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Unsafe Point Avoidance in Linear State Feedback
Philipp Braun1,2, Christopher M. Kellett1 and Luca Zaccarian3

Abstract

We propose a hybrid solution for the stabilization of the origin of a linear time-invariant stabilizable system with the
property that a suitable neighborhood of a pre-defined unsafe point in the state space is avoided by the closed-loop solutions.
Hybrid tools are motivated by the fact that the task at hand cannot be solved with continuous feedback, whereas the proposed
hybrid solution induces nominal and robust asymptotic stability of the origin. More specifically, we formulate a semiglobal
version of the problem at hand and describe a fully constructive approach under the assumption that the unsafe point to be
avoided does not belong to the equilibrium subspace induced by the control input on the linear dynamics. The approach is
illustrated on a numerical example.

I. INTRODUCTION

Lyapunov functions [6] provide a well established tool to analyze and characterize stability properties of general dynamical
systems and are an important mechanism in the control literature to construct stabilizing feedback laws. While global
asymptotic stability/stabilization (GAS) of unconstrained dynamical systems is well understood, stability/stabilization of
dynamical systems subject to bounded state constraints, e.g., obstacle avoidance for mobile robots or collision avoidance
in the coordination of drones, has yet to be addressed rigorously for general classes of dynamical systems. While in the
context of unconstrained stabilization, discontinuous control laws only need to be considered for the class of systems that
are asymptotically controllable but not Lipschitz continuous feedback stabilizable (e.g., the nonholonomic integrator [4]),
discontinuous feedback laws are necessary in the presence of bounded constraints, independent of the system dynamics
(see [2] for an illustrative proof). A similar need for discontinuous feedback laws is discussed in [7] in terms of topological
obstructions on manifolds.

When using control Lyapunov functions, the need for discontinuous feedback laws precludes the use of Sontag’s universal
formula [14], for example, since it leads to a continuous feedback law. Thus, approaches extending classical results on control
Lyapunov functions by control barrier functions [18] to include constraints in the state space, are limited to constraints defining
unbounded sets. In particular, this impacts approaches in [8], [15], [1], [11], since they rely on the existence of continuous
feedback laws.

Additionally, note that the model predictive control literature does not provide a general framework for obstacle avoidance
and global stabilization. Even though it is simple to define an optimization problem to iteratively compute a feedback law,
proving GAS of the closed loop and recursive feasibility is nontrivial.

One way to define discontinuous feedback laws, and which we will follow in this paper, is to unite local and global
controllers. This approach traces back to [16] and was further investigated and established using the formalism of hybrid
dynamical systems in [9], [17], [10], [12], [13]. While the results in these works are promising and motivating, the papers
address particular applications and do not provide a general tool for controller design subject to bounded state constraints.

In contrast to the approaches discussed above, we propose a constructive method to design a hybrid control law for a
controllable linear system that simultaneously guarantees GAS of the origin and avoidance of a neighborhood around a
given obstacle described by a single point. While we address the case of a single unsafe point, our approach easily extends
to the case of multiple points.

The paper is structured as follows. In Section II the mathematical setting and the problem under consideration are
formalized. In Section III the “wipeout” property is introduced, ensuring that solutions getting close to the obstacle are
guaranteed to leave a neighborhood around the obstacle in finite time. This result is used in Section IV to define a local
obstacle avoidance controller. Section V combines the results to obtain a global hybrid control law. Here, the main result
providing GAS while avoiding the obstacle is stated. The results of the hybrid controller are illustrated on a numerical
example in Section VI before the paper concludes in Section VII.

Throughout the paper the following notation is used. For x ∈ Rn we use the vector norm |x| =
√∑n

i=1 x
2
i . Similarly,

the distance to a point y ∈ Rn is denoted by |x|y = |x − y|. For a closed set A ∈ Rn and r > 0 we define Br(A) =
{x ∈ Rn|miny∈A |x− y| ≤ r}. The closure, the boundary and the interior of a set are denoted by A, ∂A and int(A),
respectively. The identity matrix of appropriate dimension is denoted by I .

* P. Braun and C. M. Kellett are supported by the Australian Research Council (Grant number: ARC-DP160102138. L. Zaccarian is partially supported
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II. SETTING & PROBLEM FORMULATION

In this paper we consider linear dynamical systems

ẋ = Ax+Bu, x0 = x(0) ∈ Rn (1)

with state x ∈ Rn, one dimensional input u ∈ R and matrices A ∈ Rn×n, B ∈ Rn. An extension to the multidimensional
input case u ∈ Rm, m ∈ N, is straightforward. As motivated in the introduction, the paper addresses the following general
problem and provides a solution under some simplifying assumptions described below.

Problem 1: (Semiglobal xa-avoidance augmentation with GAS) Given an “unsafe” point xa ∈ Rn that must be avoided
by the controller, and a stabilizing state feedback us = Ksx, for each δ > 0, design a feedback selection of u that guarantees

(i) (GAS) uniform global asymptotic stability of the origin;
(ii) (semiglobal preservation) the feedback matches the original stabilizer u(x) = Ksx in Rn \ Bδ(xa); and

(iii) (semiglobal xa-avoidance) all solutions starting outside the ball Bδ(xa) never enter a suitable “safety” neighborhood
of xa. y

Problem 1 entails the desirable property that the modifications enforced by the avoidance augmentation are minimally
invasive, because semiglobal preservation ensures that the pre-defined stabilizer us is unchanged in an arbitrarily large subset
of the state space. Note that this goal is similar but not quite the same as the one of safety region avoidance, addressed
in [11] and [1].

In contrast to those works, we do not assume the existence of a control Lyapunov function and a control barrier function
avoiding an a priori fixed neighborhood around xa, characterized in item (iii). Instead we provide a constructive method to
design the control and provide a corresponding bound on the size of the neighborhood that can be avoided. To keep the
discussion simple, we only address one point xa but our construction carries over trivially to the case of multiple unsafe
points, always providing a constructive solution to the corresponding semiglobal avoidance design. We emphasize again
that Problem 1 cannot be solved by a continuous feedback, as motivated in the introduction, and thus we provide a hybrid
solution to the problem here. For our construction, we will enforce the following assumption on the system data.

Assumption 1: Basic assumptions:
(a) Matrix As := A+BKs is Hurwitz.
(b) Vectors Axa and B are linearly independent.
(c) Vector B is a unit vector (namely |B| = 1).
(d) The norm x 7→ |x|2 is contractive under the stabilizer us = Ksx (equivalently, As +ATs < 0). y
We note that Assumption 1(a) is a necessary condition for Problem 1(i,ii), whereas Assumptions 1(c) and 1(d) are

simplifying assumptions that can be easily removed by suitable input and state transformations, respectively. In particular,
Assumption 1(c) can be achieved through the definition ẋ = Ax+B◦u◦, where u◦ := |B|u and B◦ := B/|B|. With respect
to Assumption 1(d), if V (x) = xTSx is a Lyapunov function for the closed-loop system ẋ = Asx, then V (x̃) = |x̃|2 is a
Lyapunov function in the coordinates x̃ = SFx, where STFSF = S denotes the Cholesky factorization of S.

Assumption 1(b) is the only substantial restriction that we make in this paper and will be addressed in future work. Even
under this simplifying assumption it appears that Problem 1 requires a sufficient amount of sophistication. Assumption 1(b)
enables us to exploit the convenient property that solutions transit through any small enough neighborhood of xa indepen-
dently of the input u. This property, that we call the “wipeout” property, is characterized in Section III hereafter, and is
one of the two main ingredients of our solution. The other ingredient corresponds to a suitable repulsive control design,
characterized in Section IV, ensuring that solutions that approach xa are suitably modified to avoid entering a peculiar
“shell” corresponding to the above characterized “safety neighborhood” of xa. We emphasize that the two above mentioned
ingredients, developed in Sections III and IV below, are independent of each other, which establishes a desirable modularity
in our design, prone for future developments of this research direction.

III. η-NEIGHBORHOOD AND WIPEOUT PROPERTY

In this section we provide a thorough characterization of the implications of Assumption 1(b) to ensure that local equilibria
around xa cannot be created by whatever feedback solution u we may design to solve Problem 1. We first provide a few
equivalences.

Lemma 1: The following items are equivalent:
(i) Assumption 1(b) holds.

(ii) The point xa cannot be an induced equilibrium of the linear dynamics, namely

xa /∈ E := {y ∈ Rn : ∃u∗, Ay +Bu∗ = 0}. (2)

(iii) It holds that
ABxa := (I −BBT )Axa 6= 0. (3)

Proof: The equivalence between (i) and (ii) is a trivial consequence of the definition of linear independence.
“(ii) ⇒ (iii):” If (I −BBT )Axa = 0, then selecting u∗ = −BTAxa leads to Axa +Bu∗ = 0.



“(iii) ⇒ (ii):” If ∃u∗ such that Axa + Bu∗ = 0, then, using BTB = 1 and Axa = −Bu∗ implies (I − BBT )Axa =
Axa +BBTBu∗.

In light of the property in (2), an important parameter in the control design proposed here is the (positive) distance between
xa and the subspace E , defined as

η2 := min
y∈E
|xa − y|2. (4)

The parameter η is a positive scalar under Assumption 1 (by virtue of Lemma 1) and its positivity is essential for establishing
that there exists a linear function of the state that monotonically increases in the interior of Bη(xa), regardless of the choice
of the input u. This property, called “wipeout” henceforth, is useful to establish that any solution flowing in Bη(xa) must
approach its boundary and leave any compact subset of its interior, in finite time. This wipeout feature helps in the analysis
of the evolution of solutions within Bη(xa), because solutions naturally drift away from small enough neighborhoods of xa,
regardless of the input u.

Proposition 1: (Wipeout Property). Let Assumption 1 hold. Consider the function H(x) := xTa A
T
Bx, where AB is defined

in (3), and the scalar η > 0 is defined in (4). For each x ∈ Bη(xa) we have 〈∇H(x), Ax+Bu〉 ≥ 0 for all u ∈ R. Moreover,
for each η̄ < η, there exists h > 0 such that

〈∇H(x), Ax+Bu〉 ≥ h, ∀u ∈ R,∀x ∈ Bη̄(xa). (5)
Proof: Consider the identities, where we use the fact that the projection ΠB := (I −BBT ) satisfies Π2

B = ΠB :

Ḣ(x) = xTa A
T
Bẋ = xTa A

T (I −BBT )(Ax+Bu)

= xTa A
T (I −BBT )Ax = (ABxa)T (ABx). (6)

By definition of η, and the left expression in (6), we know that Ḣ(x) 6= 0 in Bη(xa). By the right expression in (6),
we know that Ḣ(xa) > 0 and from continuity we obtain Ḣ(x) > 0 for all x ∈ int(Bη(xa)). Then (5) follows from
Bη̄(xa) ⊂ int(Bη(xa)), for all η̄ < η. Finally, 〈∇H(x), Ax+Bu〉 ≥ 0 in Bη(xa) follows from continuity of Ḣ(·).

IV. UNSAFE SHELL AND AVOIDANCE CONTROLLER

A. The eye-shaped shell S
A second ingredient used in this paper, whose construction is parallel to, and independent of the wipeout function H

introduced in the previous section, is the safety or avoidance controller ua, acting in a neighborhood of the unsafe point xa.
The neighborhood is a nonsmooth compact set, having the shape of an eye, as visualized in Figure 1, defined based on two
geometrical parameters:

1) the size δ ∈ R>0 of the shell;
2) the aspect ratio µ ∈ (0, 2) of the shell.
Based on these two parameters, the shell S is the following intersection between two balls centered at some shifted

versions of the unsafe point xa:

δµ := δ
(

1
µ −

µ
4

)
, (7a)

Oq := B(µδ2 +δµ)(xa − qδµB), q ∈ {1,−1}, (7b)

S(δ) := O1

⋂
O−1. (7c)

Figure 1 represents a few possible shapes of these sets together with the distances that go with them. Note that µ ∈ (0, 2)
fixes the aspect ratio of the shell, whose height corresponds to µδ, which resembles an eye that is increasingly closed as
µ approaches its lower limit 0. Conversely, as µ approaches its upper limit 2, the eye is increasingly open and converges
to a circle. In our construction, we will assume that a certain desired aspect ratio µ is fixed a priori, and we will establish
suitable results by exploiting the fact that the shell S(δ) can be made arbitrarily large and arbitrarily small, by adjusting the
positive parameter δ. In particular, the following fact will be used throughout our constructions. A proof of the statement
can be found in the preprint [3].

Lemma 2: Given an aspect ratio µ ∈ (0, 2), for each δ > 0, the following inclusions hold for the shell S(δ) defined in
(7):

Bµδ
2

(xa) ⊂ S(δ) ⊂ Bδ(xa). (8)

B. Avoidance Controller

The shell S(δ) introduced in the previous section is intrinsically composed of two separate boundaries, thereby simplifying
the design of a hybrid-based avoidance controller that depends on a logical state q ∈ {1,−1}. The value of q indicates
whether the avoidance controller should cause sliding of the solution “under” the shell (so to speak, based on the “up”
direction of the unit vector B) if q = −1, or over the shell if q = 1.
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Fig. 1. The construction of the eye-shaped shell S(δ) around the unsafe point xa, based on the size δ ∈ R>0 and the aspect ratio µ ∈ (0, 2).
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Fig. 2. The shrunken shell Sh(δ) and the half shells S/1 and S/−1 considered in Proposition 2.

We define such a “binary” avoidance controller as a parametric state feedback defined for q ∈ {1,−1} as

ua(x, q) := −〈x− (xa − qδµB), Ax〉
〈x− (xa − qδµB), B〉

. (9)

The avoidance control law (9) is activated by some hybrid logic in the solution proposed in Section V, wherein a suitable
h-hysteresis switching is enforced, based on a region Sh(δ) obtained by shrinking S(δ) by a factor h ∈ (0, 1) as follows,
and according to the pictorial representation in Figure 2:

Oh,q := Bhµδ2 +δµ
(xa − qδµB), q ∈ {1,−1}, (10)

Sh(δ) := Oh,1
⋂
Oh,−1. (11)

It is clear that for each q ∈ {1,−1} the set Oh,q is a ball sharing the same center as Oq but having a smaller radius that
approaches δµ as h approaches 0. As a consequence, Sh(δ) is a smaller eye-shaped set, with the same aspect ratio as S(δ)
(see Figure 2).

The desirable features of the avoidance controller (9) is that it enforces sliding of the solution above or below the shell
Sh(δ) because it does enforce a constant distance from the upper and the lower balls Oh,1, Oh,−1 involved in the definition



xaxa D−1
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B B

xa−x

Sh(δ) Sh(δ)

Fig. 3. The upper and lower half-shells associated to D1 and D−1, respectively, in (14).

of Sh(δ). Such a desirable sliding mechanism is well understood in terms of the following closed half shells

S/q := S(δ) ∩ {x ∈ Rn : qBT (x− xa) ≥ 0}, q ∈ {−1, 1}, (12)

represented in Figure 2.
The following proposition ensures that whenever using the avoidance controller (9) with a suitable value of q, the ensuing

solution does not enter the shell Sh(δ) and actually remains at a constant distance from the corresponding ball containing
Sh(δ).

Proposition 2: Let µ ∈ (0, 2/
√

3), δ > 0 and h ∈ (0, 1) be given. For each q ∈ {−1, 1} and any point x0 ∈ Sh(δ) ⊂ S(δ),
the local controller u = ua(x0, q), in (9), is well defined. Moreover, the solution to (1) with u = ua(x, q) starting at x0

remains at a constant (non-negative) distance from the center xa − qδµB of the ball Oq until it remains in S(δ). y
Proof: We show the assertion of the lemma for all x0 ∈ S(δ), which includes the results for x0 ∈ Sh(δ) due to the

set inclusion Sh(δ) ⊂ S(δ) for all h ∈ (0, 1). To simplify the notation we define the points

pq = xa − qδµB, q ∈ {−1, 1},
as the centers of Oq . As a first step, we show that the local control law (9) is well defined under the condition µ ∈ (0, 2/

√
3),

i.e., we show that 〈x − pq, B〉 6= 0 for all x ∈ S(δ), q ∈ {−1, 1}. Due to the definition of δµ in (7a) and µ satisfying
0 < µ < µ∗ := 2/

√
3, it holds that

δµ = δ
µ

(
1− µ2

4

)
> δ

µ∗

(
1− (µ∗)2

4

)
= δ√

3
= δµ∗

2 > δµ
2 ,

which particularly implies that pq /∈ O−q , q ∈ {−1, 1}. Thus, every x0 ∈ S(δ) can be represented as x0 = pq+qαB+βB⊥,
where α > 0, β ∈ R and B⊥ ∈ Rn satisfies 〈B,B⊥〉 = 0. Due to this definition, it holds that

〈x0 − pq, B〉 = 〈pq + qαB + βB⊥ − pq, B〉
= qα|B| = qα 6= 0

and the local controller (9) is well defined for all x0 ∈ S(δ).
To show the second statement of the proposition, which means |x(t)|pq is constant for the closed-loop system using the

feedback law ua(x, q), we show that d
dt |x(t)− pq|2 = 0 is satisfied. Due to the definition of the control law (9), it follows

immediately that

〈x− pq, Ax+Bua(x, q)〉 = 0

holds for all x ∈ S(δ).
The avoidance controller ua provides a tool to ensure that the closed-loop solution does not enter the inner shell Sh(δ).
In the next section we show how the avoidance controller can be combined with the stabilizing controller us to ensure
asymptotic stability of the origin.

Remark 1: Note that the non-smoothness of the boundary of the shell S(δ) in ∂O−1 ∩ ∂O1 is an essential property for
the avoidance controller (9). The idea of sliding along the boundary S(δ) cannot be replaced by sliding along the boundary
of a set with a smooth boundary, e.g., a ball centered around xa. In the case of a smooth boundary there always exists at
least one point x on the boundary such that 〈x− (xa +αB), B〉 = 0 for some α ∈ R, i.e., the tangent of the boundary in x
is aligned with the direction of the vector B. Thus, a finite input u does not keep the closed-loop solution on the boundary.
y

V. A HYBRID CONTROL SOLUTION

A. Hybrid dynamics selection

To ensure global asymptotic stability of the origin for the closed loop, we need to patch the two feedback laws us(x)
(the stabilizing controller), and ua(x, q) (the avoidance controller). Such a patching operation is done here using a hybrid
switching strategy exploiting the h-hysteresis margin between Sh(δ)) and S(δ). Hybrid feedback is a natural choice in light
of the discussion above that no continuous feedback can simultaneously ensure GAS of the origin and avoidance of xa.



To suitably orchestrate the choice of the active controller, we define an augmented state ξ = (x, q) for the hybrid dynamics,
comprising the plant state x and the quantity q ∈ {1, 0,−1} already discussed in the previous section and responsible for
whether solutions should slide above (q = 1) or below (q = −1) the shell when using the avoidance feedback. The value
q = 0 is associated to the activation of the stabilizing feedback us. The control selection is summarized by the feedback law

u = γ(x, q) := (1− |q|)us(x) + |q|ua(x, q). (13)

The overall idea of the controller is to use the feedback law us until solutions enter the shell S(δ). To ensure a robust
switching between the local and global controllers, we exploit the h-hysteresis and orchestrate the switching of the logic
variable q as follows:

ξ+ =

[
x+

q+

]
∈
[

x
Gq(ξ)

]
, ξ ∈ D1 ∪ D−1 ∪ D0 (14)

Dq :=
(
Sh(δ) ∩ S/q

)
× {0}, q ∈ {1,−1}

D0 := Rn \ S(δ)× {1,−1}

Gq(ξ) :=


1, if ξ ∈ D1 \ D−1

−1, if ξ ∈ D−1 \ D1

{1,−1} if ξ ∈ D1 ∩ D−1

0 if ξ ∈ D0,

(15)

where, according to the representation in Figure 3, the two sets D1 and D−1 correspond to the upper and lower halves of
the shell Sh(δ). Note that these sets have a nonzero intersection, associated to the equator plane of the shell. To ensure
suitable regularity properties of the jump map G in (15), we perform a set-valued selection, which allows for either q+ = 1
or q+ = −1. Note that this does not generate multiple simultaneous jumps because we impose q = 0 in the jump sets
D1 ∪ D−1, so that, once a decision has been made about whether sliding above or below the shell, this decision cannot be
changed.

The hybrid closed-loop behavior is completed by the following flow dynamics, emerging from (1) and (13),

ξ̇ =

[
ẋ
q̇

]
= F (ξ) =

[
Ax+Bγ(x, q)

0

]
, ξ ∈ C, (16)

where the flow set C, is defined as the closed complement of the union of the jump sets defined above. In particular, using
Ξ := Rn × {−1, 0, 1}, we select

C := Ξ \ (D1 ∪ D−1 ∪ D0), (17)
which, using the fact that S/1 ∪ S/−1 = S(δ) ⊃ Sh(δ), can also be expressed as

C =C1 ∪ C0 (18)

:={ξ : |q|=1 ∧ x ∈ S(δ)} ∪ {ξ : q=0 ∧ x ∈ Rn\Sh(δ)}.
The selection above for the proposed jump sets has the important advantage that immediately after a jump the solution

is in the interior of the flow set at a distance of at least (1− h)µδ/2 from the jump set D. Before our main result is given
in the next section, we note that the following structural regularity conditions of the dynamical system are satisfied, whose
proof is straightforward and therefore omitted.

Lemma 3: The closed-loop dynamics (13)–(17) satisfies the hybrid basic conditions in [5, Assumption 6.5] and all maximal
solutions are complete. y

B. Main result: GAS and local preservation

We now prove that the hybrid architecture proposed in the previous section provides a solution to Problem 1 discussed in
Section II. In particular, we provide quantitative information about a maximal size δ∗ of the shell S(δ), such that the hybrid
control solution in (13)–(17) solves Problem 1 for any δ < δ∗. A trivial corollary of our result is that regardless of all the
parameters, there always exists a small enough δ for which our solution is guaranteed to solve Problem 1.

To the end of providing the value δ∗, we need the following quantity

ζ := − 2|As|
λmax(ATs +As)

> 0, (19)

which is positive due to Assumption 1(d), ensuring that ATs +As is negative definite. Then, we define δ∗ as

δ∗ := 1
2

(
|xa|+ η+ ζ −

√
(|xa|+ η+ ζ)2 − 4|xa|η

)
>0, (20)

which is notably independent of µ and is well characterized in the next lemma.
Lemma 4: Under Assumption 1, given η in (4), the scalar δ∗ in (20) is a positive real number, and for any value of δ

satisfying δ < δ∗, we have δ < η. y



S(δ)

Bδ(xa)

Bη(xa)

x(t0, j0)

x(tin, j0)

x(tout, j1)

x(t1, j1)

Fig. 4. The intuition behind the two statements of Proposition 3 and the hybrid times (t0, j0) ≤ (tin, j0) ≤ (tout, j1) ≤ (t1, j1), characterized in its
statement and its proof.

Proof: Since η, ζ > 0 and η < |xa|, by expanding the squared terms, it is straightforward to verify the inequalities.

0 < (|xa| − η + ζ)2 < (|xa|+ η + ζ)2 − 4|xa|η. (21)

Taking the square root and adding 2η on both sides provides

|xa| − η + ζ + 2η <
√

(|xa|+ η + ζ)2 − 4|xa|η + 2η.

Finally, moving the square root to the left leads to the estimate

2δ∗ = |xa|+ η + ζ −
√

(|xa|+ η + ζ)2 − 4|xa|η < 2η,

which shows the assertion δ∗ < η.
The proof is complete since δ∗ ∈ R>0 follows from (21), showing that the square root in (20) is positive.
The selection of δ∗ in (20) is used in the following proposition.
Proposition 3: Let Assumption 1 hold for the hybrid system (13)–(17) and let δ ∈ (0,min{ η

1+ζ , δ
∗}). Then the following

properties hold for solutions ξ(·, ·) starting at ξ0.
(i) (Wipeout property) Let ξ0 ∈ Bδ(xa)×{−1, 0, 1}. Then there exists a time (t∗, j∗) ∈ dom(ξ) such that either ξ(t∗, j∗) ∈

∂Bη(xa)× {−1, 0, 1} or ξ(t, j) /∈ Bδ(xa)× {−1, 0, 1} for all (t, j) ≥ (t∗, j∗).
(ii) (Decrease property) Let ξ0 ∈ Rn \ S(δ) × {−1, 0, 1}. Additionally, consider any four times in the domain of ξ(·, ·),

such that

(t0, j0) ≤ (tin, j0) ≤ (tout, j1) ≤ (t1, j1), (22)

and
ξ(t0, j0), ξ(t1, j1) ∈ ∂Bη(xa)× {0},
ξ(tin, j0), ξ(tout, j1) ∈ ∂Bδ(xa)× {0}. (23)

Then either

|x(t1, j1)| < min
z∈S(δ)

|z| or |x(t1, j1)| ≤ |x(t0, j0)| − ε (24)

for ε > 0, is satisfied. y
The intuition behind the two items of Proposition 3 is illustrated in Figure 4. Item (i) ensures that any solution evolving

with the avoidance controller ua will switch to the stabilizing controller us and will not switch back to ua unless its x
component first reaches the set ∂Bη(xa). Item (ii) ensures that any solution crossing ∂Bη(xa)×{0} at some time (t0, j0) and
then switching to the avoidance controller ua, if crossing again ∂Bη(xa)×{0} at some later time (t1, j1), must satisfy (24),
compensating for the increase in |x|2 due to the avoidance controller. The two cases in (24) are helpful to prove asymptotic
stability. If a solution enters and leaves the ball Bη(xa) a decrease of at least ε in the Lyapunov function V (x) = |x| is
guaranteed. Otherwise, x(t1, j1) < minz∈S(δ) |z| implies q(t1, j1) = 0 and u = us which leads to the fact that B|x(t1,j1)|(0)
is forward invariant and thus x(t, j) /∈ S(δ) for all (t, j) ≥ (t1, j1). A proof of Proposition 3 and of Theorem 1, which is
given next, can be found in the preprint [3].

Theorem 1: Let Assumption 1 be satisfied. Given any scalar δ ∈ (0,min{δ∗, η
1+ζ }), according to (20), any µ ∈ (0, 2/

√
3),
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Fig. 5. Avoidance of the unsafe point xa = [0 1]T and closed-loop solutions corresponding to initial values with |x0| = 2 (and q0 = 0). Additionally,
the S(δ), the η- and δ-ball, and the subspace E are shown.

and h ∈ (0, 1), the hybrid controller (13)–(17) guarantees that
(i) the origin ξ = (x, q) = (0, 0) is uniformly globally asymptotically stable from Ξ;

(ii) for any initial condition ξ(0, 0) ∈ (Rn\S(δ)) × {−1, 0, 1}, all the arising solutions satisfy |x(t, j)|xa
≥ hµδ2 for all

(t, j) ∈ dom(ξ).
(iii) for any initial condition ξ(0, 0) ∈ (Rn\{xa})×{0}, all the arising solutions satisfy x(t, j) 6= xa for all (t, j) ∈ dom(ξ).

y
Note that Theorem 1 in particular provides a solution to Problem 1. Due to the selection δ < min{δ∗, η

1+ζ }, it is possible
to make the set S(δ) arbitrarily small, which in turn implies: (a) semiglobal preservation, because no solution can flow
with q 6= 0 outside S(δ), (b) semiglobal xa avoidance, because Theorem 1(ii) implies that solutions never enter the “safety
neighborhood” Bhµδ2 (xa), and (c) GAS, which is guaranteed directly by Theorem 1(i).

VI. NUMERICAL EXAMPLES

To illustrate our results we simulate the controller for the simple two-dimensional system defined by

A =

[
−1.0 1.5
−1.5 −1.0

]
, B =

[
1
0

]
(25)

and one obstacle xa = [0 1]T , which does not belong to the subspace E in (2). The eigenvalues of matrix A are given
by σ(A) = {−1 + 1.5i,−1 − 1.5i} and matrix A + AT satisfies σ(A + AT ) = {−2,−2}, which implies that for us = 0
and As = A the origin of the closed-loop system is asymptotically stable and V (x) = |x|2 is a Lyapunov function. The
optimization problem (4) provides a value of η = 0.8321, we set µ = 1.15 < 2/

√
3 leading to ζ = 1.8028 and δ∗ = 0.2455.

For the hysteresis we use a value of h = 0.9 and δ = δ∗ (even though the condition δ < δ∗ is not satisfied). The simulation
results for 50 initial conditions with |x0| = 2 (and q0 = 0) are shown in Figure 5, where the subspace E is shown as a
red line. As one might expect from the theoretical results, all simulated solutions asymptotically approach the origin while
avoiding the neighborhood around the unsafe point.

VII. CONCLUSIONS

In this paper we proposed a hybrid controller ensuring GAS of the origin and avoidance of a neighborhood around a
given point xa 6= 0 representing an obstacle. In this respect, an explicit formula for the control law as well as for the size
of the neighborhood are given. Even though the results are conservative with respect to the size of the neighborhood and
only a single obstacle is considered, the results are presented in such a way that an exension to multiple obstacles and more
general system dynamics is straightforward.
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