
HAL Id: hal-02006899
https://hal.laas.fr/hal-02006899

Submitted on 4 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EXACT OPTIMIZATION VIA SUMS OF
NONNEGATIVE CIRCUITS AND SUMS OF AM/GM

EXPONENTIALS
Victor Magron, Henning Seidler, Timo de Wolff

To cite this version:
Victor Magron, Henning Seidler, Timo de Wolff. EXACT OPTIMIZATION VIA SUMS OF NON-
NEGATIVE CIRCUITS AND SUMS OF AM/GM EXPONENTIALS. ACM Communications in
Computer Algebra, Association for Computing Machinery (ACM), 2019, �10.1145/3326229.3326271�.
�hal-02006899�

https://hal.laas.fr/hal-02006899
https://hal.archives-ouvertes.fr


EXACT OPTIMIZATION VIA SUMS OF NONNEGATIVE CIRCUITS
AND SUMS OF AM/GM EXPONENTIALS

VICTOR MAGRON, HENNING SEIDLER, AND TIMO DE WOLFF

Abstract. We provide two hybrid numeric-symbolic optimization algorithms, com-
puting exact sums of nonnegative circuits (SONC) and sums of arithmetic-geometric-
exponentials (SAGE) decompositions. Moreover, we provide a hybrid numeric-symbolic
decision algorithm for polynomials lying in the interior of the SAGE cone. Each frame-
work, inspired by previous contributions of Parrilo and Peyrl, is a rounding-projection
procedure.

For a polynomial lying in the interior of the SAGE cone, we prove that the decision
algorithm terminates within a number of arithmetic operations, which is polynomial in
the degree and number of terms of the input, and singly exponential in the number of
variables. We also provide experimental comparisons regarding the implementation of
the two optimization algorithms.

1. Introduction

In this paper, we focus on certifying the output of polynomial optimization problems
in a rigorous way. Finding the minimal value of a given polynomial in n variables under
polynomial constraints is known to be NP-hard in general [Lau09]. The related problem
of deciding nonnegativity of a polynomial under polynomial constraints is co-NP hard;
see e.g., [BCSS12]. This decision problem can be solved with the Cylindrical Algebraic
Decomposition algorithm [Col75], which runs in time doubly exponential in n and poly-
nomial in the maximal total degree d of the input functions. Further improved algorithms
[GV88, BPR98, BGHP05], relying on critical point methods, allow to decide nonnegativ-
ity in singly exponential time in n. More generally, the complement of the problem lies in
the existential theory of the reals, which can be solved in polynomial space and single ex-
ponential time [Ren88]. Safe validation of optimization problem results is mandatory for
guaranted evaluation of mathematical functions [CHJL11], certi�ed roundo� error bounds
[MCD17] or computer assisted proofs [MAGW15, HAB+17].
In contrast to the algorithms mentioned above, several numerical frameworks have

been developed in the last two decades. In the unconstrained case, one way to ensure
nonnegativity of a given polynomial f is to decompose f as a sum of squares (SOS) of
polynomials [Par00, Las01], which provides a certi�cate that f is nonnegative over the
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reals. An SOS decomposition can be computed by solving a semide�nite program (SDP) of
size

(
n+d
n

)
. In the constrained case, certi�cates can be provided by the prominent moment-

SOS hierarchy , also called Lasserre's hierarchy [Las01, Las10]. Each relaxation is solved
with a semide�nite programming solver, implemented in �nite-precision arithmetic, whose
output is an approximate certi�cate. A drawback of these methods is that the size

(
n+d
n

)
of the SDP matrices blows up when the degree d and number of variables n increases.
For larger values of n, a remedy consists of exploiting a potential sparsity/symmetry

pattern arising in the input polynomials. A sparse version of Lasserre's hierarchy has
been developed in [WKKM06, Las06] when the objective function can be written as a
sum of polynomials, each of them involving a small number of variables. The frame-
work from [RTAL13] allows to take into account the symmetries of the polynomial op-
timization problem. One can also rely on the so-called bounded degree SOS hierarchy
(BSOS) [LTY17]. In this hierarchy, positive polynomials are represented as a sum of two
terms. The �rst term is an SOS polynomial of degree �xed in advance, while the second
one belongs to the set of Krivine-Stengle representations, that is, is a �nite combination
of positive scalar weights and cross-products of the polynomials de�ning the set of con-
straints. This allows to handle larger instances than with the standard SOS hierarchy. The
sparse variant of the BSOS hierarchy [WLT18] can handle even bigger problems, under
the same sparsity pattern assumptions than the ones used for the sparse SOS hierarchy.
If the support, i.e., number of monomial terms, of the polynomials is small in comparison
to
(
n+d
n

)
, alternative relaxations based on geometric programming (GP) [DPZ67], and,

more generally, relative entropy programming (REP), potentially allow to obtain lower
bounds in a more e�cient way than SDP relaxations. Both GP and REP are (equivalent
to) convex optimization problems over the exponential cone. These alternative relax-
ations also provide the possibility to obtain answers when the SDP relaxations cannot be
implemented because their size is too large for state-of-the art SDP solvers.
A �rst class of alternative certi�cates is given by sums of nonnegative circuit (SONC)

polynomials . A circuit polynomial is a polynomial with support containing only mono-
mial squares, at the exception of at most one term, whose exponent is a strict convex
combination of the other exponents. In [IdW16], the authors derive a necessary and suf-
�cient condition to prove that a given circuit polynomial is nonnegative. When the input
polynomial has a more general support, a �rst attempt is given in [GM12, GM13] to
compute lower bounds while relying on GP. This approach is generalized in [DIdW16] to
compute SONC certi�cates when the set of constraints is de�ned as a �nite conjunction
of polynomial inequalities. In [DIdW17] the authors provide a bounded degree hierar-
chy, which can be computed via relative entropy programming. In the recent contribu-
tion [SdW18a], the second and the third author develop an algorithm computing SONC
certi�cates for sparse unconstrained polynomials with arbitrary support, together with
a software library [SdW18b], called POEM (E�ective Methods in Polynomial Optimiza-
tion). Although this framework yields a very e�cient way to obtain a lower bound for a
given polynomial, a drawback is that it currently remains unclear whether the number of
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circuits involved in a SONC relaxation is exponential in the number of terms of this poly-
nomial. A second class of alternative certi�cates is given by sums of arithmetic-geometric-
mean-exponentials (SAGE) polynomials. An AGE polynomial refers to a signomial , i.e.,
a weighted sum of exponentials composed with linear functionals of the variables, which
is globally nonnegative with at most one negative coe�cient. The framework from [CS16]
derives a hierarchy of convex relaxations providing a sequence of increasing lower bounds
for the optimal value of signomial programs (SP). For an input polynomial belonging to
the SAGE cone, one can compute a SAGE decomposition by solving an REP, involving
linear and relative entropy functions. Furthermore, it is shown in [MCW18, Theorem 20]
that the cones of SAGE and SONC polynomials are related through their equivalence in
terms of extreme rays. Namely, the extreme rays of the SAGE cone are supported on
either a single coordinate or a set of coordinates inducing a simplicial circuit (a circuit
with ` elements containing ` − 1 extreme points). Hence, both cones contain the same
polynomials.
However, these alternative schemes share the same certi�cation issues than the ones

based on SDP relaxations. GP/REP/SP solvers rely on interior-point algorithms, im-
plemented in �nite-precision. Thus, they output only approximate certi�cates. In the
unconstrained case, the rounding-projection procedure by Peryl and Parrilo [PP08] allows
to compute a weighted rational SOS decompositon of a polynomial f of degree d = 2k,
belonging to the interior of the SOS cone. In the �rounding� step, the algorithm computes

an approximate Gram matrix of f , i.e., a matrix G̃ such that f ' vTk G̃vk, where vk is the
vector of all monomials of degree at most k, then rounds G̃ in the space of rational matri-
ces. In the �projection� step, the algorithm performs an orthogonal projection to obtain a
matrix G, such that f = vTkGvk. With su�cient precision digits, there always exists an
SDP matrix ful�lling the above equality, yielding an (exact) Gram matrix associated to f .
The last step to retrive an exact weighted SOS decomposition for f consists of performing
an exact LDLT procedure [GL96, � 4.1]. Another framework [MD18a, MSED18], pro-
vides a hybrid numeric-symbolic framework, which computes exact SOS decompositions
under the same assumptions. This is based on a �perturbation-compensation� algorithm.
In the �perturbation� step, one considers an arbitrary small perturbation of the input
polynomial, and computes an approximate SOS decomposition with an SDP solver. In
the �compensation� step, one relies on the perturbation terms to recover an exact SOS
decomposition. By comparison with the rounding-projection procedure, this algorithm
perturbates the input and provides an approximate LDLT decomposition of the approx-
imate Gram matrix, instead of a projection. It is shown in [MSED18] that both proce-
dures have a boolean running time, which is singly exponential in n and polynomial in d.
Practical experiments emphasize that the bit size of the SOS outputs obtained with the
rounding-projection algorithm is often larger than the one obtained with the perturbation-
compensation algorithm. The perturbation-compensation algorithm is inspired from prior
work [MDS18], focusing on weighted SOS decompositions for nonnegative univariate poly-
nomials, where the algorithm from [CHJL11] is formalized and analyzed. In the uncon-
strained case, the framework from [MSED18] also extends the perturbation-compensation
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and rounding-projection algorithms to compute exact Polya and Hilbert-Artin's repre-
sentations, respectively for positive de�nite forms and nonnegative polynomials, yielding
decompositions into SOS of rational functions, under the assumption that the numera-
tor belongs to the interior of the SOS cone. In the constrained case, further algorithms
are proposed to derive exact rational Putinar's representations for positive polynomials
over basic compact semialgebraic sets. All corresponding algorithms are integrated in the
RealCertify [MD18b] Maple library.
The motivation of the present work is to improve the scalability of these existing cer-

ti�cation frameworks, especially for large-size problems, which are currently out of reach
when relying on SOS-based methods.
Contributions. In this paper, we provide a hybrid numeric-symbolic framework, in a
similar spirit as [PP08], to certify exactly lower bounds obtained after computing SON-
C/SAGE decompositions with GP/REP relaxations. The resulting rounding-projection
algorithms allow to handle unconstrained polynomial problems with such exact rational
decompositions. Our �rst contributions, given in Section 3, are two procedures, called
optsonc and optsage, providing exact rational SONC and SAGE decompositions, re-
spectively. These two algorithms allow to certify exactly lower bounds of unconstrained
polynomials. Our framework is inspired from [PP08], �rst by rounding the output of a
given GP/REP relaxation into rational numbers, next by performing an appropriate scal-
ing of these numbers to obtain a solution satisfying exactly the (in)-equality constraints of
the relaxation. We present another rounding-projection procedure called intsage in Sec-
tion 4 to handle the case of polynomials belonging to the interior of the SAGE cone.
When the input is an n-variate polynomial of degree d with t monomial terms, and inte-
ger coe�cients of maximum bit size τ , we prove that Algorithm intsage outputs SAGE
decompositions within O (τ · (4d+ 6)3n+3 t7 log t) arithmetic operations. This is in con-
trast with the decision algorithm intsos from [MSED18], which certi�es nonnegativity of
polynomials lying in the interior of the SOS cone in boolean time O (τ 2 · (4d+ 2)15n+6).
The two optimization algorithms optsonc and optsage are available within the POEM
software library. In Section 5, we provide experimental comparisons of these two algo-
rithms.

Acknowledgements. Victor Magron bene�ted from the support of the FMJH Program
PGMO (EPICS project) and EDF, Thales, Orange et Criteo. Timo de Wol� and Henning
Seidler are supported by the DFG grant WO 2206/1-1. The authors would like to specially
acknowledge the help of Riley Murray for providing insights about the barrier complexity
of relative entropy programming.

2. Preliminaries

Let Z be the set of integers and let R, R≥0 and R>0 be the set of real, nonnegative
real and positive real numbers, respectively. With Q being the set of rational numbers,
one de�nes similarly Q>0, Q≥0. The bit size of i ∈ Z is denoted by τ(i) := blog2(|i|)c+ 1
with τ(0) := 1. Given i ∈ Z and j ∈ Z\{0} with gcd(i, j) = 1, we de�ne τ(i/j) :=
max{τ(i), τ(j)}. For two mappings g, h : Nl → R, we use the notation g(v) ∈ O (h(v)) to
state the existence of i ∈ N such that g(v) ≤ ih(v), for all v ∈ Nl. Throughout the paper,
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we use bold letters for vectors (small) and matrices (capital), e.g., x = (x1, . . . , xn) ∈ Rn.
For a given vector x, we denote the j-th coordinate of x by xj ∈ R, and x\j ∈ Rn−1 as
the vector obtained by x after removing xj. Furthermore, let R[x] = R[x1, . . . , xn] be
the ring of real n-variate polynomials. We de�ne Q[x] similarly. We denote the set of all
n-variate polynomials of degree less than or equal to 2d by R[x]n,2d.
We mostly regard sparse polynomials p ∈ R[x] supported on a �nite set A ⊂ Nn; we

write A (p) if a clari�cation is necessary. Thus, p is of the form p(x) =
∑
α∈A bαx

α with
bα ∈ R \ {0} and xα = xα1

1 · · ·xαnn . Unless stated di�erently, we follow the convention
t = #A. Sparsity then means t �

(
n+2d
2d

)
= dim (R[x]n,2d). The support of p can be

expressed as an n × t matrix, which we denote by A, such that the j-th column of A is
α(j). Hence, p is uniquely described by the pair (A, b), written p = poly(A, b). If 0 ∈ A,
then p(0) is called the constant term.
Let us denote by New(p) := conv ({α ∈ Nn : bα 6= 0}) the Newton polytope of p and

Vert (p) := {α ∈ A (p) : α is vertex of New (p)} be its vertices. We de�ne MoSq (p) :=
{α ∈ A (p) : α ∈ (2N)n, bα > 0} as the set of monomial squares in the support of p. More-
over, we use the notation NoSq (p) = A (p) \MoSq (p) for all elements of the support of
p, which are not monomial squares. We indicate the elements of the support which are in
the interior of New(p) by int (p) = A (p) \ ∂ New(p).

2.1. SONC Polynomials. We now introduce the fundamental facts of SONC polyno-
mials, which we use in this article. SONC are constructed by circuit polynomials, which
were �rst introduced in [IdW16]:

De�nition 2.1. A circuit polynomial p = poly(A, b) ∈ R[x] is of the form p(x) =∑r
j=1 bα(j)x

α(j) + bβx
β, with 0 ≤ r < n, coe�cients bα(j) ∈ R>0, bβ ∈ R, exponents

α(j) ∈ (2Z)n, β ∈ Zn, such that the following condition holds: there exist unique,
positive barycentric coordinates λj relative to the α(j) with j = 1, . . . , r satisfying

β =
r∑
j=1

λjα(j) with λj > 0 and
r∑
j=1

λj = 1.(2.1)

For every circuit polynomial p we de�ne the corresponding circuit number as

Θp =
r∏
j=1

(
bα(j)
λj

)λj
.7

Condition (2.1) implies that A(p) forms a minimal a�ne dependent set. Those sets are
called circuits , see e.g., [Oxl11]. More speci�cally, Condition (2.1) yields that New(p) is a
simplex with even vertices α(1), . . . ,α(r) and that the exponent β is in the strict interior
of New(p) if dim(New(p)) ≥ 1. Therefore, we call pβx

β the inner term of p.
Circuit polynomials are proper building blocks for nonnegativity certi�cates since the

circuit number alone determines whether they are nonnegative.

Theorem 2.2 ([IdW16], Theorem 3.8). Let p be a circuit polynomial as in De�nition 2.1.
Then p is nonnegative if and only if:

(1) p is a sum of monomial squares, or
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(2) the coe�cient bβ of the inner term of p satis�es |bβ| ≤ Θp.

The set of sums of nonnegative circuit polynomials (SONC) is a convex cone. For
further details about SONC see [dW15, IdW16, DIdW17].
Let us consider p = poly(A, b) =

∑
α∈A bαx

α. To algorithmically determine a lower
bound of p via SONC, we take an approach, similar to the one described in [SdW18a,
� 3]. As initial relaxation, each monomial non-square is equipped with a negative sign.
This allows us, to restrict ourselves to the positive orthant; see e.g., [IdW16, Section
3.1] for further details. Next, we compute a covering Cov, which is a sequence of sets(
Covβ

)
β∈NoSq(p)

⊆ A such that NoSq (p) ⊆
⋃
β∈NoSq(p) Covβ and each Covβ is the support

of a nonnegative circuit polynomial pβ with interior point β. To obtain a covering, we
write each non-square as a minimal convex combination of monomial squares, by solving
the following LP for each β ∈ NoSq (p), as explained in [SdW18a, Algorithm 3.3].∑

α∈MoSq(p)

λβα ·α = β

∑
α∈MoSq(p)

λβα = 1

λβα ≥ 0 for all α ∈ MoSq (p)

(LP)

If {α : λα > 0} is not minimal, then we can reduce it by applying the following lemma.
The lemma is folklore, for a constructive proof see e.g. [SdW18a, Lemma 3.1].

Lemma 2.3. For every non-extremal point v ∈ A (p) \ Vert (p), we can e�ciently
compute a�nely independent v0, ...,vm ∈ Vert (p) with m ≤ n such that and v ∈
conv ({v0, ...,vm}).

So for each β, we obtain a vector λβ of barycentric coordinates, relative to the simplex
Covβ =

{
α ∈ MoSq (p) : λβα > 0

}
. We denote these computations by λ, (Cov) := cover(p).

Then, we solve the following geometric program (GP):

pSONC = min
X

∑
β∈NoSq(p)

Xβ,0

s.t.
∑

β∈NoSq(p)

Xβ,α ≤ bα , α ∈ MoSq (p) ,α 6= 0 ,

∏
α∈Covβ

(
Xβ,α

λβα

)λβα
= −bβ , β ∈ NoSq (p) ,

Xβ,α ≥ 0 , α ∈ MoSq (p) ,β ∈ NoSq (p) .

(SONC)

For an overview about GPs, see [BKVH07, BV04]. If pSONC is attained at X?, then
one has pβ =

∑
α∈Covβ X

?
β,α · xα + bβx

β ≥ 0 by Theorem 2.2, and p + pSONC − b0 =∑
β∈NoSq(p) pβ ≥ 0. Hence, b0 − pSONC is a lower bound of p on Rn.
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These computations correspond to [SdW18a, � 3.3.2], where each cover contains just a
single non-square. The approach dispayed here simpli�es the computations, while keeping
the quality of the results.

2.2. SAGE Polynomials. Let e := exp (1). The relative entropy function is de�ned for
ν, c ∈ Rt

+ by D(ν, c) :=
∑t

j=1 νj log
νj
cj
. A signomial p is a weighted sum of exponentials

composed with linear functionals of a variable x ∈ Rn: given t ∈ N, c1, . . . , ct ∈ Q and
α(1), . . . ,α(t) ∈ Nn, we write p(x) =

∑t
j=1 cj exp (α(j) · x). Note that for general sig-

nomials, one considers c1, . . . , ct ∈ R and α(1), . . . ,α(t) ∈ Rn. However, for certi�cation
purposes, we restrict the coe�cients to the set of rationals and the exponents to tuples of
nonnegative integers. A globally nonnegative signomial with at most one negative coe�-
cient is called an AM/GM exponential or arithmetic-geometric-mean-exponential (AGE).
Certifying the nonnegativity of an AGE is done by verifying an arithmetic-geometric-mean
inequality. This is recalled in the following result, stated in [CS16, Lemma 2.2].

Lemma 2.4. Let p(x) =
∑t

j=1 cj exp (α(j) · x) + β exp (α(0) · x), with c1, . . . , ct ∈ Q>0,
β ∈ Q and α(0),α(1), . . . ,α(t) ∈ Nn. Then p(x) ≥ 0 for all x ∈ Rn if and only if there
exists ν ∈ Rt

+ such that D(ν, ec) ≤ β and
∑t

j=1α(j)νj = (1 · ν)α(0).

Given α(0),α(1), . . . ,α(t) ∈ Nn, the set of AGE signomials is a convex cone, denoted
by CAGE, and de�ned as follows:

CAGE :=

(c, β) ∈ Rt+ × R : There exists ν ∈ Rt+ with D(ν, ec) ≤ β ,
t∑

j=1

α(j)νj = (1 · ν)α(0)

 .

The set of sums of AGE (SAGE) polynomials is also a convex cone, denoted by CSAGE.
By [CS16, Proposition 2.4], one has the following characterisation.

Theorem 2.5. A signomial f =
∑t

i=1 bj exp (α(j) · x) lies in CSAGE if and only if there
is c(1), . . . , c(t), ν(1), . . . ,ν(t) ∈ Rt satisfying the following conditions:

t∑
j=1

c(j) = b ,

t∑
i=1

α(i)ν
(j)
i = 0 , −1 · ν(j)

\j = ν
(j)
j ,

c
(j)
\j ,ν

(j)
\j ≥ 0 , D

(
ν
(j)
\j , ec

(j)
\j

)
≤ c

(j)
j , j = 1, . . . , t .

(SAGE-feas)

One way to obtain lower bounds of a signomial f is to solve the following REP:

fSAGE = sup{C ∈ R : f − C ∈ CSAGE} .(SAGE)

The constraints of (SAGE) correspond to (SAGE-feas), after replacing b by the vector of
coe�cients of f − λ.

3. Exact Optimization via SONC/SAGE

In this section, we present two algorithms for converting a numerical solution for SONC
and SAGE into a lower bound in exact arithmetic. For a polynomial p =

∑
α∈A bαx

α,
we assume 0 ∈ A, so there exists a constant term p(0) 6= 0. Furthermore, we require
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that every non-square monomial lies in the interior of New (p) or on a face of New (p)

including the origin. We denote numerical solutions X̃, c̃, ν̃ with a tilde, intermediate

rational solutions X̂, ĉ with a hat, and our �nal rational solution with regular letters.

3.1. Symbolic Post-Processing for SONC. We focus on certifying exactly lower
bounds of a given polynomial via SONC decompositions. We rely on the numerical proce-
dure from Section 2.1, which starts to compute a covering of this polynomial. Under these
assumptions, we design an algorithm, called optsonc, to convert numerical lower bounds,
corresponding to SONC decompositions obtained via GP, into exact lower bounds.

Algorithm 3.1. optsonc

Require: p =
∑
α∈A bαx

α ∈ Q[x], rounding precision δ̂ ∈ Q>0, precision parameter

δ̃ ∈ Q>0 for the GP solver.
Ensure: Matrix X of rational numbers, coe�cients of the decomposition, certi�ed lower

bound C ∈ Q of p on Rn.
1: (λ,Cov)← cover(p)

2: X̃ ← GP(p, δ̃,λ,Cov) . Solve (SONC) with accuracy δ̃

3: X̂ ← round
(
X̃, δ̂

)
. rounding step

4: for α ∈ MoSq (p) and β ∈ NoSq (p) do

5: Xβ,α ← bα · X̂β,α/
∑
β′∈NoSq(p) X̂β′,α . projection step

6: end for
7: for β ∈ NoSq (p) do

8: coeff = λβ0 ·
(
−bβ ·

∏
α∈Covβ

(
λβα
Xβ,α

)λβα) 1

λ
β
0

9: Xβ,0 ← round-up
(

coeff, δ̂
)

. adjust constant term

10: end for
11: C ← b0 −

∑
β∈NoSq(p)Xβ,0

12: return X, C

In line 2, the function GP calls a GP solver to compute a δ̃-approximation X̃ of (SONC).

This approximation is then rounded in line 3 to a rational point X̂ with a prescribed

maximal relative error of δ̂. The projection step from line 5 scales the entries of X̂,
yielding

∑
βXβ,α = bα, for all β ∈ MoSq (p), to satisfy the �rst set of equality constraints

of (SONC). In line 9, we round the coe�cient up, with relative error δ̂, so that we have

Xβ,0 ≥ λβ0 ·

−bβ · ∏
α∈Covβ

(
λβα
Xβ,α

)λβα 1

λ
β
0

.

As in Section 2.1, each pβ :=
∑
α∈Covβ Xβ,α · xα + bβx

β is a nonnegative circuit poly-
nomial. Hence, C is a lower bound for p. Our assumption that every circuit polynomial
contains a constant term, is necessary to ensure that λβ0 6= 0 for all β ∈ NoSq (p) in our
computations above.
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3.2. Symbolic Post-Processing for SAGE. Similarly to Algorithm 3.1, our algorithm
optsage takes a given polynomial as input, obtains a numerical lower bound related to a
SAGE decomposition computed via REP, and applies a post-processing to �nd a certi�ed
lower bound .

Algorithm 3.2. optsage

Require: g =
∑t

i=1 bix
α(i) ∈ Q[x], rounding precision δ̂ ∈ Q>0, precision parameter

δ̃ ∈ Q>0 for the REP solver.
Ensure: Matrices c,ν of rational numbers, coe�cients of the decomposition, certi�ed

lower bound C ∈ Q of g on Rn.
1: f ← g(expx− exp(−x))
2: Build the (n+ 1)× t matrix Q with columns (α(1), 1), . . . , (α(t), 1)

3: c̃, ν̃ ← REP(f, δ̃) . Solve (SAGE) with accuracy δ̃

4: ĉ← round
(
c̃, δ̂
)
, ν̂ ← round

(
ν̃, δ̂
)

. rounding step

5: for j ∈ {1, . . . , t} do
6: LP ←

{
Q · ν(j) = 0,ν

(j)
\j ≥ 0, ‖ν(j) − ν̃(j)‖∞ ≤ δ̂, ν

(j)
1 ≥ δ̂

}
7: ν(j) ← some element from LP . projection step

8: c
(j)
\j ← ĉ

(j)
\j , c

(j)
j ← bj − 1 · c(j)\j

9: end for
10: for j ∈ {1, . . . , t} do

11: power← 1− log ν
(j)
1 − 1

ν
(j)
1

(
c
(j)
j −

∑
i>1,i 6=j ν

(j)
i log

ν
(j)
i

ec
(j)
i

)
12: c

(j)
1 ← round-up

(
exp (power) , δ̂

)
. adjust constant term

13: end for
14: C ← b1 −

∑t
j=1 c

(j)
1

15: return c, ν, C

Given a polynomial g(y) =
∑t

j=1 bjy
α(j), one could apply the change of variables yi :=

expxi when y ∈ Rn
>0. Since this transformation is only valid on the nonnegative orthant,

one workaround used in optsage is to de�ne the signomial f(x) = g(expx − exp(−x))
from line 1, in a such a way that a lower bound of f yields a lower bound of g.

The REP function in line 3 calls an REP solver to compute a δ̃-approximation (ν̃, c̃)
of (SAGE). This approximation is then rounded to a rational point (ν̂, ĉ) with a pre-

scribed maximal relative error of δ̂. The projection steps in line 7 and line 8 ensure
that (ν, c) satis�es exactly the linear equality constraints of (SAGE), i.e., Qν(j) = 0
and

∑t
j=1 c

(j) = b. The �rst projection step boils down to exactly solve an LP with

the constraint that ν
(j)
1 > 0, for all j = 1, . . . , t, to ensure that further computa-

tion in line 12 are well-de�ned. Note that this projection could be done while rely-
ing on the pseudo-inverse of Q, but one obtains better practical results via this pro-
cedure. To ensure that the relative entropy inequality constraints of (SAGE) are sat-

is�ed, the last step of optsage aims at �nding c
(1)
j such that c

(j)
j ≥ D

(
ν
(j)
\j , ec

(j)
\j

)
=
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i>1,i 6=j ν

(j)
i log

ν
(j)
i

ec
(j)
i

+ ν
(j)
1 log

ν
(j)
1

ec
(j)
1

. Thus, one relies on the round-up procedure in line 12

to compute c
(j)
1 ≥ exp

(
1− log ν

(j)
1 − 1

ν
(j)
1

(
c
(j)
j −

∑
i>1,i 6=j ν

(j)
i log

ν
(j)
i

ec
(j)
i

))
. Eventually, one

has
∑t

j=1 c
(j)
i = bi, for all i > 1 and

∑t
j=1 c

(j)
1 = b1 − C, which certi�es that f − C ≥ 0

on Rn. We refer to appendix A.2 for an example of exact SAGE decomposition obtained
with optsage.

4. Deciding Nonnegativity via SAGE

We denote by int (CSAGE) the interior of the cone CSAGE of SAGE signomials. A sig-
nomial f =

∑t
j=1 bj exp (α(j) · x) lies in int (CSAGE) if and only there is c(1), . . . , c(t),

ν(1), . . . ,ν(t) ∈ Rt such that

t∑
j=1

c(j) = b ,
t∑
i=1

α(i)ν
(j)
i = 0 , −1 · ν(j)

\j = ν
(j)
j ,

c
(j)
\j ,ν

(j)
\j > 0 , D

(
ν
(j)
\j , ec

(j)
\j

)
< c

(j)
j , j = 1, . . . , t .

(INTSAGE-feas)

Without the assumptions from Section 3, we state and analyze a decision algorithm
to certify nonnegativity of signomials belonging to the interior int (CSAGE) of the SAGE
cone. The resulting hybrid numeric-symbolic algorithm, called intsage, computes exact
rational SAGE decompositions of such signomials.
For complexity analysis purpose, we recall the following bound for the roots of univariate

polynomials with integer coe�cients:

Lemma 4.1. [Mig92, Theorem 4.2 (ii)] Let f ∈ Z[x] of degree d, with coe�cient bit size
bounded from above by τ . If f(x̃) = 0 and x̃ 6= 0, then 1

2τ+1
≤ |x̃| ≤ 2τ + 1.

Lemma 4.2. Let f =
∑t

j=1 bj exp (α(j) · x) ∈ int (CSAGE) of degree d with τ = τ(f).

Then, there exists N ∈ N such that for ε := 2−N , f − ε
∑t

j=1 exp (α(j) ·x) ∈ CSAGE, with
N ≤ τ(ε) ∈ O (τ · (4d+ 6)3n+3).

Proof. Since f ∈ int (CSAGE), there are c(1), . . . , c(t), ν(1), . . . ,ν(t) ∈ Rt such that∑t
j=1 c

(j) = b,
∑t

i=1α(i)ν
(j)
i = 0, −1 ·ν(j)

\j = ν
(j)
j , c

(j)
\j ,ν

(j)
\j > 0 and D

(
ν
(j)
\j , ec

(j)
\j

)
< c

(j)
j ,

for all j = 1, . . . , t. Therefore, there exists N ∈ N such that for ε := 2−N , one has

D
(
ν
(j)
\j , ec

(j)
\j

)
+ ε < c

(j)
j , for all j = 1, . . . , t. For all i, j = 1, . . . , t, let us de�ne b̊

by b̊i := bi − ε, as well as c̊ by c̊
(j)
i := c

(j)
i for i 6= j and c̊

(j)
j := c

(j)
j − ε. Note that

b̊ is the coe�cient vector of f − ε
∑t

j=1 exp (α(j) · x). Then c̊(1), . . . , c̊(t), ν(1), . . . ,ν(t)

satisfy (INTSAGE-feas) after replacing b by b̊, yielding the �rst claim.
For the second claim, we start to perform the change of variable yi := expxi, for all

i = 1, . . . , n, de�ne g(y, z) :=
∑t

j=1 bjy
α(j) − z

∑t
j=1 y

α(j), for all y ∈ Rn
>0. It is enough

to select ε = 2−N such that ε ≤ infy∈Rn>0

∑t
j=1 bjy

α(j)∑t
j=1 y

α(j) . Let us consider the algebraic set V
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de�ned by:

V :=

{
(y, z) ∈ Rn+1 : g(y, z) =

∂g

∂y1
= · · · = ∂g

∂yn
= 0

}
.

Using [MSED18, Proposition A.1], there exists a polynomial in Z[z] of degree less than
(d + 1)n+1 with coe�cients of bit size less than τ · (4d + 6)3n+3 such that its set of real
roots contains V . By Lemma 4.1, it is enough to take N ≤ τ · (4d + 6)3n+3, yielding the
desired result. �

4.1. Algorithm intsage. We present our algorithm intsage computing exact rational
SAGE decompositions for signomials in int (CSAGE).

Algorithm 4.3. intsage

Require: f =
∑t

j=1 bj exp (α(j) ·x) ∈ int (CSAGE), rounding precision δ̂ ∈ Q>0, precision

parameter δ̃ ∈ Q>0 for the REP solver.
Ensure: Matrices c,ν of rational numbers.
1: Build the (n+ 1)× t matrix Q with columns (α(1), 1), . . . , (α(t), 1)
2: Q+ ← pseudoinv(Q)
3: ok ← false
4: while not ok do
5: (c̃, ν̃)← REP(f, δ̃)

6: ĉ← round
(
c̃, δ̂
)
, ν̂ ← round

(
ν̃, δ̂
)

. rounding step

7: for j ∈ {1, . . . , t} do . projection step
8: ν(j) ← (I −Q+Q) ν̂(j)

9: c
(j)
\j ← ĉ

(j)
\j , c

(j)
j ← bj − 1 · c(j)\j

10: end for
11: if for all j ∈ {1, . . . , t}, ν(j)

\j , c
(j)
\j ≥ 0, c

(j)
j ≥ D

(
ν
(j)
\j , ec

(j)
\j

)
, then ok ← true .

veri�cation step

12: else δ̃ ← δ̃/2, δ̂ ← δ̂/2
13: end if
14: end while
15: return c, ν

The routine pseudoinv in line 2 computes the pseudo-inverse of Q, i.e., a matrix
Q+ such that QQ+Q = Q. Next, we enter in the loop starting from line 4. The REP

function calls an REP solver to compute a δ̃-approximation (ν̃, c̃) of (INTSAGE-feas).
The projection steps ensure that (ν, c) satis�es exactly the linear equality constraints of
(SAGE-feas), i.e., Qν(j) = Q(I − Q+Q)ν(j) = Q − QQ+Q = 0 and

∑t
j=1 c

(j) = b. If
the inequality constraints are not veri�ed in line 11, the rounding-projection procedure is
performed again with more accuracy.

4.2. Arithmetic Complexity. Before analyzing the arithmetic complexity of intsage,
we �rst establish lower bounds for the nonnegative components of the solutions related to
SAGE decompositions of polynomials in int (CSAGE).



12 VICTOR MAGRON, HENNING SEIDLER, AND TIMO DE WOLFF

Lemma 4.4. Let f =
∑t

j=1 bj exp (α(j) · x) ∈ int (CSAGE) of degree d with τ = τ(f). Let
ε be as in Lemma 4.2.

(1) There exists a solution of (ν, c) of (INTSAGE-feas) and δ ∈ Q>0 such that δ ≤ 1,

(ν, c) satis�es, D
(
ν
(j)
\j , e

(
c
(j)
\j + δ1

))
+ ε

2
≤ c

(j)
j ,

∑t
j=1 c

(j) = b, for all i, j =

1, . . . , t.
(2) There exists a solution (ν, c) of (INTSAGE-feas) and δ ∈ Q>0 such that (ν, c)

satis�es D
(
ν
(j)
\j + δ1, ec

(j)
\j

)
+ ε

2
≤ c

(j)
j , for all j = 1, . . . , t.

(3) There exists a solution (ν, c) of (INTSAGE-feas) and δ ∈ Q>0 such that (ν, c)

satis�es D
(

(1 + δ)ν
(j)
\j , ec

(j)
\j

)
+ ε

2
≤ c

(j)
j , for all j = 1, . . . , t.

In each case, τ(δ) ∈ O (τ · (4d+ 6)3n+3).

A proof for this lemma is provided in appendix A.1.

Theorem 4.5. Let f =
∑t

j=1 bj exp (α(j) · x) ∈ int (CSAGE) of degree d and τ = τ(f).

There exist δ̂ and δ̃ of bit size less than O (τ · (4d+ 6)3n+3), such that intsos(f, δ̂, δ̃) ter-
minates and outputs a rational SAGE decomposition of f within O (τ · (4d+ 6)3n+3 t7 log t)
arithmetic operations.

Proof. We �rst show that the loop of Algorithm intsage terminates with δ̂ and δ̃ of bit
size bounded by O (τ · (4d+ 6)3n+3). Let ε be as in Lemma 4.2. When running the pro-

cedure REP, one solves (SAGE-feas) at precision δ̃, thus one �nds an approximate solution

(ν̃, c̃) such that ‖
∑t

j=1 c̃
(j)−b‖∞ ≤ δ̃, D

(
ν̃
(j)
\j , ec̃

(j)
\j

)
+ε ≤ c̃

(j)
j + δ̃, and ‖Qν̃(j)‖∞ ≤ δ̃, for

all j = 1, . . . , t. After the rounding and projection steps, one obtains ν(j) = (I−Q+Q)ν̂(j)

and ‖ν̂(j)− ν̃(j)‖∞ ≤ δ̂. Since αj(i) ≤ d, for all i, j = 1, . . . , t, the bit size of the entries of
the matrix Q is upper bounded by τ(d). Thus, the pseudo-inverse Q+ has rational entries
of bit size bounded by O (t log t+ t log d) = O (t log t), since the bit size is the same as for
the determinant length, see [BPR98, Corollary 8.13]. This implies that the bit size of the

di�erence between the entries of ν̃ and ν is upper bounded by O
(
t log t+ τ(δ̃) + τ(δ̂)

)
.

Similarly, the bit size of the di�erence between the entries of c̃ and c is upper bounded

by O
(
τ + τ(δ̂)

)
. By Lemma 4.4, one can perform any absolute or relative perturbation

of ν̃ and c̃, and still ensure that the resulting (ν, c) satis�es D
(
ν
(j)
\j , ec

(j)
\j

)
≤ c

(j)
j , if the

perturbation is small enough with bit size at most O (τ · (4d+ 6)3n+3). This implies that

one must choose δ̃ and δ̂ small enough, with the same upper bound on their bit sizes. The

same reasoning applies to ensure that ν
(j)
\j , c

(j)
\j ≥ 0.

Now, we give an upper bound on the number of arithmetic operations. For convex
optimization problems having barrier complexity equal to N , the standard interior-point

methods compute a δ̃-accurate solution in O (τ(δ̃)
√
N log(N)) iterations; see e.g. [Ren01,

Section 2.4]. For (x, y, z) ∈ R3, the standard barrier complexity of a single relative entropy
constraint �x log(x/y) ≤ z, x, y ≥ 0� is equal to 4. In addition, the barrier complexity
of a set of constraints is upper bounded by the sum of the complexities of the individual
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constraints. Therefore, the relative entropy formulation given in (SAGE-feas) has a barrier
complexity of N ≤ 4t2. At each iteration of the interior-point method, one needs to solve
an LP involving 2t2 variables, which can be done within O (t6) arithmetic operations. This
yields the upper bound of O (τ · (4d+ 6)3n+3 t7 log t) on the total number of arithmetic
operations required while calling intsage. All other arithmetic operations performed by
the algorithm have a negligible cost with respect to the REP procedure. �

5. Experimental Comparisons

We discuss the actual bit sizes and physical running time of optsonc and optsage
procedures, given by Algorithm 3.1 and Algorithm 3.2. We describe the setup of our
experiment and explain how our random instances were created. Afterwards, we discuss
a few selected examples, which exhibit well the di�erences of the methods, and present
how the program behaved on a large set of examples.

5.1. Experimental Setup. We give an overview about the experimental setup.
Software The entire experiment was steered by our Python 3.7 based software POEM

0.2.0.0(a) (E�ective Methods in Polynomial Optimization), [SdW18b], which we develop
since July 2017. POEM is open source, under GNU public license, and available at:

https://www3.math.tu-berlin.de/combi/RAAGConOpt/poem.html

For our experiment, POEM calls a range of further software and solvers for computing
the certi�cates. For the numerical solutions of SONC and SAGE, we use CVXPY 1.0.12
[DB16], to create the convex optimization problems, together with the solver ECOS 2.0.7
[DCB13]. The symbolic computations were done in SymPy 1.3 [JvMG12].
Investigated Data The experiment was carried out on a database containing 2020

randomly generated polynomials. The possible numbers of variables are n = 2, 3, 4, 8, 10;
the degree takes values d = 6, 8, 10, 18, 20, 26, 28 and the number of terms can be t =
6, 9, 12, 20, 24, 30, 50. For each combinations we create instances, where the number of
negative terms is one of a few �xed ratios of t. In particular, the size of (SAGE) grows
quadratically in t. We created the database using POEM, and it is available in full at
the homepage cited above. Our instances are a subset of those from [SdW18a]. In that
paper, we also describe their creation in more detail. The overall running time for all our
instances was 6780.0 seconds.
Hardware and System We used an Intel Core i7-8550U CPU with 1.8 GHz, 4

cores, 8 threads and 16 GB of RAM under Ubuntu 18.04 for our computations.
Stopping Criteria For the accuracy of the solver and the precision of the rounding

in Python we used a tolerance of ε = 2−23. The restriction t ≤ 50 was chosen, since
otherwise we already encounter problem in the numerical solution of (SAGE). The bound
d < 30 was chosen, because for large degree we had a signi�cant increase in the memory
required to perform the rounding. Both thresholds were obtained experimentally.

5.2. Evaluation of the Experiment. In this section we present and evaluate the results
of our experiment and highlight our most important �ndings, when investigating the com-
putational data. We focus on the results given by the procedure optsage (Algorithm 3.2)
via SAGE decompositions and in the end give a comparison to optsonc.

https://www3.math.tu-berlin.de/combi/RAAGConOpt/poem.html
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d = 8, t = 20
n bit size time
2 27723 5.82
3 23572 4.99
4 22965 4.83
8 5678 1.12
10 1749 0.35

d = 10, t = 24
n bit size time
2 38872 8.26
3 33938 7.26
4 31278 6.34
8 7042 1.42
10 3778 0.91

d = 10, t = 30
n bit size time
2 61198 12.41
3 57833 11.81
4 53596 10.82
8 13343 2.55
10 6974 1.41

Table 1. Dependency of the average bit size and the average running time
of optsage, with the number of variables, for �xed values of degree d and
number of terms t; For n = 8 we observe a drastic drop both in running
time and bit size.

Running time decreases with growing number of variables. The formulation of
(SAGE) shows that the size of the problem only depends on the number of terms t, but
in the SAGE decomposition, the number of summands is the number of monomial non-
squares. Most signi�cantly, for more variables, our generating algorithm simply results
in a smaller number of these terms. Additionally, for n ≥ 8 and d ≤ 10, most exponents
lie on faces of the Newton polytope. This leads to a simpler combinatorial structure,
which we believe to result in lower bit sizes and thus in faster solving faster the exact LP
from line 6 of optsonc. Next, we have more equality constraints in this LP, which could
also improve the running time. Lastly, the exponential upper bound is just the worst
case, which does not seem to actually happen among our examples. For some selected
parameters, we exhibit that behavior in Table 1.
Dependency of bit size and running time of degree and terms To illustrate

how bit size and running time of optsage vary for di�erent degrees and numbers of terms,
we restrict ourselves to at most 4 variables. Our numbers from the previous point show,
that in these cases bit size and time are similar for �xed (d, t), hence we may aggregate
those instances. The results are shown in Table 2. We can see that running time and bit
size roughly have a linear dependency. On the one hand, their growth is quadratic in the
number of terms, which matches with the growth of the problem size in (SAGE). On the
other hand, bit size and running time are basically una�ected by the degree. This shows
that the bound, given in the worst case analysis, usually is not met.
Quality of the rounding-projection Our experiments verify that in the majority of

cases the symbolical lower bound does not diverge far from the numerical bound. The
detailed distribution is shown in Figure 1. Most notably, in 30 instances, the exact lower
bound is even better than the numerical bound. In 81.9% of the instances, the exact
bound di�ers by at most 0.001 from the numerical value. Only in 256 instances the
di�erence lies above 1. Thus, in the clear majority of examples, the lower bound in exact
arithmetic does not di�er much from the numerical bound. Also, among the instances
with large di�erence, it can also be that the numerical solution actually lies far away from
an exact solution. So it is unclear, whether a large di�erence is due to bad behavior of
the numerical solution, or a large error in the rounding algorithm.
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t \ d 6 8 10 18 20 26 28

6
912

0.24

1000

0.26

1002

0.26

1170

0.28

1014

0.26

955

0.28

900

0.26

9
2731

0.66

2673

0.65

2808

0.70

2890

0.68

2621

0.61

3166

0.82

2471

0.62

12
5599

1.30

6054

1.40

5449

1.27

5747

1.27

5478

1.21

6007

1.53

5027

1.18

20
9990

2.26

24078

5.08

20985

4.40

21364

4.43

19324

3.96

24096

5.23

17210

3.59

24 × 36301

7.62

33414

6.99

37080

7.49

29266

5.87

37618

7.87

28090

5.43

30 × 57744

11.90

56354

11.44

61564

12.57

48622

9.32

59975

12.76

55000

10.80

50 × × 180971

36.11

174464

34.64

146218

27.80

196511

38.19

183598

38.36

Table 2. Bit size (upper part) and running time (lower part) of optsage in
dependency of the degree d and the number of terms t for up to 4 variables;
A �×� indicates, that we do not have instances with these parameters in
our data set.
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Figure 1. Number of instances where the di�erence of numerical lower
bound and exact lower bound lies in the given interval; note that the exact
bound sometimes is better.

Rounding time versus solving time In nearly every case the rounding procedure
takes longer than the numerical solving. Only in 8 instances, the rounding took less time.
The ratio of the rounding time to the total time ranges from 21.6% to 96.8%, with an
average of 88.6%. However, one can implement the rounding procedure much closer to
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t bit size SONC bit size SAGE time SONC time SAGE
6 432 1005 0.06 0.26
9 806 2696 0.19 0.66
12 1261 5568 0.37 1.29
20 2592 19203 0.64 4.00
24 3826 32543 0.97 6.66
30 5029 53160 1.34 10.58
50 10622 167971 3.95 32.78

Table 3. Comparison of running time and bit size of the certi�cates be-
tween optsonc and optsage; optsonc runs faster and has signi�cantly
smaller certi�cates than optsage.

the hardware level, instead of working in Python. Thus, we expect that these ratios can
be signi�cantly improved.
Comparison between SONC and SAGE In their qualitative behavior, optsonc

and optsage are similar. However, optsonc runs faster and has smaller certi�cates than
optsage, as shown in Table 3. But one should note that optsonc only computes some
lower bound (not necessarily the optimal SONC-bound), whereas optsage computes the
best bound, that can be obtained via this approach. Still it shows, that for very large
instances, SONC is the method of choice, when other approaches fail due to the problem
size.
Comparison with SOS For polynomials lying in the interior of the SOS cone

from [MSED18, Table 2], we performed preliminary experiments with optsage and
optsage, which are currently unable to provide nonnegativity certi�cates. For bench-
marks from our database with n ≥ 8 and d ≥ 10, RealCertify often fails to provide SOS
certi�cates. We plan to provide detailed experimental comparisons with SOS methods in
the future.

6. Conclusion and Outlook

We make two main contributions in this paper. First, we present an algorithm to
decide whether a given multivariate polynomial over the rationals lies in the interior of
the SAGE cone. If that is the case, then the algorithm also computes a certi�cate in exact
arithmetic. Additionally, we analyze the arithmetic complexity of the algorithm, which
is polynomial in the degree and the number of terms, and exponential in the number of
variables. Second, we use our numerical methods to obtain lower bounds via SAGE and
apply a single iteration of the rounding-projection method, to obtain an exactly certi�ed
lower bound. This method, we run on a large number of test cases. Based on these
experiments, we draw the following conclusions.

(1) In the majority of cases, the exact solution lies close to the numerical solution,
with a di�erence of at most 0.001. For few instances, the exact lower bound is
even better than the numerical one.
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(2) The running time and the bit size grow quadratically in the number of terms,
which corresponds to the growth of the problem size.

(3) For the investigated parameters, increasing the degree or the number of variables
does not increase the running time or the bit size. This also corresponds to the
fact, that the size of the REP is independent of the degree and the number of
variables.

(4) For very large instances, SONC should be the �rst choice, to obtain a certi�ed
bound, since it runs signi�cantly faster than the other methods.

For future work, the most interesting development would be to have an REP-solver with
arbitrary precision, so that we can actually implement intsage and compare it to similar
approaches. Furthermore, in a signi�cant amount of instances, we encountered compu-
tational problem, when calling optsonc or optsage. So we would like to increase the
robustness of our implementation. Another issue, we have left out so far, is the presence
of exponents of monomial non-squares, which lie on a face of the Newton polytope, that

does not include the origin. These result in values λ1,j = 0 (SONC) or ν
(j)
1 = 0 (SAGE),

so our computation is unde�ned. However, these problems can be circumvented and we
plan to do so in a future version of the software. Next, we plan to extend our frame-
work to constrained problems and provide more detailed experimental comparisons with
SOS-based approaches from [PP08, MSED18], as well as with methods based on critical
points and cylindrical algebraic decomposition. Given a polynomial in the interior of the
SAGE cone, our decision algorithm intsage is linear with respect to the distance of this
polynomial to the border of the cone. In order to improve this bound, one could re�ne
the bit size analysis for this distance. A further theoretical aim would be to analyze the
boolean running time of intsage, which requires to prove bit complexity estimates for
relative entropy optimization problems.
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Appendix A. Appendix

A.1. Proof of Lemma 4.4. We start with the �rst claim. By Lemma 4.2, there exist
ν̃, c̃ and ε ∈ Q>0, with τ(ε) ∈ O (τ · (4d+ 6)3n+3), such that (ν̃, c̃) satis�es

∑t
j=1 c

(j) = b,

c̃
(j)
\j , ν̃

(j)
\j > 0, D

(
ν̃
(j)
\j , ec̃

(j)
\j

)
+ ε ≤ c̃

(j)
j , for all j = 1, . . . , t. Let us de�ne δ := ε

2(t−1) and c

such that c
(j)
i := c̃

(j)
i + ε

2
for all i 6= j = 1, . . . , t, and c

(j)
j := c̃

(j)
j − tδ, for j = 1, . . . , t. Thus,

one has
∑t

j=1 c
(j) = b. For all j = 1, . . . , t, one has ν

(j)
\j > 0. Combining this together

with the fact that the log function is increasing yields

D
(
ν
(j)
\j , e

(
c
(j)
\j + δ1

))
+
ε

2
≤ D

(
ν
(j)
\j , ec

(j)
\j

)
≤ c̃

(j)
j −

ε

2
= c

(j)
j .

Using that for all d ≥ 2,

t ≤
(
n+ d

n

)
=

(n+ d) · · · (d+ 1)

n!
=

(
1 +

d

n

)(
1 +

d

n− 1

)
· · · (1 + d)

≤ dn−1(1 + d) ≤ 2dn ,

one has τ(t) ∈ O (n log2(d)). Since τ(δ) ≤ τ(ε) + τ(t), we obtain the �rst claim.
To prove the second claim, we rely on the following three auxiliary inequalities.
For ν, δ such that 0 < ν < δ ≤ 1

2
, one has

(A.1) (ν + δ) log(ν + δ) ≤ 0 ,

since 0 < ν + δ < 1 and the function x 7→ x log x is negative on (0, 1).
For ν, δ such that 0 < δ ≤ ν, one has

(A.2) (ν + δ) log(1 + δ/ν) ≤ 2δ ,

since ν + δ ≤ 2ν and log(1 + δ/ν) ≤ δ/ν.
For each ν, δ, c > 0 such that ν ≥ 1, one has

(A.3) δ log
( ν
ec

)
≤ δmax

{
0, ν log

( ν
ec

)}
.

Indeed, if ν ≤ ec, the left hand side is less than 0. Otherwise, ν ≥ 1 implies that
log( ν

ec
) ≤ ν log( ν

ec
).

Now, by the �rst claim, there exist εc, ε ∈ Q>0, with τ(εc), τ(ε) ∈ O (τ · (4d+ 6)3n+3),

and ν̃, c̃ satisfying ν̃
(j)
\j > 0, c̃

(j)
\j > εc1, and D

(
ν̃
(j)
\j , ec̃

(j)
\j

)
+ ε ≤ c̃

(j)
j , for all j = 1, . . . , t.

For each δ ∈ Q>0 with δ ≤ 1
2
, and all j = 1, . . . , t, one has:

D
(
ν̃
(j)
\j + δ1, ec̃

(j)
\j

)
=
∑
i 6=j

(ν̃
(j)
i + δ) log

ν̃
(j)
i + δ

ec̃
(j)
i

.

We give an upper bound of each summand of the right hande side, depending on the value
of ν̃ji , for all i, j = 1, . . . , t and i 6= j. Note that − log(ecji ) ≤ log(eεc), for all i, j = 1, . . . , t
and i 6= j.
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If 0 < ν̃ji ≤ δ ≤ 1
2
, one has by (A.1)

(ν̃
(j)
i + δ) log

ν̃
(j)
i + δ

ec̃
(j)
i

≤ (ν̃
(j)
i + δ) log(ν̃

(j)
i + δ)− (ν̃

(j)
i + δ) log(ec̃

(j)
i )

≤ 2δ log(eεc) .

If δ ≤ ν̃ji ≤ 1, one has

(ν̃
(j)
i + δ) log

ν̃
(j)
i + δ

ec̃
(j)
i

≤ ν̃
(j)
i log

ν̃
(j)
i

ec̃
(j)
i

+ δ log
ν̃
(j)
i

ec̃
(j)
i

+ (ν̃
(j)
i + δ) log

(
1 +

δ

ν̃
(j)
i

)

≤ ν̃
(j)
i log

ν̃
(j)
i

ec̃
(j)
i

+ 2δ log(eεc) + 2δ ,

where we use the fact that δ log ν̃
(j)
i ≤ 0 and bound the last term of the right hand side

via (A.2).
If ν̃ji ≥ 1, we write the �rst inequality as in the former case and obtain

(ν̃
(j)
i + δ) log

ν̃
(j)
i + δ

ec̃
(j)
i

≤ ν̃
(j)
i log

ν̃
(j)
i

ec̃
(j)
i

+ δmax

{
0, ν̃

(j)
i log

ν̃
(j)
i

ec̃
(j)
i

}
+ 2δ ,

where we rely on (A.3) to bound the second term and the fact that δ+ν̃
(j)
i ≤ 2ν̃

(j)
i together

with log

(
1 + δ

ν̃
(j)
i

)
≤ δ

ν̃
(j)
i

to bound the last term.

In the worst case, we obtain

D
(
ν̃
(j)
\j + δ1, ec̃

(j)
\j

)
≤ (1 + 2δ)D

(
ν̃
(j)
\j , ec̃

(j)
\j

)
+ 2δ(t− 1)| log(eεc)|+ 1)

≤ c̃
(j)
j + 2δc̃

(j)
j − (1 + 2δ)ε+ 2δt| log(eεc)|

≤ c̃
(j)
j − (1 + 2δ)ε+ 2δ(|bj|+ t| log(eεc)|) ,

using c̃
(j)
j = bj − 1 · c̃(j)\j ≤ bj, thus c̃

(j)
j ≤ max{0, bj} ≤ |bj|.

To ensure that D
(
ν̃
(j)
\j + δ1, ec̃

(j)
\j

)
+ ε

2
≤ c̃

(j)
j , it is su�cient to have −(1 + 4δ)ε +

4δ(|bj| + t| log(eεc)|) ≤ 0, which is guaranteed by selecting the largest positive ra-
tional δ such that δ ≤ ε

4(|bj |+t| log(eεc)|−ε) . Since τ(|bj|) ≤ τ , τ(t) ∈ O (d log2 n),

| log(eεc)|) ≤ τ(εc), and τ(εc), τ(ε) ∈ O (τ · (4d+ 6)3n+3), one can select δ with bit size
at most O (τ · (4d+ 6)3n+3).
The proof of the third claim is very similar and we omit it for the sake of conciseness.
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A.2. An Example of Exact SAGE Decomposition. Let

f(x) = 277− 1x22 + 159x22x
6
3 + 275x42 − 112x11x

1
2x

2
3 + 23x11x

2
2x

3
3 + 338x21x

4
3 + 166x21x

1
2x

1
3

− 89x21x
1
2x

2
3 − 19x21x

2
2x

1
3 + 74x21x

2
2x

2
3 + 268x61x

2
3.

Our optimization algorithm optsage returns (ν, c) corresponding to the following exact
rational SAGE decomposition: f(x) =

∑12
j=1 fj(x), where fj is the polynomial with

coe�cient vector c(j) for j ∈ {1, . . . , 12}, fj = 0 for j ∈ {1, 3, 4, 7, 11, 12}, and

ν(2) =

(
1494563

131072
,−

1494563

65536
, 0,

1494563

131072
, 0, 0, 0, 0, 0, 0, 0, 0

)
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−
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x22 +
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x22x
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3 +
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x42+
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2x

2
3 +
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3 +

151893109261090080

12048313292258664398599
x21x

4
3+
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ν(9) =

(
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144047

32768
,
1284635

65536

)
f10 =

157

2744
+

5424537902241772912

6189133159801243971
x22 +

880139855950527034906380

176335433100237218699413
x22x

6
3 +

571069367996398273530

13490375489389305583
x42+

33169145578648933133280

22200197261503152705103
x11x

1
2x

2
3 +

228162076394260360

119485631121730177
x11x

2
2x

3
3 +

48697840759706172793616

12048313292258664398599
x21x

4
3+

1587820308255205569373114

1022933010282679211537189
x21x

1
2x

1
3 +

59150503389680767180777

20582323192135256357159
x21x

1
2x

2
3 −

403951932103643744176

5417152094682478713
x21x

2
2x

1
3+

616254425060782282800

55380305977850685287
x21x

2
2x

2
3 +

21315777567587124730738350

672038441901303429467107
x61x

2
3
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