
Efficient Models for Grasp Planning With A

Multi-fingered Hand

Jean-Philippe Saut, Daniel Sidobre
LAAS-CNRS, Universite de Toulouse, CNRS, UPS Toulouse, France

email daniel.sidobre, kevin.desormeaux@laas.fr

March 2012

Abstract

This paper presents a simple grasp planning method for a multi-
fingered hand. Its purpose is to compute a context-independent and dense
set or list of grasps, instead of just a small set of grasps regarded as opti-
mal with respect to a given criterion. By context-independent, we mean
that only the robot hand and the object to grasp are considered. The
environment and the position of the robot base with respect to the object
are considered in a further stage. Such a dense set can be computed offline
and then used to let the robot quickly choose a grasp adapted to a specific
situation. This can be useful for manipulation planning of pick-and-place
tasks. Another application is human-robot interaction when the human
and robot have to hand over objects to each other. If human and robot
have to work together with a predefined set of objects, grasp lists can be
employed to allow a fast interaction.

The proposed method uses a uniform sampling of the possible hand
approaches. As this leads to many finger inverse kinematics tests, hier-
archical data structures are employed to reduce the computation times.
The data structures allow a fast determination of the points where the fin-
gers can realize a contact with the object surface. The grasps are ranked
according to a grasp quality criterion so that the robot will first parse the
list from best to worse quality grasps, until it finds a grasp that is valid
for a particular situation.

Keyword: Robotic Grasping, Multi-fingered Hand, Inverse Kinematics.

1 Introduction

Mobile manipulators are now common in robotics research laboratories, but
planning the manipulation of objects with complex shapes is still a challenging
task. Among the sub-tasks involved in manipulation planning, grasp planning
is of first importance as grasping is the starting point of any manipulation task.

1



Grasp planning basically consists in finding where to place the fingers on the
object the robot must grasp. If we consider a complete robotic platform, not
only the grasp configuration is needed but also the configuration of the robot
base and arm. Several aspects must be taken into account in order to find a
configuration for the whole robot that is suitable for picking up the object:

• The configuration must be accessible to the robot, i.e. it must be com-
patible with its inverse kinematics (base, arm and finger kinematics);

• The grasp associated to the configuration must be stable according to a
chosen relevant stability criterion;

• The grasp configuration must not lead to robot self-collision or collision
against the environment.

The paper proposes a method to find such configurations and it is presented
as follows.

Section 2 gives an overview of the existing works related to grasp planning.
Section 3 presents the proposed method. Section 3.1 explains how relative
hand/object poses (referred later as grasp frame) are computed. Section 3.2
details how a grasp configuration is computed from a grasp frame. Such a
computation is based upon an approximation of the intersection between the
object surface and the finger workspace. Section 3.5 explains how to compute
the intersection from the models of object surface and finger workspace detailed
in sections 3.3 and 3.4. The obtained grasps are then evaluated and sorted
according to the quality score described in section 3.6.

2 Related Work

Most of the early grasp planning methods did not take into account finger nor
arm kinematics and are often referred as contact-level techniques [1, 2, 3]. The
contacts are regarded as freely-moving points with no link to any mechanical
chain. Many grasp stability criteria have been introduced for this model of
point/surface contact, the most common being certainly the force closure cri-
terion [2, 4]. Force closure criterion is verified if a grasp can resist arbitrary
force/torque perturbation exerted on the grasped object and is tested for a
specific set of contacts (positions and normals). To integrate the notion of ro-
bustness of the grasp stability with respect to the contact positions, the concept
of independent regions of contact has been introduced [1]. These regions are
such that a grasp always verifies force closure as long as the contacts stay within
the region. The computation of these regions has been solved for different ob-
ject surface modelization (2D discrete surface [5], 2D polygonal surface [6], 3D
polyhedral surface [7, 8, 9]).

All these contact-level techniques were not very well-suited for real appli-
cations. Therefore, many new methods appeared that integrate considerations
on finger and/or arm kinematics. Miller et al. [10] proposed to decompose the
object into a set of primitives (spheres, cylinders, cones and boxes). A pregrasp

2



configuration of the hand is associated to each primitive. A set of parameters is
sampled in order to test the different directions of approach of the hand. Then,
for each pose, the fingers are closed on the object until collision. The quality
of the obtained grasp is then computed according to the measure described in
[2]. The idea of object decomposition was widely used and is still the base
of many grasp planners. It provides a heuristic to reduce the possible relative
palm/object poses to test. In [11], the authors decompose the object model
into a superquadric decomposition tree employing a nonlinear fitting technique.
Grasps are then planned for each superquadric using a heuristic approach close
to the one in [10]. The grasps are then simulated on the original object model
using the GraspIt! dynamics simulator [12], to sort them by quality. Hueb-
ner et al. [13] proposed a technique to build a hierarchy of minimum volume
bounding boxes from 3D data points of the object envelop. This method offers
an interesting robustness with respect to the quality of the object’s 3D model,
acquired from sensors (here laser scan). In [14], the object is decomposed into
a set of boxes called OCP (Object Convex Polygon). Each box of the OCP is
compared to a GRC (Grasping Rectangular Convex), which gives an estimation
of the maximum size of the object that the hand can grasp. Different GRCs are
defined corresponding to different grasping styles. Xue et al. [15] presented a
method to optimize the quality of the grasp that takes into account the kine-
matics of the fingers during the optimization phase. They use a swept volume
precomputation associated with a continuous collision detection technique to
compute, for a given hand/object relative pose, all the possible contacts of each
finger on the object surface. After obtaining an initial grasp provided by the
GraspIt! software [12], they locally optimize the quality of the grasp in the
finger configuration space.

Some works gave more focus on arm and/or robot base inverse kinematics
issues. Berenson et al. [16] were interested in finding grasp configurations
in cluttered environments, for a given robot base position in the object area.
From different object approaches, the authors precompute a set of grasps, all
verifying the force closure property. Instead of trying to solve the arm inverse
kinematics and checking for collisions for each grasp of the set in an arbitrary
order, the authors propose to compute a grasp scoring function for each grasp.
The function is used to evaluate the grasps that are more likely to succeed the
inverse kinematics and collision tests. It is based upon a force closure score, a
relative object-robot position score and an environment clearance score. The
authors of [17] focused on path planning for the robot base (or body) and
arm and presented a planning algorithm called BiSpace. Like in [16], they
first compute a set of grasp configurations for the hand alone. Once one or
more collision free configurations for the hand are found, they become the start
nodes of several RRTs (Rapidly Random-exploring Tree [18]) that will explore
the hand workspace while another RRT is grown from the robot base start
configuration, that explores the robot configuration space.

Some recent works were inspired by results in neuroscience [19, 20] which
have shown that humans mainly realize grasping movement that are restricted
in a configuration space of highly reduced dimensionality. From a large data

3



set of human pregrasp configurations, Santello et al. [19] performed a principal
component analysis revealing that the first two principal components account
for more than 80% of the variance. Ciocarlie et al. [21] called the components
eigengrasps and use them as a base to represent the reduced configuration space
of the hand. They also add the six DOFs of the wrist pose. Then, they use
a simulated-annealing-based optimization method, in eigengrasp space, to find
the best grasp according to an energy function. The energy function takes into
account two parameters. First, the distance between specified points on the
hand and the object surface. Secondly, a quality metric based on the one in [2].

Other neuroscience results suggest a very close connection between visual
perception and the choice of the hand approach to grasp the object. Accord-
ing to Goodale and Milner [22], the human visual system is organized into two
separate parallel pathways: The ventral and dorsal streams, where the ventral
stream plays a major role in perceptual identification of objects, while the dor-
sal stream plays a major role in visually-guided action. Although some recent
studies [23] revealed that there is no evidence of the existence of two distinct
pathways on healthy subjects, contrary to what the previous studies have sug-
gested, nice results were obtained in robotics by combining vision and grasping
action. In these vision-based grasping techniques [24, 25], the grasping points
are directly extracted from image features, instead of using images to build or
localize a 3D model and work with it. Once an image is divided into square
patches, descriptors (e.g. the shape context descriptor [25] and the ones based
on edge, texture, and color filters [24]) are computed on each patch, and a clas-
sifier trained by a supervised-learning method is used to identify patches that
contain grasping points. The 3D poses of the grasping points are then computed
from images obtained from different camera positions.

3 Grasp List Computation

Grasp planning of a complex object has been so far too computationally expen-
sive to consider it can be performed in real-time. Therefore, in a real application,
it is preferable to use precomputations as much as possible. In the proposed
framework, a grasp list is computed off-line for the considered object in order to
capture the best possible the variety of the possible grasps. This list will then be
used to select, in an online application, the grasps that are currently reachable
and, from them, the best one according to a scoring function described further.

In this paper, we consider only precision grasps i.e. contacts are made with
fingertips only. This allows to reason with point contact only, that is the most
common case in literature. It also gives more grasping possibilities as smaller
parts can be grasped, at the cost of a weaker stability compared to power grasps
and a bigger contact pressure, due to smaller contact regions. In the following,
we illustrate the method with the Schunk Anthropomorphic Hand (SAH hand),
depicted in Fig. 3. It has four fingers. Each finger has four joints. Only the
three first joints are actuated, the last one being coupled with the third one.
The thumb has an additional actuated joint to place it in opposition to the

4



other fingers. The method however applies to other hand kinematic structures,
after some minor adaptations.

For some applications, precomputing a reduced set of good grasps is of no in-
terest because it is mainly the situation (positions of the environment obstacles)
that will constrain the way the object can be grasped by the robot.

The grasp list has thus to be as general as possible. Consequently, we choose
to uniformly sample the possible hand approaches. Each hand approach is
characterized by a frame referred as grasp frame. A grasp frame is the transform
matrix of the relative object/palm pose. The grasp frames are centered on the
intersection of the finger workspaces so that they are roughly centered where
the contacts may occur.

Fig. 1 shows the overall principle of the proposed method, that will be de-
tailed in next sections. The inputs to the algorithm are the models of object

Object Model
Grasp Frames
    Sampling

Collision + Stability
              Filter

 Grasp
Frames
   Set 

Grasp
  Set

       Grasp
Computation

   Quality-ordered
     Grasp Set

Hand Model

Object Surface
   Partitioning

  

Finger Workspace 
   Approximation

  

  Grasps
 Ranking

Figure 1: Overview of the proposed method to compute a set of grasps from object’s and
hand’s models.

and hand. The first step is to build a set of grasp frame (i.e. palm configu-
rations) samples (section 3.1). Then for each grasp frame, one has to find the
contacts that will realize a grasp. Two approaches are possible. The first one
is to use finger forward kinematics i.e. to close the fingers until contact. This
usually requires many collision tests and can not find contact in objects holes
or loops (e.g. a mug handle). The second approach is to use finger inverse
kinematics i.e. to compute the points on object’s surface that are reachable by
the fingers. Exact solutions are computationally very expensive if not impos-
sible. Therefore we introduce models to quickly find an approximation of the
accessible part of the objects surface (sections 3.3 and 3.4). The next steps of
the algorithm consist in filtering the grasps to remove collision and instabilities
(sections 3.6.1 and 3.6.2) before ranking them to obtain a set sorted by grasp
quality (section 3.6.3).

3.1 Grasp frame sampling

The possible grasp frames are sampled by the mean of a grid. We set as an input
the number of positions and the number of orientations. Each couple position-
orientation defines a frame. The positions are uniformly sampled in the object
axis-aligned bounding box with a step computed to fit the desired number of

5



position samples. The orientations are computed with an incremental grid like
the one in [26]. Such an incremental grid is a sequence of rotations guarantying
that ∀n ∈ N, the first n elements of the sequence will provide some optimality
on the dispersion of these elements.

Next section explains how grasps are computed from grasp frames.

3.2 Grasp computation from grasp frame

To compute a grasp from a grasp frame, the most expensive computation –
except for collision test– is the finger inverse kinematics. Therefore we make
use of two data structures that let us find quickly the intersection between the
finger workspaces and the object surface. In particular, it is crucial to be able to
know the fastest possible if a finger can not reach the object surface for a given
grasp frame because we do not want to test all the object surface for inverse
kinematics if the object is not reachable at all.

3.3 Object surface model

In our planner, all the bodies are modeled as polyhedra, stored as triangle
meshes. We propose to approximate the object surface with a contact point
set, keeping trace of where it is on the object mesh to be able to get some
local information (surface normal and curvature) later. The set is obtained by a
uniform sampling of the object surface. The sampling step magnitude is chosen
from the fingertip radius. A space-partitioning tree is built upon the point set
in order to have a hierarchical space partition of the points (Fig. 2). It is similar
to a kd-tree. Starting from the original set of points, we compute the minimal
axis-aligned box containing all the points. Such a box is usually referred as
Axis-Aligned Bounding Box or AABB. This first AABB is the tree root. The
root AABB is then split in two along its larger dimension. This leads to two new
nodes, children of the root, containing each a subset of the original point set.
The splitting process is then recursively applied to each new node of the tree.
The process ends when a AABB node contains only one point. We then need to
find the intersection of each finger workspace with the object surface tree. So
we introduce another data structure to approximate the finger workspace and
compute the intersection quickly.

3.4 Finger workspace model

As spheres are invariant in rotation, it is interesting to build an approximation of
the finger workspace as a sphere set. We build incrementally a set S, composed
of spheres fitting inside the workspace, using Algorithm 1. The inputs to the
algorithm are grid approximations W and E of the finger workspace interior
volume and of the finger workspace envelope, respectively. These grids are
depicted in left image of Fig. 3. The interior volume grid is obtained by sampling
the three joint angles over their respective ranges, with values strictly inside their
bounds. The envelope grid is obtained by blocking one of the joint angle to its

6



Figure 2: The object mesh is uniformly sampled with a point set (top images). The point
set is then partitioned using a kind of kd-tree (bottom images).

limit values (lower then upper) and sampling the two others. The idea of the
algorithm is just to find the interior point that maximizes the distance with the
envelope and the previous spheres in S.

For each inner point p (i.e. p ∈ W ), the smallest distance from p to the
boundary points E is computed, noted dmin. The inner point having the biggest
dmin is the center of the first sphere S1, of radius dmin. For all the inner points
that are not inside S1, a new dmin is computed, that is the minimum of the
old dmin and the minimal distance to S1. The point that has the biggest dmin

is the center of the second sphere S2, of radius dmin. This process is repeated
until the maximal desired sphere number kmax is reached or the last computed
sphere has a radius less than a specified threshold rmin. Depending on kmax and
rmin, the sphere set S will cover more or less the real workspace of the finger.
Choosing a small kmax and big rmin will let volumes of the finger workspace not
covered by spheres of S. As these volumes are the closest to the joint limits, it
is worth discarding such volumes to reduce the sphere hierarchy size (Fig. 3).

We keep the ordering of the construction so that the sphere hierarchy starts
from the biggest ones, corresponding to workspace parts that are the farthest
to the finger joint bounds. These bounds were first slightly reduced in order to
eliminate configurations where the fingers are almost completely stretched.

Once we have both the contacts tree and the workspace sphere hierarchy, it
is very fast and easy to determine the intersection of the two sets and so the
contact points.

3.5 Intersection between object surface and finger workspace

All the operations that have to be performed are sphere-box intersection tests.
The intersection is tested from the biggest to the smallest sphere, guarantying
that the “best” parts of the workspace will be tested first, i.e. the one farthest
to the workspace singularities due to the joint bounds. Starting from the tree
root, we test if there is a non null intersection between an AABB-node and

7



Algorithm 1: Finger workspace approximation

input : W= a set of points strictly inside the finger workspace ;
E= a set of points on the envelope of the finger workspace ;
kmax= the desired maximal size of the sphere decomposition
(i.e. the number of spheres) ;
rmin= the desired minimal sphere radius ;

output: S= a set of spheres Sk ordered from the biggest to the smallest
;

S = ∅ ; k = 1 ;
while k < kmax do

foreach p ∈W do
d(p) = min

pi∈(E∪S)
(‖p− pi‖) ;

pbest = {p ∈W : d(p) = max
pi∈W

(d(pi))};

Sk = sphere(center = pbest, radius = d(pbest)) ;
S = S ∪ Sk ;
W = W − {p ∈W : p ⊂ Sk} ;
k = k + 1 ;
if d(pbest) < rmin then

break ;

return S ;

Figure 3: The finger workspace, discretized with a grid (forefinger workspace, left image).
The grid is converted to a volumetric approximation as a set of spheres (right image).

8



the sphere. If not, we stop exploring this branch, otherwise we test the sphere
against the two node children, until we arrive to a leaf node i.e. a single point.
We then just have to test if the point is included in the sphere volume. Fig. 4
shows the different steps to compute candidate contact points from a given grasp
frame, for the SAH hand. At this stage, we just know that the points will pass
the finger inverse kinematics test. No collision tests have been performed yet.

Figure 4: From the intersection between the finger workspace approximation (second image
from the left), a set of reachable points is obtained (third image), before one of them is selected
as a contact point (fourth image).

Algorithm 2 shows how the finger configurations are computed. For a given
grasp frame, the grasp is computed finger by finger, that means that, if we have
the contacts and configurations of the fingers 1 to i− 1, we search for a contact
point for finger i and test collision only with the fingers 1 to i as the other
finger configurations are not yet known. We start from the thumb as no stable
grasp can be obtained without it. If a finger can not establish a contact, it is
left in a rest (stretched) configuration. If we have three contacts or more, we
can proceed to the stability test. Note that, at this stage, we have a collision-
free grasp i.e. no collision between the hand and the object but we do not yet
consider collision with the environment or with the robot arms or body. Fig. 5
shows the candidate contacts for different objects and grasp frames.

Algorithm 2: Intersection between object surface and finger workspace.

foreach fingeri ∈ J1; nbFingersK do
foreach Sj ∈ J1; nbSpheresK do

point set = intersect(Sj , object tree) ;
foreach p ∈ point set do

set finger config from IK(p) ;
collision test(fingeri, object) ;
collision test(fingeri,palm) ;
collision test(fingeri,finger1,...,i−1) ;
if no collision then
→ next finger ;

9



Figure 5: The potential finger contacts, drawn in red, green, blue and magenta for the
thumb, forefinger, middle finger and ring finger respectively. On the right images, no contact
can be found for the ring finger because of its limited workspace. Note that no collision tests
are yet performed at this stage.

3.6 Grasp Filtering And Ranking

At this point, we have a list of hand configurations, such that some of the fingers
contact the object with their tip. Next subsections describe a few more steps
that are required to filter contacts (3.6.1), ensure grasp stability (3.6.2) and
finally rank the grasps according to some quality score (3.6.3).

3.6.1 Contacts Filter

The contacts obtained from the previous step are points on object’s surface
that only verify finger’s inverse kinematics while avoiding collisions –between
object and finger phalanges and between the fingers themselves. These contacts
may not be well-suited for realizing a grasp, so the next step is to remove such
contacts from the grasps, i.e. the corresponding finger configurations will be
kept but the contact will not be taken into account.

The goal of the first filter is to remove contacts such that the finger will not
be able to exert a force in the opposite direction of the surface normal at the
contact. For each contact, the angle between the inverted contact normal and
the major axis of the force ellipsoid of the corresponding finger is computed.
The force ellipsoid is obtained from the jacobian matrix of the finger. Its longer
axis is simply the (normalized) eigen vector of the jacobian that has the biggest
eigen value. This longer axis correspond to the direction that offers the best
transmission ratio from the joint torques to the force exerted at the fingertip
(more details can be found in [27]). If the angle is more than a threshold (60◦)
the contact is rejected. We have chosen to not take into account the abduction
joint in the computation of the jacobian as it is not related to the finger closing
motion. Fig. 6 shows the direction of the axis for the fingers with different
configurations.

10



Figure 6: The major axes of each finger force ellipsoid are drawn as green lines. They are
used to remove candidate contacts according to their normal.

Fig. 7 shows, for different contacts, the inverted contact normal in green and
the direction of best force transmission in red. One can see as the smallest is
the angle between the two lines, the best will be the contact in term of potential
grasping force. Also the direction of best force transmission corresponds to the
direction of the force exerted by the finger if it is closed by giving the same
velocity to the finger joints. This is an easy way to control the hand closing
that do not require specific computation or sensor unlike a more sophisticated
technique relying on grasping force computation and control (e.g. [28]).

Figure 7: The major axis of the forefinger force ellipsoid for different contacts (red lines) and
the normals of the contacts (green lines). It is preferable to have contact with a limited angle
between these two lines (right image) rather that large one (left images) to reduce of contact
slipping if the finger closing strategy does not use grasping force optimization and control.

The stability test only considers contact positions and normals to check if a
grasp is stable or not. It does not take into account the local geometry around
the contacts. For practical applications, the robustness of the grasp selection
with respect to object’s localization error is crucial. Indeed, as one should not
expect a localization system with a perfect accuracy, the robot will not be able
to place its fingers exactly where they are supposed to be to achieve the desired
grasp. As the normal direction at a contact point strongly modifies the grasp
stability, it is better to have contacts on a region where the local variation of
the normal direction is small. This local variation can be encoded via surface

11



curvature as proposed in subsection 3.6.3. However, at some locations, the
discrete approximation of the surface curvature is too rough. Such locations
correspond to points where the object’s surface is not differentiable, such as
sharp edges. Therefore, a second filter is used that considers contacts that are
too close to sharp edges as non relevant and to be removed from the grasp. This
requires to define two parameters: The angle used to classify edges as sharp and
the smallest acceptable distance between a contact point and a sharp edge. We
chose 80◦ for the angle and a distance equal to the width of the fingertips.

3.6.2 Stability Filter

The stability test is based on a point contact with friction model, that explains
why at least three contacts are required. The inputs to the test are the contact
positions and normals. The test is based on a force-closure test, solved as a linear
programming problem [29]. All the grasps that do not verify force-closure are
discarded.

3.6.3 Grasps Ranking

Several aspects can be taken into account to compute a grasp quality mea-
sure [27]. Moreover many scores can be considered if the grasp quality has to be
measured with respect to a particular task (e.g. grasping the object to give it to
a human, to place it on a support, etc.). A trade-off is often chosen with a score
that is a weighted sum of several measures. This leads to the difficult problem
of choosing weights that will be suitable in various situations. Therefore we
chose a strategy of bad candidates removal in the previous step to only use a
comparison function with one criterion at the end, as explained in the following.

As written in section 3.6.1, robustness with respect to contact locations can
be improved if the contacts lie on regions where the local variation of the normal
direction is small. Therefore, a contact where object’s surface curvature is low
is preferable (Fig. 8). A curvature score for each contact is thus introduced.
To compute the curvature score, the object’s surface mean curvature is first
computed at each vertex of the triangle mesh. The curvature values are then
normalized over all the computed values. At each contact point i, the curvature
curvi is obtained by interpolating the curvature values of the vertices of the
triangle the point belongs to from its barycentric coordinates. The curvature
score is computed as ci = 1− curvi.

We use a comparison function between two grasps instead of introducing
a quantitative score, to be able to compare grasps with different number of
contacts. If two grasps g1 and g2 have n1 and n2 contacts, respectively, with
n1 ≤ n2, then we compare the smallest curvature score of the contacts of g1,
noted sc1, to the (n2 − n1 + 1)-th smallest curvature score of the contacts of
g2, noted sc2. If sc1 is bigger than sc2, then g1 is considered as having a better
quality than g2.

12



Figure 8: The mean curvature of the object surface is used as a quality criterion on the
contact position. Surface color varies from red (low curvature, good location) to blue (high
curvature, bad location), through green.

3.6.4 Examples

Fig. 9 shows some of the best quality grasps computed with our algorithm for
objects with complex shape. For the horse statuette on the left, from about
5000 grasp frames sampled, we found 163 valid grasps in less than 5 minutes
on a standard PC1. Similar results can be observed for the mug on the right,
whose 3D model was obtained from a real object.

Figure 9: Some of the various grasps that were computed for objects with complex shape.
Friction cones are also represented.

3.7 Selecting the grasp from the list

Once the grasp list of the specified object is computed, the online phase begins,
whose first step is the selection of a grasp from the list. If there were no ad-
ditional constraints, the best choice would be the grasp with the best ranking.
However, the robot must consider the limited reachability of its arm. Ensuring
the grasp is reachable just requires an inverse kinematics computation. Useful
techniques exist that can precompute a model of the inverse kinematics of the
robot arm and then use it to quickly find the best way to place the robot for a
given end-effector placement [30]. In the case of a single-arm robot with only

1One of the cores of an Intel Core2Duo CPU T7250@ 2.00GHz, equipped with a 2.0 Giga-
Bytes RAM

13



6 DOFs as shown in Fig. 10, randomly sampling the robot base configuration
in a ring centered on the object and testing each grasp of the list for validity is
fast enough.

Figure 10: Examples of grasping configurations found for the whole robot: Far (top images)
and close views (bottom images). Friction cones are also represented.

4 Conclusion

We have presented a method that can be used to compute a list of grasps
for an object with any shape, for a multi-fingered hand. It is based on some
approximation of the object surface and finger workspace volume, that can be
used in combination with a dense sampling of the possible relative hand/object
poses. The computed grasp list gives then a good overview of the variety of
the different ways to grasp the object. Such a grasp set can be especially useful
in the planning of manipulation tasks. A list could be built for each involved
object before the motion planning phase, so that the planner can quickly search
in the lists the grasps that are valid in a particular context.

Future work could concern the grasp quality evaluation. Indeed, in exper-
iments with real platforms, object localization is often inaccurate, leading to
real grasping configurations that can be far from the computed ones. Maximiz-
ing the robustness with respect to object localization error is of great interest.
Favoring contacts where object curvature is low is a simple solution to improve
robustness but better criteria could be implemented like [9].

14



Acknowledgment

The research has been funded by the EC Seventh Framework Programme (FP7)
under grant agreement no. 216239 as part of the IP DEXMART. This work was
also supported by the ANR project ASSIST.

References

[1] V.-D. Nguyen, Constructing force-closure grasps, Robotics and Automa-
tion. Proceedings. 1986 IEEE International Conference on 3 (1986) 1368–
1373.

[2] C. Ferrari, J. Canny, Planning optimal grasps, Robotics and Automation,
1992. Proceedings., 1992 IEEE International Conference on (1992) 2290–
2295 vol.3http://dx.doi.org/10.1109/ROBOT.1992.219918

[3] D. Ding, Y.-H. Liu, S. Wang, The synthesis of 3d form-closure
grasps, Robotics and Automation, 2000. Proceedings. ICRA ’00.
IEEE International Conference on 4 (2000) 3579–3584 vol.4.
http://dx.doi.org/10.1109/ROBOT.2000.845289

[4] A. Bicchi, On the closure properties of robotic grasp-
ing, Int. J. Rob. Res. 14 (4) (1995) 319–334.
http://dx.doi.org/http://dx.doi.org/10.1177/027836499501400402

[5] J. Cornelà, R. Suárez, Determining independent grasp regions on 2d dis-
crete objects, Intelligent Robots and Systems, 2005. (IROS 2005). 2005
IEEE/RSJ International Conference on (2005) 2941–2946

[6] J. Cornellà, R. Suárez, Fast and flexible determination of force-closure in-
dependent regions to grasp polygonal objects, Robotics and Automation,
2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference
on (2005) 766–771.

[7] J. Ponce, S. Sullivan, A. Sudsang, J.-D. Boissonnat, J.-P. Merlet, On com-
puting four-finger equilibrium and force-closure grasps of polyhedral ob-
jects, Int. J. Rob. Res. 16 (1) (1997) 11–35.

[8] M. Roa, R. Suárez, Independent contact regions for frictional grasps on 3d
objects, Robotics and Automation, 2008. ICRA 2008. IEEE International
Conference on (2008) 1622–1627

[9] R. Krug, D. Dimitrov, K. Charusta, B. Iliev, On the efficient computation of
independent contact regions for force closure grasps, in: Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference on, 2010,
pp. 586 –591.

15



[10] A. Miller, S. Knoop, H. Christensen, P. Allen, Automatic grasp planning us-
ing shape primitives, Robotics and Automation, 2003. Proceedings. ICRA
’03. IEEE International Conference on 2 (2003) 1824–1829 vol.2.

[11] C. Goldfeder, P. Allen, C. Lackner, R. Pelossof, Grasp planning via decom-
position trees, Robotics and Automation, 2007 IEEE International Confer-
ence on (2007) 4679–4684

[12] A. Miller, P. Allen, Graspit! a versatile simulator for robotic grasping,
Robotics & Automation Magazine, IEEE 11 (4) (2004) 110–122.

[13] K. Huebner, S. Ruthotto, D. Kragic, Minimum volume bounding box
decomposition for shape approximation in robot grasping, Robotics and
Automation, 2008. ICRA 2008. IEEE International Conference on (2008)
1628–1633

[14] K. Harada, K. Kaneko, F. Kanehiro, Fast grasp planning for hand/arm
systems based on convex model, Robotics and Automation, 2008. ICRA
2008. IEEE International Conference on (2008) 1162–1168

[15] Z. Xue, J. Zoellner, R. Dillmann, Grasp planning: Find the contact points,
Robotics and Biomimetics, 2007. ROBIO 2007. IEEE International Con-
ference on (2007) 835–840

[16] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, J. Kuffner, Grasp
planning in complex scenes, in: Humanoid Robots, 2007 7th IEEE-RAS
International Conference on, 2007, pp. 42 –48.

[17] R. Diankov, N. Ratliff, D. Ferguson, S. Srinivasa, J. Kuffner, Bispace plan-
ning: Concurrent multi-space exploration, in: Proceedings of Robotics:
Science and Systems IV, Zurich, Switzerland, 2008.

[18] S. M. LaValle, J. J. Kuffner, Rapidly-exploring random trees: Progress and
prospects, in: Proceedings of Workshop on the Algorithmic Foundations of
Robotics, 2000.

[19] M. Santello, M. Flanders, J. F. Soechting,
http://www.jneurosci.org/cgi/content/abstract/18/23/10105Postural
hand synergies for tool use, J. Neurosci. 18 (23) (1998) 10105–10115.

[20] E. Todorov, Z. Ghahramani, Analysis of the synergies underlying complex
hand manipulation, Engineering in Medicine and Biology Society, 2004.
IEMBS ’04. 26th Annual International Conference of the IEEE 2 (2004)
4637–4640.

[21] M. Ciocarlie, C. Goldfeder, P. Allen, Dimensionality reduction for hand-
independent dexterous robotic grasping, Intelligent Robots and Systems,
2007. IROS 2007. IEEE/RSJ International Conference on (2007) 3270–3275

16



[22] M. A. Goodale, A. Milner, Separate visual pathways for perception and
action, Trends in Neurosciences 15 (1) (1992) 20–25.

[23] V. H. Franz, K. R. Gegenfurtner, H. H. Bülthoff, M. Fahle, Grasping visual
illusions: No evidence for a dissociation between perception and action,
Psychological Science 11 (1) (2000) 20–25.

[24] A. Saxena, J. Driemeyer, A. Ng, Robotic grasping of novel objects using
vision, International Journal of Robotics Research 27 (2) (2008) 157–173.

[25] J. Bohg, D. Kragic, Learning grasping points with shape context, Robotics
and Autonomous Systems 58 (4) (2010) 362–377.

[26] A. Yershova, S. LaValle, Deterministic sampling methods for spheres and
so(3), in: Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004
IEEE International Conference on, Vol. 4, 2004, pp. 3974 – 3980 Vol.4.

[27] R. Suárez, M. Roa, J. Cornelà, Grasp quality measures, Tech. rep., Uni-
versitat Politecnica de Catalunya (UPC) (2006).

[28] G. Liu, Z. Li, Real-time grasping-force optimization for multifingered ma-
nipulation: theory and experiments, Mechatronics, IEEE/ASME Transac-
tions on 9 (1) (2004) 65 –77.

[29] B. Bounab, A. Labed, D. Sidobre, Stochastic optimization-based approach
for multifingered grasps synthesis, Robotica (28) (2010) 1021–1032.

[30] F. Zacharias, C. Borst, G. Hirzinger, Capturing robot workspace structure:
representing robot capabilities., in: Intelligent Robots and Systems, 2007.
(IROS 2007). 2007 IEEE/RSJ International Conference on, IEEE, 2007,
pp. 3229–3236.

17


