Stability analysis of a 1D wave equation with a nonmonotone distributed damping

Abstract : This paper is concerned with the asymptotic stability analysis of a one dimensional wave equation subject to a nonmonotone distributed damping. A well-posedness result is provided together with a precise characterization of the asymptotic behavior of the trajectories of the system under consideration. The well-posedness is proved in the nonstandard L p functional spaces, with p ∈ [2, ∞], and relies mostly on some results collected in Haraux (2009). The asymptotic behavior analysis is based on an attractivity result on a specific infinite-dimensional linear time-variant system.
Liste complète des métadonnées

https://hal.laas.fr/hal-02006292
Contributeur : Swann Marx <>
Soumis le : mardi 5 février 2019 - 10:43:14
Dernière modification le : lundi 11 février 2019 - 09:31:01

Fichiers

nonmonotone.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02006292, version 1
  • ARXIV : 1902.02050

Citation

Swann Marx, Yacine Chitour, Christophe Prieur. Stability analysis of a 1D wave equation with a nonmonotone distributed damping. 2019. 〈hal-02006292〉

Partager

Métriques

Consultations de la notice

19

Téléchargements de fichiers

9