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Abstract—The one-third power law models how human
speed of motion depends on the path’s curvature. This
paper studies the interest of using this law for humanoid
robot walking control along a planar reference trajectory.
We predicted that humanoid robots following a refer-
ence trajectory may benefit from one-third power law
speed profiles by reducing closed-loop drift and energy
consumption. To robustly execute reference trajectories,
we use contracting morphed Andronov-Hopf oscillators,
regularized to follow a power law while converging
to a planned cyclic trajectory. The walking pattern
generator of HRP-2 uses these guiding dynamics to
walk along elliptic trajectories. In dynamic simulation,
we observe minimal geometric drift with the one-third
power law, demonstrating increased precision compared
with constant speed and other power laws. Closed-loop
experiments on HRP-2 result in a small drift of all
power law motions from the reference trajectory, showing
the efficiency of the control architecture. We observe
that the one-third power law controller demands less
compensatory action, and therefore lowers the burden
on the hardware. Slowing in curved movement regions
also unexpectedly allows for faster overall movement.

I. INTRODUCTION

Can planning locomotion speed according to
human-like power laws improve humanoid robot
locomotion? Specifically, we examine if the speed
of the averaged center of mass reference trajectory
affects robot performance. Unfortunately, gener-
ated locomotion trajectories may drift from the
reference trajectory. A robust control strategy must
therefore both correct movement drift and guaran-
tee power law behavior on the actual trajectory.
To generate robust power law behavior, we use a
globally contracting dynamical system converging
to the reference trajectory, regularized to follow
power law behavior. To demonstrate our methods,
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Fig. 1: Power law based closed-loop control. An ellipse reference trajectory
is specified and used, together with the power law defined by the velocity
gain factor γ and β exponent constants, to generate the reference vector
field. [x, y, θ] define the position and orientation of a frame attached to the
robot’s center of mass. The reference vector field defines center of mass
velocity c∗ = [ẋ, ẏ, θ̇] for the walking pattern generator. This particular
walking pattern generator provides reference trajectories for the balanced
center of mass cref , the associated center of pressure zref , and the
feet LFref ,RFref . A whole body motion generator uses the reference
trajectories to generate a command q realized by the robot (for HRP-2,
this is the configuration vector). The localization component uses position
measurements to provide a position w ∈ SE(3) of the robot, that again is
used as input to the vector field to provide the correcting velocity vector c∗.
This paper shows that the closed-loop approach reduces motion drifts, but
not entirely, and suggests that using human-like power laws may help robots
to perform more accurate and more stable motion, while not reducing, or
even increasing, movement speed.

we run and analyze dynamic simulations and actual
experiments on a HRP-2 robot. For the sake of
simplicity, the robot is given an elliptic reference
trajectory which obeys one of four distinct power
laws.

A. Power laws governing human motion

The speed of human end effector motion is
characterized by the one-third power law behavior;
movement speed v decreases when path curva-
ture κ increases, following the quantitative rela-
tion v = γκ−β , with γ the piecewise constant
velocity gain factor and β = 1/3 the exponent.



This law, often termed the two-thirds power law
due to equivalent formulation determining angular
speed A = γκ2/3, was first found for drawing
hand motion [21]. It appears for different end
effectors under general settings; smooth pursuit
eye movements [8], leg motions [19], and even
speech [38]. For locomotion along elliptic trajec-
tories, Vielledent et al. found that the center of the
head obeyed the one-third power law [40]. Hicheur
et al. found that the shoulders’ midpoint always
obeyed a power law, with different β exponents for
each walking template [15]. Power law behaviors
appear to emerge from jerk minimization [41],
[35], [18], [3]. Alternatively, the specific one-third
power law, which is equivalent to moving with a
constant equi-affine speed [34], [10], may result
from equi-affine metrics used by the human brain
[11], possibly in a mixture with Euclidean and full
affine metrics [2].

Tuned to perception of biological motion, the
human visual system perceives one-third power
law motion as uniform, rather than movement
with constant speed [42]. Coupling between the
motor and visual systems in the human brain is
supported by stronger and more widespread brain
activation patterns [6], and greater event-related
desynchronization [25], occurring when subjects
watch one-third power law motion, compared with
other power law motions. Even imagined move-
ments slow down in curved regions according to
the one-third power law [28], [20]. This evidence
suggests that humans will perceive a humanoid
robot moving according to the one-third power
law as more human-like, finding his motions more
predictable and easier to follow.

B. Guiding trajectories for humanoid robots
Planning humanoid robot locomotion is clas-

sically accomplished by constructing an optimal
sequence of footstep transitions, taken from a
discrete set of possibilities, that is kept small to
allow reasonable computation time [5], [17]. The
limitations of this approach in restricted scenarios
yield an alternative approach; planning a refer-
ence trajectory which allows generation of the
needed contacts [31]. This reference trajectory is
usually generated considering balance constraints
and geometrical constraints such as feasibility and
manipulability. This approach significantly reduces

the burden on the motion planner, but raises the de-
mand for controllers capable of finding footsteps or
contacts in real time. Planning general contacts is
still a very hard problem [9], and finding a center of
mass trajectory for a given set of contacts was only
recently accomplished [4]. For the restricted case
of walking on flat ground, several new approaches
[7], [26], [14] allow automatic finding of footstep
positions. Therefore, it is now possible to move
a humanoid robot by providing only a reference
trajectory [26], [14].

In the current study, we attempt to robustly
regulate the walking motion on flat ground given
a planned reference trajectory. A stable regulation
process is important for correcting drifts, that ap-
pear due to the interaction of the humanoid robot’s
soles with the ground [37]. The closed-loop control
does reduce the drift. However, in this study we
observe that the speed profile of the reference
trajectory is crucial; setting a constant reference
speed is too naive, and causes a steady-state error
in dynamic simulation.

C. Robust trajectories with contracting dynamics
Contracting dynamics provide a robust control

policy for generating motion patterns; in presence
of bounded noise exponential time convergence
to a limit cycle or point is guaranteed [22]. By
mapping an attractor of a contracting dynamical
system to a movement primitive, Giese et al. [13]
suggested a general control method for high di-
mensional systems. In robotics, contraction was
already used for robust synchronization of phases
of control pattern generators [36] as well as for
learning a set of dynamic motion primitives [30].
In this work, we show how contracting dynamics
are useful to robustly generate kinematic power law
behavior.

II. REACTIVE WALKING PATTERN
GENERATOR

In order to test power law motions on a hu-
manoid robot we used a recently developed walk-
ing pattern generator [26]. This walking pattern
generator allows the user to control a humanoid
robot as if it was a mobile platform. The input
of the walking pattern generator is the velocity
c∗ = [ẋ, ẏ, θ̇] relative to the ground plane, used
as a guiding trajectory for the center of mass. The



walking pattern generator computes automatically
the foot LFref ,RFref , the center of mass cref , and
the center of pressure zref trajectories, allowing
the robot to maintain two additional constraints
during walking: on the placements of foot steps and
on the balance. For kinematic and auto-collision
reasons, the foot steps are limited to predefined
polyhedra. For maintaining balance, the center of
mass dynamics is constrained. Assuming a linear
inverted pendulum, its associated center of pressure
is constrained around the center of the support foot
position to maintain balance. Tracking the input
velocity by the center of mass has a lower priority
than footsteps placement and balancing, therefore
the robot creates a swing motion of the center of
mass from one foot to another even if the reference
velocity has no coronal component. The swinging
motion causes perturbations with respect to the
reference trajectory [37]. As seen in our dynamic
simulations, the swinging motion induces delays
and sometimes shifts movement away from the
planned reference trajectory. To mitigate the effect
of the center of mass swing motion, we considered
the barycenter of the robot’s feet as the robot’s
location. This point reflects the robot’s position,
without the coronal oscillations. In addition to
the walking pattern generator, we used a whole
body motion generator [23] to compute a motor
command realizing the reference trajectory. Finally,
two local feedback loops are used to bring back
the robot to the reference trajectory; a PID con-
troller over the orientation of the robot, and more
importantly a vector field providing the correcting
linear velocity for the walking pattern generator.
We describe the construction and regularization of
this vector field in the next section.

III. REGULARIZATION OF
CONTRACTING OSCILLATORS

We now describe how to generate power law
behavior while correcting for drifts causing devia-
tion from the reference trajectory. This correction
is a core function of the closed-loop control system
guiding the locomotion of HRP-2 (see Fig. 1).

For a given reference trajectory we design a
contracting system; the reference trajectory being
a specific solution of the global dynamics. A dy-
namical system is contracting if all solutions in
the contraction region converge exponentially to

Fig. 2: Polar morphed Andronov-Hopf oscillator with a Limaçon limit cycle.
φ, ρ dynamics define two copies of dynamics for each x, y point.

each other. Then there exists an attractor in this
contraction region, and all trajectories in the re-
gion converge exponentially to it [22]. Contraction
guarantees the exponential decays of perturbations.
Partial contraction is contraction towards any of the
particular solutions residing inside flow-invariant
manifold of the dynamics [33]. For the current
work, it suffices that the reference trajectory is
an invariant one dimensional submanifold of par-
tially contracting dynamics, with local contraction
towards but not along the trajectory. The partial
contraction is easy to construct for an arbitrary
trajectory, as we demonstrate for cyclic trajectories,
the natural test ground of power laws in human
motion. We regularize each partially contracting
system to obey a power law on all orbits, including
the reference trajectory.

A. Polar morphed Andronov-Hopf oscillators

We recall the construction of a stable dynamical
system with desired limit cycle trajectory, a polar
morphing of the basic Andronov-Hopf oscillator
[29]:

φ̇ = ω (1)
ρ̇ = α(1− ρ)

Defined for x, y Cartesian coordinates of the point
in the phase plane as ρ = 1

r2
= 1

x2+y2
, φ =

tan−1( y
x
) describing the radial and the angular

dynamics, and ω, α > 0 constants. It is partially
contracting, since the Jacobian of the ρ subsystem
is uniformly negative definite Jρ < −α < 0.
For any reference path of the limit cycle attractor,
r0(φ), given in polar coordinates, this oscillator can
be morphed [1]:

φ̇ = ω (2)

ρ̇ = α(F (φ)− ρ) + ω
dF

dφ



It is still partially contracting, with F (φ) = 1
r20(φ)

depending on the limit cycle shape. Interestingly,
we may choose the range of φ to be [0, 2πn) for
any integer n, not just n = 1. This allows a limit
cycle with winding number n, which may self-
intersect when viewed in (x, y) plane (see Fig. 2).
The dynamics defined in the (φ, ρ) plane map to
dynamics of (x, y) plane through a covering map;
each point (x, y) in the punctured plane has n
copies of dynamics, one surrounding each of its
polar angles φi ∈ [2π(i − 1), 2πi). To run the
dynamics on the (x, y) plane, keeping track of the
winding of φ is needed.

(a) (b)

(c) (d)

(e) (f)

Fig. 3: Morphing and regularization of an Andronov-Hopf oscillator. a) The
unit cycle oscillator. b) an elliptic morphing. c)-f) Four power law regular-
izations according to β = −1/3, 0, 1/3, 2/3 power laws respectively. Each
regularization keeps directions but changes speeds of the elliptic vector field.

B. Temporal regularization of a dynamical system

In this section, we define the power law regu-
larization of dynamical systems and examine the
conditions for its applicability. Under reasonable
conditions, the regularized dynamical system has
exponential convergence to the limit cycle of the
original system. For some special cases the regu-
larized system is contracting.

1) Power law regularization: We focus on reg-
ularization with a power law v = h(κ) = γκ−β ,
with γ a global constant and β the exponent value.
This is the basic most useful example of the general

Euclidean invariant dependency of speed upon path
geometry, v = h(κ, dκ

ds
, . . . , d

nκ
dsn

) (see [2]).

Definition. For a dynamical system ẋ = F (x),
and a power law v = h(κ), we define the h-
regularization of F , denoted by ẋ = Fh(x), as
Fh(x) = F (x)

|F (x)|h(κ(x)), with κ the curvature of the
orbit at point x.

At each point, the orbit of Fh geometrically
coincides with the orbit of F . Additionally, the
speed along each orbit of Fh satisfies the law h.
Each velocity vector in the regularized system Fh
has the same direction, but not necessarily the same
size, as the matching velocity vector in the original
system F . Our power laws are positively monotone
so the directions of flows of F and Fh match.

Assumptions. We consider a region U which is a
compact trapping region in the plane for F without
fixed points. We require that for F ’s orbits κ is
defined and bounded, and therefore h is defined
and bounded; for each x ∈ U , h(x) ≥ C1 > 0
for some global constant C1. We require that F
has bounded speed |F (x)| < C2 for some global
constant C2.

These assumptions guarantee that, if F is con-
tracting in U to some limit cycle, then each solution
converges globally exponentially to this limit cycle
in U (see Lohmiller and Slotine’s [22], Theorem
1). While we do not claim that Fh is generally con-
tracting, our assumptions yield global exponential
convergence of Fh to the limit cycle of F . This
is true because |Fh(x)| = h(x)

|F (x)| |F (x)| ≥ C1

C2
|F (x)|.

The limit cycle of Fh is geometrically identical to
that of F , and movement on it obeys the h power
law.

2) Curvature of the orbits of the circular
Andronov-Hopf oscillator: Power law regulariza-
tion has singularities in inflection points and along
straight trajectories; if κ = 0 and β > 0, the
power law speed is infinite. This can be overcome
in two ways. For most practical needs the power
law speed v can be bounded; Viviani and Stucchi
[42] defined v = γ(κ + α)−β , with some constant
α > 0 preventing the singularity at κ = 0. Alter-
natively, we can restrict the discussion to regions
of positive curvature. For the morphed Andronov-
Hopf oscillators, around a planned cyclic trajectory



with positive curvature, there exists a band of
bounded nonzero curvature, guaranteeing that the
regularization process will result in finite speeds.

The dynamics of ρ(φ) define κ(ρ), the curvature
of the orbit. For circular Andronov-Hopf oscilla-
tors, the dynamics are invariant with respect to
rotations around the origin (x, y) = 0. Therefore
local curvature of the vector flow κ(ρ) is a function
of ρ only, independent of φ. For any orbit, its
local curvature κ(ρ) equals zero exactly where it
crosses a circle ρ = ρκ=0, concentric to the unit
circle that is the limit cycle, but with larger radius.
Therefore, in the circular band C ≥ ρ ≥ ρκ=0 + ε,
for arbitrarily small ε and arbitrarily large C, the
curvature is strictly positive κ ≥ C1 > 0, speed
is bounded, and our assumptions hold, allowing
power law regularization that results in exponential
convergence to the limit cycle.

3) Power law regularized circular oscillator is
contracting: For the unit circle Andronov-Hopf
oscillator, the power law function depends on
curvature which is independent of φ. Denoting
ρ̃ = ρ − 1 = 1

r2
− 1 and h(ρ̃) the regularization

power law function. h(ρ̃) > 0 in the area where
the curvature is strictly positive, and the regularized
dynamics are:

˙̃ρ = −ρ̃h(ρ̃) (3)
φ̇ = ωg(ρ̃)

With g(ρ̃) = h(ρ̃)
r

. The ρ̃ dynamics are independent
of φ. The Jacobian of the ρ̃ subsystem is J =
−(h(ρ̃) − ρ̃h′(ρ̃)), and after the local coordinate
change Θ(ρ̃) = 1

h(ρ̃)
(see [22]) it is:

JΘ = (Θ̇ + ΘJ)Θ−1 = (4)

=

(
h′ρ̃

h
+

1

h
(−h− ρ̃h′)

)
h

= −h < 0

The dynamics of ρ̃ are therefore contracting. The
dynamics of φ are bounded in ρ̃ and therefore it
admits the nonlinear local ρ̃ dependent coordinate
system where φ is indifferent, similar to the origi-
nal oscillator [22].

4) A contracting one-third power law regular-
ized elliptic oscillator : For the one-third power
law, any elliptic system generated as a linear trans-
formation of the regularized unit circle oscillator is
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Fig. 4: Experimental setup, the robot walks according to a reference ellipse,
obeying one of four different power law speeds. Trajectories for each power
law converge around a limit cycle ellipse.

contracting. The argument of the unit circle regu-
larized oscillator, based on the circular symmetry
of κ, holds for uniform scaling. A global equi-
affine transformation of the plane conserves the
one-third power law and therefore the transforma-
tion of the unit circle dynamics to elliptic dynamics
using the combination of a scaling and an equi-
affine transformation conserves contraction of the
regularized system.

IV. EXPERIMENTAL METHODS

A. Dynamic simulations

We simulated motion using the OpenHRP sim-
ulator, that computes the contact forces and HRP-
2’s rigid body mechanics, and includes a model
of the compliance of the robot ankles. We imple-
mented the control architecture depicted in Fig. 1
in OpenHRP. The elliptic reference trajectory, with
radii sized 1 m and 0.5 m, was assigned four
power laws, v = γκ−β , with exponents β =
−1/3, 0, 1/3, 2/3 and γ adjusted to always make
reference lap time identical; 2 minutes. We ana-
lyzed the trajectories of the center of mass using
MATLAB. Because the discussed power laws refer
to averaged center of mass trajectories, we removed
the coronal swing motion by applying a procedure
for finding the middle points of each sway. Each
middle point was the average of two consecutive
local signed curvature extrema with opposite signs,
with time defined as the average of the times
of these two points. We used the middle points
trajectory for all analysis purposes. We estimated
the power law exponents β using nonlinear regres-
sion [24]. Repeating the procedure with log-log
linear regression yielded similar β values. Speed
was extracted from the middle points trajectory



SIM
Ref. β Sim. β R2 RMSD (cm) T (s)
−0.33 −0.21 0.46 5.2 140.0

0 0.05 0.27 3.0 134.0
0.33 0.33 0.99 0.2 130.0
0.67 0.60 0.94 0.4 127.2

EXP
Ref. β Exp. β R2 RMSD (cm) T (s)
−0.33 −0.23 0.70 7.3 150.4

0 0.02 0.03 5.5 142.4
0.33 0.34 0.79 6.3 134.4
0.67 0.57 0.90 6.8 133.6

REF − − 0 120.0

TABLE I: Results from dynamic simulation (SIM) and actual robot exper-
iment (EXP); for different reference power laws (Ref. β), simulated power
law exponent (Sim. β) and actual motion power law exponent (Exp. β)
calculated using nonlinear regression [24] with R squared error (R2), root
mean squared distance to the reference path (RMSD) and duration (T)
of the generated ellipse trajectory are given, with those of the reference
trajectory (REF). Geometrically, in simulation the one-third power law,
β = 1/3, is most exact, and in experiment the constant speed was more
exact. Temporally, despite identical reference times, higher β exponents yield
faster motions for both simulation and experiment, but always slower than
the reference time.

using a noise-insensitive filter [16]. Curvature was
extracted from the reference ellipse.

B. Experiments on HRP-2

We reproduced the simulated movements on the
actual HRP-2 robot; the robot started standing ap-
proximately 60 cm behind the tip of the ellipse, and
walked until completing two laps, guided by the
dynamical system. We used the linearly morphed
contracting elliptic dynamics, regularized by each
power law, repeating β and γ values used in sim-
ulations. We measured center of mass trajectories
using the motion capture system, low pass filtered
them at 0.1 Hz, and then analyzed them identically
to the simulated trajectories.

V. RESULTS

To evaluate the effect of applying the one-third
power law to humanoid robot walking, we present
dynamic simulations and real robot experiments
testing elliptic motions generated by the walking
pattern generator (Fig. 1). We compared four power
laws, with exponents β = −1/3, 0, 1/3, 2/3.

A. Dynamic simulation results

1) Power law patterns are reproduced: The β
values of simulated motions reflected the β values
of the reference speed profiles, that were noisily
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Fig. 5: a) Dynamic simulation paths, with different reference speeds.
b) Zoom in on the box in plot a. Simulations with positive β = 1/3, 2/3
drift less than 0.5 cm from the reference path. Simulations with constant
speed and negative power law β = 0,−1/3 drift outside of the reference
elliptic path.

reproduced (Fig. 6, left). The simulation yielded
positions of maximal speed slightly shifted with
respect to maximal speed positions predicted by
the power law based on the curvature of the
actual path; for β = −1/3, 1/3, 2/3 shifts along
the trajectory, of 22, 4,−15 cm of the simulated
with respect to reference speed peaks, occurred.
Unpredictably, constant speed β = 0 power law
yielded an oscillatory curvature-dependent speed
profile.

2) Drift correction by one-third power law: As
predicted, the simulated one-third power law re-
sulted in reduced drift compared to constant speed
and other power laws. For β = 1/3 the path was
most similar to the reference path, with next best
being the β = 2/3 power law. The constant speed
β = 0 and β = −1/3 yielded drifts; the simulated
elliptic paths were larger than the reference elliptic
path (see table I and Fig. 5). Interestingly, the
constant speed β = 0 path deviated from the
reference frame gradually and not immediately
upon movement initiation (Fig. 5.b).

3) Increase in β exponent decreases duration:
Simulated motions took more time than the refer-
ence time; always 2 minutes per lap. Surprisingly,
the exponent β affected simulated movement du-
ration; the higher the β the faster the motion, with
duration closer to the reference time (table I).

B. Experimental results

1) Power law patterns are reproduced: The ref-
erence speed power laws were noisily reproduced
by the robot (see table I for β values and their R2

errors, and Fig. 6, right for speed profiles).
2) Geometrical drift does not fully vanish:

Overall, experimental results showed larger drifts



Ref. β −0.33 0 0.33 0.67
Norm (m) 1.416 0.950 0.642 1.124

Orientation (deg) 76.83 89.60 60.45 77.28
Force (kN×s) 21.93 23.54 19.80 21.01

TABLE II: Analysis of the odometry frame and forces. For each of the four
power laws the distance from center (Norm), body orientation (Orientation)
and integrated norm tangential force measured on ankle (Force) are given.
The one-third power law is outperforming all other power laws.

than simulation. The constant reference speed re-
sulted in the lowest drift (table I), outperforming
the positive β power laws. Different convergence
trajectories (Fig. 4), may arise from slightly differ-
ent initial positioning of the robot.

3) Increased β decreases duration: Actual
robotic movement took longer time than simula-
tion. In the experiment, as in simulation, despite
having the same reference time, higher β values
yielded faster movements.

4) Reduced controller corrections: To estimate
the feedback correction produced by the vector
field and the PID controllers, we analyzed the
internal odometry frame of the walking pattern
generator. We examined the last crossing point of
the x axis by each center of mass trajectory. We
measured deviation from the baseline, the planned
position and orientation, to gain error values re-
flecting the accumulated error along the two laps,
caused by sliding. Additionally, we examined tan-
gential forces on the ankle, indicating the amount
of compensated sliding. The one-third power law
showed smaller accumulated errors, compared to
the other power laws (table II). Less error need-
ing compensation implicates lower burden on the
hardware.

VI. CONCLUSIONS

In simulation and experiment, we tested how sta-
ble generation of power laws may help humanoid
robot walking. The simulations and experiments
reproduced the reference power law’s temporal
patterns. As predicted, the one-third power law,
used by humans, appears beneficial; it reduced drift
in simulations and also decreased the need for
sliding compensation in actual robot motion; the
closed-loop controller managed to produce move-
ment with any of the four tested power laws, but
maintaining a one-third power law lowered energy
expenditure. Surprisingly, our results suggest that
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Fig. 6: Speed profiles for dynamic simulations (Left) and robot experiment
(Right), with four different reference speeds (Ref). Both simulated and actual
robot motions reproduce the spatio-temporal power law patterns.

using higher β exponents power laws may allow
for faster movements.

We exemplified, studying elliptic motions, the
importance of using path-adjusted speed profiles.
Selecting optimal speed profiles for reference cen-
ter of mass trajectories of planar robotic loco-
motion is not fully solved. Different perspectives
describing human motion; optimization [12], [39]
or geometric invariance [11], [2], may provide
inspiration for a solution.

Except in locomotion, we suggest two addi-
tional applications of speed modulation according
to the geometry of the reference trajectory. First,
to use power laws as a constraint for kino-dynamic
motion planning [32]. Second, to find bounds on
curvature for planning free-flyer motion [27].
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