit and another from
qgoal until the two trees meet at a point. One can also choose
a more or less greedy strategy for the expansion procedure.
In the basic RRT algorithm, a single expansion step of
fixed distance is performed. In the more greedy RRT-Connect
variant, the expansion step is iterated while feasibility con-
straints (e.g. collision avoidance) are satisfied. The strategy
selection depends on the nature of the path planning problem
to be solved. For the disassembly problems treated in this
paper, we use the unidirectional RRT-Connect variant. The
choice of a unidirectional exploration seems obvious, since
the initial configuration is highly constrained while the goal
is in an unconstrained region and can be fuzzily defined (e.g.
ligand outside the protein). RRT-Connect is in general more
efficient than the single-step version for systems without
differential constraints [18].
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Fig. 3. Illustration of an RRT with exhausted nodes. The (red-colored)
nodes in the small side corridor will be frequently selected for expansion,
thus hindering the tree development.

B. Metric Sensitivity: A Well-Known Drawback

The weakness of the RRT algorithm is its high sensitivity
to the distance metric used to select the nearest neighbor
to qrand, qnear. Since qnear is the node to be extended,
the performance of the algorithm strongly depends on the
metric. The ideal metric should consider motion constraints
(kinematic constraints, obstacles, ...). However, devising such
an ideal metric is at least as difficult as solving the path
planning problem itself. Therefore, an Euclidean metric in
the configuration-space is normally used. The use of this
simple distance metric can however lead to an undesired
behavior of the planner, as illustrated in Fig. 3. Some nodes
that are close to the border between feasible and unfeasible
regions of the configuration-space (i.e. the border of the C-
obstacles) are repeatedly selected for futile expansion. We
call such nodes exhausted nodes, in reference to [5]. The
issue of exhausted nodes is particularly important when using
the RRT-Connect variant, which tends to generate nodes
close to the border.

Another concern related to the use of a simple Euclidean
metric in the configuration-space is that, in some cases, par-
ticularly for articulated mobile systems, the distance metric
is not representative of the path planning problem. Consider
for example the manipulator in Fig. 4. Two significantly
different robot configurations are at the same distance than
two more similar ones (i.e. inducing a smaller motion).
Several approaches (see [1] for example) have been proposed
to design more sophisticated metrics aiming to find a solution
to this issue, usually applying weights to balance the different
influence of the degrees of freedom in the system configura-
tion. However, in high-dimensional spaces, it is difficult to
find the adequate metric showing a good trade-off between
computational complexity and accuracy.

a) b)

α

α

Fig. 4. Two configurations of a 2-DOF manipulator. Considering an
Euclidean metric in the configuration-space, both configurations are at the
same distance to the reference configuration (white drawings). However, the
induced motion is much smaller for (a) than for (b).

Next we discuss simple improvements of the basic RRT
algorithm that notably limit the pathological behaviors due
to the Euclidean metric.

C. Avoiding Exhausted Nodes
We first describe two different strategies to circumvent

the undesired behavior of the RRT algorithm occasioned by
exhausted nodes. The first consists in removing from the
search tree nodes that are considered as exhausted, as initially
proposed in [5]. For each node, the number of consecutive
times that its expansion fails is counted. When the counter
reaches a given limit number l, the node is considered to
be exhausted and it is no longer selected. A similar strategy
discussed in [16] uses an expansion failure counter to devise
a weighted metric for the nearest node selection.

The second strategy consists in selecting qnear at random
among the k nearest neighbors. In this way, a chance for
expansion is given to nodes that are not in the tree boundary,
and which, in the basic algorithm, will be selected for
refining the space coverage rather than to explore uncovered
regions. This idea has been applied in other works (e.g. [25]).

The results presented below (see Section III-E) show that
the two above strategies improve the performance of the
basic RRT against the exhausted-node issue. Since both
strategies have a very low computational cost, they can be
applied simultaneously.

D. Using a Simplified Task-Adapted Metric
For path planning problems involving many degrees of

freedom, we propose to use a simplified distance metric that
only considers the subset of the most significant degrees
of freedom with respect to the task. The most significant
parameters for the disassembly of two articulated objects are
generally those defining the relative location of the objects.
Thus, if one of the objects is considered to be static, a
simplified metric can be designed by only measuring the
distance in SE(3) for a reference frame associated with the
center of mass of the mobile object (the ligand in our case).
The degrees of freedom of the articulated parts in the static
object (i.e. the protein side-chains) and the internal degrees
of freedom of the mobile object (i.e. the ligand torsions) are
neglected within this distance metric.

The interest of considering approximate metrics for
nearest-neighbor search in the framework of sampling-based
path planning has been recently shown in [22]. It has been
empirically demonstrated that, in high-dimensional spaces,
the use of a simplified metric provides a considerable compu-
tational gain without a significant loss of accuracy. Besides,
the results presented below show that an adequate selection
of the parameters involved in the metric yields a much better
performance of the planner.

E. Empirical Performance Analysis
Figure 5 shows numerical results obtained with the basic

RRT algorithm and the different enhancements discusses
above. We call l-RRT the variant that removes nodes after l
consecutive expansion failures and k-RRT the variant choos-
ing qnear at random among the k nearest neighbors; lk-RRT



combines both improvements. The variant m-RRT is a basic
RRT algorithm using the simplified task-adapted metric.
Finally, lkm-RRT incorporates the three improvements. In
our implementation, the values of the parameters l and k are
currently assigned empirically: l is a constant and its default
value is 10, and k is a variable that is computed as the nearest
integer greater than or equal to nnodes/100, where nnodes is
the current number of nodes in the tree.

The algorithms were tested on three molecular disassem-
bly problems, similar to the one illustrated in Fig. 1, with
increasing difficulty that we refer to as ExA, ExB and ExC.
These problems involve 68 degrees of freedom, which reflect
the flexibility of the ligand and of the 18 side-chains in the
active site and the access corridor. The increasing complexity
of the problems comes from the geometric encumbering of
the passage. Numerical results are averaged over 50 runs
on an AMD Opteron 148 processor at 2.6 GHz. The values
displayed in the table are the following: avrT is the average
computing time, SN is its variance, Nn is the average number
of nodes in the computed search trees and Ns is the average
number of samples required for their construction.

Several conclusions can be extracted from the analysis
of the numerical results in Fig. 5. First, concerning the
exhausted-node avoidance, both variants l-RRT and k-RRT
significantly reduce the number of required samples Ns in
comparison to the basic RRT. Reducing Ns implies reducing
the number of operations such as nearest-neighbor search and
local path validation. A side effect of these variants is that
the number of nodes in the tree increases, resulting in more
expensive elementary nearest-neighbor searches. The overall
gain ranges between 5 and 7, and the results show that k-RRT
is more efficient that l-RRT, particularly when the problem
difficulty increases. The results obtained with lk-RRT show
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Fig. 5. Numerical results for the RRT algorithm with basic improvements.

that the combination of both strategies further improves the
performance of the planner, particularly for the most difficult
problem. RRT, l-RRT and k-RRT performed very poorly
on ExC (results are not reported because most of the runs
exceeded a fixed time limit) while lk-RRT got solutions in ac-
ceptable computing time. The better performance of m-RRT
shows the importance of using an adequate distance metric.
Compared to the basic RRT (that considers all the degrees of
freedom within the metric) the number of samples is reduced
while the number of nodes remains similar. Another reason
for the decrease of the computing time with m-RRT is that
using a simplified metric reduces the cost of the nearest-
neighbor search. When the three variants are combined,
the performance of the planner improves remarkably. The
computing time is reduced by two orders of magnitude for
the moderately complex problem ExB and the gain is still
higher for ExC. Finally note that an important benefit of the
lkm-RRT variant is to reduce the performance variability,
which is an issue for randomized algorithms [14].

IV. DECOUPLING PART MOTIONS

A. Motivation and Overview

In the examples presented in Section III-E, only a few side-
chains that may be directly involved in the ligand access are
considered to be flexible. Selecting these side-chains without
a priori knowledge about the ligand passageway is not a
straightforward task that has to be made manually. The main
motivation for the development of the algorithm presented
in this section is to avoid this kind of user intervention.
The basic principle of this new algorithm is to treat ligand
and protein degrees of freedom separately. These two sets
of parameters are referred to as qlig and qprot respectively.
The ligand is treated as an active robot while the side-chains
are considered as passive robots that only move when they
obstruct the progression of the ligand. Because the paths
computed by the algorithm look like Manhattan paths over
these two sets of parameters that change alternatively, we
call it Manhattan-like RRT (ML-RRT).

B. Manhattan-like RRT

The ML-RRT algorithm is schematized in Algorithm 1. At
each iteration, the ligand motion is computed first. Following
the basic RRT principle, a configuration of the ligand qlig

rand

is randomly sampled. The function SampleLigConf gen-
erates uniform samples considering that the ligand can freely
translate and rotate in a box enveloping the active site, and
allowing (by default) full rotation of all bond torsions. A
near neighbor qnear is selected in the current tree, based
on a distance metric in the ligand configuration parameters.
We use a simplified metric only involving the ligand’s
center of mass, as discussed in Section III-D. Note that
the function BestNeighbor also integrates the other basic
improvements discussed in Section III-C. ExpandLigConf
performs the expansion of the ligand configuration using
the greedy strategy of RRT-Connect. This function returns
a configuration qnew corresponding to the last valid point
in the straight-line segment from qnear toward qlig

rand. If



Algorithm 1: Construct ML-RRT

input : the search-space S, the root qinit

output : the tree τ

begin
τ ← InitTree(qinit);
while not StopCondition(τ ) do

qlig
rand ← SampleLigConf(S);

qnear ← BestNeighbor(τ , qlig
rand);

(qnew,LC)← ExpandLigConf(qnear,qlig
rand);

if not TooSimilar(qnear, qnew) then
AddNewNode(τ , qnew);
AddNewEdge(τ , qnear, qnew);
qnear ← qnew;

if LC 6= ∅ then
qprot

rand←PerturbProtConf(qnear,S,LC);
qnew ← ExpandProtConf(qnear,qprot

rand);
if not TooSimilar(qnear, qnew) then

AddNewNode(τ , qnew);
AddNewEdge(τ , qnear, qnew);

end

the expansion is not negligible, a new node and a new
edge are added to the tree. The function ExpandLigConf
also analyzes the collision pairs yielding the stop of the
expansion process. If ligand atoms collide with side-chain
atoms, the list of the involved side-chains LC is returned.
Such information is efficiently obtained by BioCD [23], a
collision checker tailored to molecular models, thanks to the
use of spatially-adapted hierarchical data structures matching
the biochemical structure. The list LC is used in the second
part of the algorithm, which performs the protein motion. A
configuration of the protein qprot

rand is generated by randomly
sampling the configuration of the involved side-chains in a
ball around their current configuration. An attempt is then
made to generate a new node by expanding qnear toward
qprot

rand. Note that, if the previous call to ExpandLigConf
has been successful, qnear has been updated in order to
contain the new ligand configuration.

The goal of the second part the ML-RRT algorithm is to
move the side-chains surrounding the ligand aiming to gain
clearance for its passage. Note than, in some cases, the mo-
tion of some side-chains close to the ligand can be hindered
by other farther side-chains. In such situations, a possible
solution is to extend the function ExpandProtConf to
return the list of side-chains in contact with the moving ones,
and to operate in an iterative manner. The implementation of
this idea remains for future work.
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Fig. 6. Numerical results for the ML-RRT algorithm.

C. Results

The performance of ML-RRT has been analyzed using
the same examples and in the same conditions than for
the basic RRT variants (see Section III-E). Comparing the
values in Fig. 6 with those in Fig. 5, one can observe that
ML-RRT significantly outperforms the basic RRT variants2.
The computing time is reduced for all the examples, the
improvement rate increasing with the problem difficulty.
Besides, the variance of the computing time is reduced,
even for the more complex examples. Figure 6 also reports
results obtained with ML-RRT on two other examples, ExA+
and ExD, which could not be solved by the previous RRT
variants.
ExA+ concerns the same protein-ligand complex than

ExA. However, in this case, all 127 side-chains of the
protein model are considered to be flexible (instead of 17 for
ExA). Consequently, ExA+ involves 332 potential degrees
of freedom. Comparing results for ExA and ExA+, one can
observe that the average number of samples and nodes in the
trees required to solve the problems are analogous, indicating
that the performance of the exploration is not affected by
the high number of articulated side-chains. The limited slow
down of the computing time for ExA+ is due to the higher
cost of operations such as spatial position updating, collision
detection and memory management.
ExD corresponds to an even more difficult problem. The

protein model also contains a high number of articulated
side-chains (more than 600), but the exit pathway is much
more constrained and requires an important motion of some
of these side-chains to let the ligand exit from the deep active
site. The image in Fig. 1 corresponds to this example and
shows the initial configuration of the ligand inside the protein
active site. Among all the side-chains, the ML-RRT algo-
rithm only made 9 of them move for finding the solution path
illustrated in Fig. 7. Note the considerable motion of the side-
chain located at the middle-top of the image. This side-chain
motion, which is known to be biologically important for
the protein-ligand interaction, was automatically identified
by the algorithm. Finally, mention that although the ligand
and the side-chains move alternately in the path obtained by
the ML-RRT algorithm, a randomized path smoothing post-
processing is performed in the composite configuration-space
of the protein and the ligand, so that simultaneous motions
are obtained in the final path.

V. CONCLUSIONS AND FUTURE WORK

We have presented a new RRT-like algorithm, called ML-
RRT, for disassembly path planning of articulated objects.
Although the paper focuses on molecular disassembly ap-
plications, the ideas behind ML-RRT are general and the
algorithm can be used in robotic applications [6]. Note that
results obtained in [6] for solving the mechanical disassem-
bly problem represented in Fig. 2 show a performance gain
of two orders of magnitude in relation to RRT.

2Because of the algorithmic design of ML-RRT, the values of Ns in Fig. 6
only take into account samples of the ligand configuration.



Fig. 7. Solution path for ExD (the initial configuration is shown in Fig. 1).
The image shows a transversal cut of the protein active site and the trace
of the ligand path. The ligand and the 9 residues with moving side-chains
are displayed in stick representation. The configurations of the ligand and
the moving side-chains at different moments along the path are colored in
red scale and blue scale respectively.

ML-RRT handles models containing hundreds of potential
degrees of freedom and only changes the configuration of
parts that have to move in the solution path. In the current
implementation, a protein side-chain moves if it hinders
the progression of the ligand. However, this side-chain mo-
tion is not propagated to other surrounding side-chains. As
mentioned in Section IV-B, extending ML-RRT to perform
such propagation would be rather simple. Although we have
still not found a protein-ligand disassembly problem (only
involving side-chain motions) making ML-RRT fail, cases
involving a concerted motion of several side-chains may
exist. Besides, the above mentioned extension may be inter-
esting for other applications. A further extension of ML-RRT
involves considering the flexibility of the protein backbone.
A first step toward a completely general approach may be to
consider protein loop motions. We expect to integrate ML-
RRT into the combined molecular-modeling/path-planning
approach described in [7], [8].
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[8] J. Cortés, T. Siméon, V. Ruiz-deAngulo, D. Guieysse, M. Remaud-
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