N

N

Evaluating the Impact of Traffic Sampling on AATAC’s

DDoS Detection
Gilles Roudiere, Philippe Owezarski

» To cite this version:

Gilles Roudiere, Philippe Owezarski. Evaluating the Impact of Traffic Sampling on AATAC’s DDoS
Detection. Journal of Cyber Security and Mobility, 2019, 8 (4), pp.419-438. 10.13052/jcsm2245-
1439.842 . hal-02047267

HAL Id: hal-02047267
https://laas.hal.science/hal-02047267
Submitted on 25 Oct 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://laas.hal.science/hal-02047267
https://hal.archives-ouvertes.fr

Evaluating the Impact of Traffic Sampling on
AATAC’s DDoS Detection

Gilles Roudiere and Philippe Owezarski*

LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
E-mail: gilles.roudiere @ gmail.com; owe@laas.fr
*Corresponding Author

Received 20 November 2018; 20 December 2018;
Publication 20 June 2019

Abstract

As Distributed Denial of Service (DDoS) attack are still a severe threat for
the Internet stakeholders, they should be detected with efficient tools meeting
industrial requirements. We previously introduced the AATAC detector, which
showed its ability to accurately detect DDoS attacks in real time on full traffic,
while being able to cope with the several constraints due to an industrial
operation, as time to detect, limited resources for running detection algorithms,
detection autonomy for not wasting uselessly administrators’ time. However,
in a realistic scenario, network monitoring is done using sampled traffic. Such
sampling may impact the detection accuracy or the pertinence of produced
results. Consequently, in this paper, we evaluate AATAC over sampled traffic.
We use five different count-based or time-based sampling techniques, and
show that AATAC’s resources consumption is in general greatly reduced with
little to no impact on the detection accuracy. Obtained results are succinctly
compared with those from FastNetMon, an open-source threshold-based
DDoS detector.

Keywords: DDoS detection, sampled traffic, unsupervised learning.

Journal of Cyber Security and Mobility, Vol. 8 4, 419—438.
doi: 10.13052/jcsm2245-1439.842
This is an Open Access publication. (©) 2019 the Author(s). All rights reserved.



420 G Roudiere and P. Owezarski

1 Introduction

Distributed Denial of Service (DDoS) attacks consist in numerous hosts
sending fake requests towards a victim’s network. Those requests exhaust the
victim’s system resources, either its available computing power, networking
bandwidth or even some protocol implementation specific resources. Thoses
attacks are numerous and they can cause up to the system’s total inability to
handle legitimate clients’ requests. Consequently, they should be detected.
However, appropriate detectors have to meet the industry requirements
(real-time operation, accuracy, autonomy...)

As today’s bandwidths are very large, most actual monitoring systems
sample the traffic in order to reduce the size of the data to be processed, limiting
the computational resources used for monitoring purposes.! Consequently,
a realistic DDoS detector should be efficient even when processing sampled
traffic.

In a previous paper [1], we introduced AATAC (Autonomous Algorithm
for Traffic Anomaly Characterization), a fully autonomous anomaly detector
that focuses on DDoS attacks. We proved, on some full traffic traces, that it
can perform an efficient detection while consuming a very limited amount of
resources. However, to be used in an industrial context, AATAC should also
be able to perform efficiently over sampled traces. This is why in this paper
we evaluate the AATAC algorithm over sampled traffic. We use several types
of sampling techniques and rates, the aim being to understand which sampling
techniques would be the most appropriate for maximizing the DDoS detection
using AATAC. The results are compared with those from FastNetMon, the only
publicly available DDoS detector we manage to install on our testbed.

The remaining of this paper is organized as follows. In Section 2 we
introduce other detectors built to operate over sampled traces. Our detector
AATAC is briefly introduced in Section 3, while its evaluation over sampled
traces is discussed in Sections 4 and 5. Section 6 concludes the paper and
discusses possible future works.

2 Related Works

In this section, we present related works that study the impact of sampling on
several monitoring tools, but mainly focus on the network anomaly detection.

'"This processing is often performed on the switches/routers whose main task is to
switch/route packets, and are then largely loaded by this main task. Other tasks must then
consume resources parsimoniously.



AATAC’s DDoS Detection 421

Several related approaches rely on a flow-based sampling. Bartos et al. [2]
study the impact of sampling on network anomaly detection. They propose
an adaptive flow-level sampling technique that manages to limit the impact
of sampling on the performance of a network behavioural anomaly detector.
Other flow-based sampling techniques are presented by Jadidi et al. [3] or
Andriolakis [4]. The problem with such approaches is that extracting flows
from the traffic is already a complex task that has to deal with already packet
sampled traffic. The main bottleneck for monitoring system is definitely situ-
ated at the packet level, even for systems that provide flow based information.
Thus, we instead focus on packet sampling techniques as they are the most
likely to significantly impact the computational cost reduction.

A framework to evaluate the impact of packet sampling over several
various tools is presented in [5]. The author discusses the very generic
performances of each sampling algorithm. They propose a set of metrics that
allow the evaluation of each technique’s ability to produce a sampled traffic
that efficiently represents the original one. Their results are really generic and
do not target the network anomaly detection problem specifically, they thus
might not apply in our situation. An extension of this study is presented in [6].

Jun et al. [7] propose an adaptive sampling technique that intends to keep
the amount of sampled traffic below a maximum inspection capability. They
use the SDN technology to distribute the sampling over several switches. They
perform their evaluation using Snort [8] and Suricata [9], two detectors based
on Deep Packet Inspection. As such techniques focus on the packets content,
instead of more encompassing statistical features of the traffic, the technique
might not suit all detection algorithms (including AATAC).

In an older paper, Brauckhoff et al. [10] evaluate the impact of sampling
over anomaly detection metrics. Their evaluation uses traces containing the
Blaster worm to evaluate several detection techniques at various sampling
rates. With a detector they propose, and thanks to an entropy-based summa-
rization technique, authors achieve a good detection independently from how
high is the sampling rate. The paper also shows that flow-based detection is
more impacted by the packet sampling than packet-based detection.

3 AATAC Algorithm Overview

AATAC is a balanced solution to the DDoS detection problem. It provides
a real-time detection with low computing resources while still producing
pertinent and eloquent results. It is a fully autonomous detector relying on
unsupervised machine learning techniques, requiring very few configuration



422 G Roudiere and P. Owezarski

or updates. In this section we present only a brief overview of the algorithm.
For more technical details, please refer to the original publication [1].

AATAC’s processing is illustrated on Figure 1. It is split into two distinct
parts: a continuous and a discrete one. The first one quickly handles instances
and maintain a data structure representing the traffic in real time. The second
one uses this data structure to store, at a regular interval, a snapshot of the
traffic. Those snapshots are then stored and used to detect anomalies in the
traffic. As those snapshots can be plotted into a set of two-dimensional graphs,
they provide the network administrator with a dynamic and pertinent view of
the traffic properties when the anomaly occurs.

3.1 Continuous Processing

The first step in AATAC’s processing consists in extracting per-flow aggre-
gated data from the trafic. The flow aggregation relies on a short thum-
bling window that groups the packets according to the 5-tuple (I Psoyrces
I Pyestinations Portsources Portdestinations Protocol). Each flow’s 5-tuple
is then recorded alongside with a timestamp value (set at the start of the
thumbling window) and a set of various features associated with the flow.
Such features include, for example, the number of UDP packets in the flow,
the average number of bytes per packet or the number of SYN packets. The
per-flow aggregation aims at ensuring AATAC’s compatibility with common
flow export technologies, such as Netflow [11] or IPFix [12].

Once aggregated, those flows are fed into AATAC’s continuous processing.
This part of the algorithm builds a representation of the traffic, accurate at any
time by reliying on a statistical analysis on the traffic. Its processing is inspired
from D-Stream [13], a grid-based clustering algorithm.

To characterize the traffic properties, AATAC uses grids. Those grids are
either grouped as histograms, to characterize a traffic feature distribution, or
alone, to characterize a global feature of the traffic. Whenever AATAC pro-
cesses a traffic instance (here a traffic flow and its associated characteristics),
AATAC determines a set of grids it falls in. The algorithm then calculate a
density assigned to the grid calculated from all instances that fell into the grid
so far.

To calculate the grid’s density value, AATAC assigns a density to each
instance. Let us consider an instance x that fells into a grid at a given time ¢,
It’s density at a later time ¢ is noted D(x, t), and is calculted according to the
following formula:

D(x,t) = w7t (1)



423

AATAC’s DDoS Detection

‘wyIHoS[e DVIVY Yl JO MIIAIOAO UY T danJig
(- N

sadfjoj0.d weiboisiH sweibojsiH pajepdn

1 m — <.

}auwi)} je pajeald
joysdeus jse

\

o -——

|
el AT Wi ____ ___._____.A.

sjoysdeus jse| N <
< 6
<
N = <
<«
> (o) 3 .
[ewouy <
e S VY E <. S A
WeiIved W4 3 \_ ) si9sn| ( 1¥6)a

Bunsisn|d pub ssusq
‘uonelep pub aosedg

uoloslep Ajewoue 91400S pazijewsou Buipiooal | sadAjojoid weiboisiy
paseq-pjoysaiy | PasSeq-NNY @4njesj-iad uoljealo joysdeus JO uonoNISU0)

e 1sQ vod oHs Hod %, (LV [eAsajul JejnBal & e pajnoax3)
siosoed dNOI # -

gnors v ii ETERS
sxoed adn # || o oo sqw SNONNILNOD

Ausuap s,pub y

spexord NAS #
puooss Jad sjoxoed # - ' _ D E : E
sainjeaj apim-oiel]

Ayisuap s,ainjeay) apim-olyesy y sweibolsiH

uofjoBIIX® S8INJEd)
§  J0 ejepdn senisua( J«—sooursu| = DOSEq-MOL4

ouyeu



424 G Roudiere and P. Owezarski

Where w, is a weight assigned to the instance, that depends on what the
grid is characterizing. For example, a per-packet characterization of the traffic
requires w, to be set to the number of packets in the flow. Over time, the
density of each instance exponentially decays towards 0. The A parameter,
ranging between 0 and 1, determines how fast those densities decrease. This
parameter is called the decay factor.

Considering the set E(g,t) of all instances that fell into the grid g at a
time ¢. The density assigned to g is then calculated as follows :

D(g,t) = ZIEE(M D(z,t) )

The most interesting part of this instance weighting strategy is that the grid’s
density can be updated in an incremental manner. This limits the memory
used, as it is not required to store a large amounts of instances to compute
the grid’s density. Indeed, to incrementally compute a grid’s density, only two
values need to be stored: the timestamp of the last instance included into the
grid (¢;) and the grid’s density at this time (D(g, t;)). When a new instance is
added at a time £,,, the grid’s density is updated as follows:

D(g,tn) = A"""D(g,t;) + wy 3)

where w), is the weight assigned to the new instance.

This incremental weighting technique inherently gives much more weight
to recent instances in the model than to the older ones. Thus, at a given
instant, all grids together form a short-term complete characterization of
the traffic. Also, unlike techniques relying on a thumbling window, this
approach does not require to wait for the end of a window to extract the traffic
properties. This allows a faster detection, which is essential to DDoS attacks
detection.

For reasons made explicit in [1], the A decay factor is set via the R
parameter. We define R as R = AT, where AT is the parameter defining the
time interval between two snapshot creations.

3.2 Discrete Processing

The discrete processing is executed at a regular interval AT, it can be split
into three steps. First, it updates the continuous processing data structure, it
then creates a traffic snapshot and finally detects anomalous behaviours.

As the continuous processing is incremental, the whole set of grids’ densi-
ties might not create a consistent characterization at a given instant. The grids’



AATAC’s DDoS Detection 425

densities are thus updated to be consistent with each other as follows:
D(g,t) = X" D(g, 1) “

Also, to avoid the number of stored grids to overgrow in the memory, several
grids having a density lower than a really low value D; are removed from
the data structure. Indeed, grids that have a very low density did not received
any instance for a very long time, and are thus not useful anymore to create a
short-term characterization of the traffic.

For performance reasons, AATAC’s data structure cannot be stored as
is. Grids organized as histograms are thus simplified, and transformed into
histogram prototypes, a lighter and faster to process data structure. Those
prototypes are created by selecting the most dense grids in each histogram
(with a density above a threshold D,,,). Adjacents dense grids are then grouped
as clusters, whose properties (average density, minimum and maximum
boundaries) are then used to create the piecewise constant curve constituting
the histogram prototype.

The final traffic snapshot is created by storing all histogram prototypes
along with the up-to-date densities characterizing global traffic features. This
set constitutes the snapshot features.

Finally in the anomaly detection phase, AATAC compares the lastly
created snapshot to the set of N last snapshots. This is done using the
k-Nearest Neighbour (kNN) algorithm applied for each analyzed snapshot
feature. To compare two histogram prototypes, a distance function computes
the area that is not shared between the two areas under each prototype’s
curve (Figure 2 illustrates this calculation). The absolute difference is used
for global densities values. Finally, kNN produces an outlierness score that
AATAC uses to determine how different is the lastly created snapshot from
the previously created ones. Note that the scores are normalized, so that the
per-feature produced score can be compared to each other.

The final anomaly detection is performed by detecting if the kNN score
goes over a given threshold for any snapshot feature. If so, an alarm is raised.
As the histogram prototypes and the global densities can be plotted, this alarm
is given to the network administrator along with a set of graphs allowing
him to have a pertinent and dynamic view of the traffic features when the
anomaly occurs. Figure 3 shows an example of such visual feedback. On this
example, the figure depicts each snapshot feature’s value (as an histogram or
a numerical value) along with the current anomaly score associated with this
feature. Scores that went above the threshold have their background colored
in red.



426 G Roudiere and P. Owezarski

Bl Area
- Histogram prototype A

==== Histogram prototype B

Figure 2 Area computed by the distance function to compare two histogram prototypes.

—
[ Data 3550 | Datajg0000-
r e 130000
t 25004 [ ]
t 2000 [ 1900001 1216445.52
[ iggg‘ [ 60000
[ P Fource (# otu) 5004 [ ‘ 1P Source f#p%c kets) Aggog: Packet
I T el vl | ol Ly el ! 2009
e u L — - i Ohta —2| [ " 1 7 T Dbta ]
SR U N S L N I | WY PN ]
8000
Data 000 Data 20000
[ 70007 250000
t 6000
[ 50004 2000001
F 40004 150000-| 32583.04
r 2000 [ oo
[ 1P Dest (anw) Tooo] | \ P Dest (xpar]kets) 500004 Flows
L L L 111 1 Il L
) B [ I Dhta ——— ! ! ! Data [ 1Ty | I Dhta — |
e o lc=omis 1C vy i
Data Datay,
500001
2000 300000
4000 250000
3000 200000 0.00
2000 100000 |
Port Source (#flow) 1000 :l Port Source (#packets) 50000 Urg
i oy
[T T T Data T T r r— [T T T Data ]
S, ST . e o 1 \ ]

Figure 3 A set of graphs that can be shown to the administrator.

4 Evaluating the Impact of Sampling on the DDoS
Detection

In this section, we describe the testbed we used to evaluate AATAC’s
performances over sampled traffic.

4.1 Sampling Techniques

Basically, a packet sampling algorithm aims at selecting whether or not
a packet should be sampled for further analysis. To evaluate AATAC’s
performances in various situations, we used five different sampling tech-
niques with several sampling rates: systematic count-based, probabilistic,
1-out-of-N, systematic time-based and random time-based. Those techniques
can be split into two categories: count-based or time-based. They cover the
full range of common techniques for traffic sampling.



AATAC’s DDoS Detection 427

4.1.1 Count-based selection techniques

Count-based selection techniques give all packets the same probability to get
sampled, independently from their content or arrival time. Statistically, this
implies selecting one packet out of N.

The first approach we use is the systematic approach. It consists in
systematically selecting a packet every N packets. This approach is pretty
straightforward to implement and gives an accurate representation of the
traffic in most situations. However, it might suffer from a bias if the monitored
features exhibit a periodic behaviour.

The random probabilistic sampling runs a random test whenever a packet
arrives and selects it with a given probability p. As it is does not require an
analysis of the packet’s content, our approach uses a uniform probabilistic
sampling that selects each packet with the same probability.

The last random count-based technique we use is the n-out-of-N sampling.
Every N packets, this technique chooses a random set of n indexes between 0
and NV — 1. Those indexes correspond to the indexes of the n packets that will
be selected among the next N packets. In most cases, n is set to 1. The /-out-
of-N sampling is easier to implement while showing similar performances as
any other n values.

Count-based techniques have the advantage to produce a sampled output
that follows the trend of the input in terms of number of packet. They thus
allow detecting significant changes that depend directly on the number of
packets per second in the traffic.

4.1.2 Time-based techniques

Time-based techniques operate by defining a set of dates when a packet
selection should be triggered. They generally do that by computing a waiting
time interval between each selection. Unlike count-based sampling, time-
based sampling does not produce an output that is proportional to the input in
terms of number of packets. They instead smooth the variations of the traffic,
which might not suit all detection techniques.

If the time between two selections is constant, such approach is said
systematic. Like the count-based systematic approach, this technique might
suffer from a bias if the traffic exhibits a periodic behaviour.

Other time-based techniques might randomly select the time to wait
between two triggers. The technique we use generates an inter-selection
interval following an exponential distribution.

Unlike count-based sampling, time-based sampling does not produce an
output that is proportional to the input in terms of number of packets. Those



428 G Roudiere and P. Owezarski

approaches tend to smooth the variations of the traffic, which might not suit
all detection techniques.

4.1.3 Other techniques

Various other techniques have been proposed in the literature. For example,
adaptive sampling techniques adapt the sampling rate depending on the load
of the system (CPU, memory, bandwidth...). Other techniques, said hybrid,
use a combination of two other techniques. While being interesting, those
techniques do not suit our requirements as they introduce several other
parameters that would have made difficult a generalization of the results.
Also, such techniques are in fact not common in an industrial context. They
require either a knowledge database, or setting up a feedback loop from a
performance monitoring system to the sampling hardware, which is not easy
to set up and maintain.

4.2 The Testbed

To evaluate the performances of AATAC, we implemented it using C++. The
experiments are run on a standard computer, featuring a 3.00 GHz Intel Xeon
CPU (E5-2623 v3). It features 8 cores but our implementation does not handle
multi-threading.

To evaluate our algorithm’s capability to perform an accurate detection,
we needed a ground trust. Out of all publicly available datasets we could
find, none of them could perfectly fit the needs of our evaluation. Built from
a simulated network in which attacks were manually generated, the KDD99
dataset [14] has been widely used in the litterature. Despite its quality, this
dataset is now almost 20 years old, and cannot be considered as realistic
enough regarding today’s trafic. The MAWILab dataset [15] consists in a set
of labels associated to the MAWI traces. Captured at the entrance of cloud
service provider, those traces are recent and representative of today’s traffic.
However, the MAWILab labels are generated using a combination of several
detectors, which are, by nature, not reliable. The most promising dataset we
could find was the UNB ISCX Intrusion Detection Evaluation DataSet [16].
This dataset from 2012 consists in artificially generated traffic, built from the
analysis of real captured traces. Four attack patterns are then played during the
traces generation, two DDoS, a scan and a brute force attack. Despite being
interesting for our evaluation, we consider that this dataset is insufficently
diversified for a pertinent evaluation of the detector. As a consequence of the
lack of pertinent available dataset, we created our own.



AATAC’s DDoS Detection 429

Thus, in the context of the ONTIC project, we built the SynthONTS
labelled dataset to evaluate our algorithm. It contains a one hour long, payload-
free and anonymized real traces captured at the entrance of a large cloud
service provider. In an emulated network, we generated 12 realistic attacks
and inserted them into the dataset. This set mainly includes DDoS attacks,
such as fraggle attacks, smurf attacks, Syn flooding and UDP flooding attacks.
Table 1 lists those attacks and their main properties. The dataset is publicly
available on the website of the ONTIC project [17].

We sampled the traces thanks to a custom tool called PCAPsampler [18].
For count-based algorithms, we used the sampling rate of one packet out
of 500, 1000, 2000, 5000 or 10000 packets. For time-based algorithms, we
picked one packet every 1, 0.1, 0.01 or 0.001 seconds. As the average packet
rate is around 67 k packets per-seconds in the dataset, this corresponds
to values between picking one packet out of 67000, to one out of 67.
According to our industrial partners, a sampling rate of one out of 2000 is
a common value used on operation. Those value ranges were thus chosen
considering this information, but still wide enough for significantly covering
different sampling rates.

Regarding the parameters of AATAC, we used the parameters exhibiting
the better performances in our previous evaluation [1]. Thus, we set N = 500,
AT =1sand R = 0.9. To adapt to the sampling rate, the computed instances
weights are multiplied according to the sampling rate.

Table 1 List of attacks inserted into the SynthONTS dataset

Generation Number Average

Attack Type Tool Duration of Packets Bandwidth
DDoS Fraggle nmap 3:55 28 k 9 kB/s
DDoS Fraggle nping 3:37 7104 k 259 MB/s
DDoS Smurf hping3 1:33 12645 k 143 MB/s
DDoS Smurf nping 3:51 1141k 5.26 MB/s
DDoS Smurf nping 2:31 6826 k 47 MB/s
DDoS Syn flooding hping3 2:07 4796 k 21 MB/s
DDoS Syn flooding nping 2:53 7247 k 16 MB/s
DoS Syn flooding hping3 3:38 5228 k 17 MB/s
DoS Syn flooding nping 2:58 7053 k 10 MB/s
DoS UDP flooding nping 2:30 4127k 24 MB/s
FTP brute force cracking

(rockyou.txt) ncrack 4:28 5373 k 1,53 MB/s

FTP brute force cracking
(500-worst-password.txt) ncrack 2:07 2558 k 1,55 MB/s




430 G Roudiere and P. Owezarski

While our implementation of AATAC is able to directly operate from pcap
files, this is not possible with FastNetMon. We thus had to replay the whole set
of traces (the 1hlong traces multiplied by the 12 attacks to evaluate) to evaluate
its accuracy. As this requires some time, we only evaluated FastNetMon’s
performances with the /-out-of-N sampling algorithm considering a sampling
rate of one packet out of 2000.

4.3 Evaluation Methodology

To measure the accuracy of the detector, we run both implementations over the
sampled traces. We consider an alarm as a true positive if it is raised while the
anomaly is occurring, a false positive if it is not. To analyse the results, we use
the well known Receiver Operating Characteristic (ROC) curve. However, as
they suffer from the base-rate fallacy issue [19], we complete our evaluation
by plotting the IDS operation curve of the detector. This method proposed
by Nasr et al. [20], consists in plotting the positive predictive value (PPV)
along with the false positive rate. Each plotted curve is compared to the
zero reference curve (ZRC'), the operation curve of an ideal detector that
should detect all anomalies while producing an increasing number of false
positives.

The intrusion detection effectiveness (Erp € [0,1]), is then extracted
from this curve. It corresponds to the normalized area between the actual IDS
operation curve and the ZRC fora FPR between 0 and a maximum acceptable
false positive rate Trp. The lower the Erp, the more effective the detector.

To evaluate how sampling impacts the computational resources required to
run the algorithm, we measure how much time our implementation spends into
either the continuous or the discrete parts of the algorithm. For the continuous
part, we plot the time required to process one second of traffic, and for the
discrete part, we measure the time required to create a single snapshot.

5 Results

5.1 Detection Accuracy

Figure 4 shows the ROC curves we obtain for the five sampling algorithms.
All count-based sampling techniques achieve good results, but the 1-out-of-N
technique seems to produce better and more stable results than other ones.
From the time-based sampling techniques, the systematic sampling achieves
the best results. For high sampling rates, the systematic time-based approach
seems to produce better results than the unsampled traffic while for lower



AATAC’s DDoS Detection 431

0.8 0.8
[ [
& g,
/
206 g 06
§ 04 Unsampled §04 'T“/f Unsampled ——
o 1/500 o / 1/500
2 1/1000 = / 1/1000
0.2 1/2000 02 [ ] 1/2000
1/5000 —o— e 1/5000 —o—
1/10000 —+— 1/10000 —+—
0 0
0 0.002 0004 0006 0008 0.1 0 0.002 0.004 0.006 0.008  0.01
False positive rate False positive rate
(a) Systematic count-based (b) Random probabilistic count-based
1 1
0.8 /| A - 0.8 o
o A * o % o e
® s engdod st © RN .
2 0.6 VAV 206/
g o4 / Unsampled §0 4
o 1/500 o Unsampled
= 1/1000 = 0.001
0.2 1/2000 02 | 0.01
1/5000 —— ___—01
1/10000 —+— ] P 1.0 —o—
0 0
0 0.002 0004 0006 0008 0.1 0 0.002 0.004 0.006 0.008  0.01
False positive rate False positive rate
(c) Random 1-out-of-N (d) Systematic time-based
1
0.8
[
® 7
206 1y
-‘ﬁ W .
2 [ e
Pl / “ Unsampled ——
= / 0.001 =
0.2 0.01
0.1
1.0 ——
0
0 0.002 0.004 0.006 0.008  0.01

False positive rate
(e) Random time-based

Figure 4 ROC curves for the several sampling algorithms and multiple sampling rates.

sampling rates, with one packet every 100ms or 1s, the results are not as good.
Indeed, those sampling rates correspond to one packet every 6700 or 67000
packets. The count-based sampling algorithms produce better results for simi-
lar sampling rates, as they detect more attacks for equivalent false-positive rate.

As we can see from the curves, once the false-positive value reaches a
given value, AATAC seems to perform better with the sampled traffic than with
the unsampled one. As stated before, we multiplied the weight of instances
depending on the sampling rate. This has increased the detector’s sensitivity.



432 G Roudiere and P. Owezarski

That being said, the results are more significant with the lowest values
of the F'PR. Indeed, as we run a test every second, even a F'PR of (0.001
means raising a false positive every 17 minutes, which is not acceptable in
a real situation. With very low false positive rates, such as 10~%, AATAC
performs better with unsampled traffic or high sampling rates. The IDS
curves in Figure 5 confirm this analysis. Considering the PPV values for
acceptable false-positive rate (below Trp = 10~3), AATAC’s with unsampled

1 1
o (]
=] =}
= § =
> e
o o
2 =
S 0957 Uniform —— 5 051 Uniform ——
»
] 1/500 —+— o 1/500 —+— .
e 11000 —+— e 1/1000 —+— \!
2 1/2000 2 1/2000 \
K 1/5000 —+— 2 1/5000 —+—
a 025 | 1/10000 —— o 025 | 1/10000 ——
ZRC ZRC
105 1074 T 1072 105 1074 Te 1072
False positive rate False positive rate
(a) Systematic count-based (b) Random probabilistic count-based
1 - 1 .
. 5“\ . \
o3 3 N
s %\\ E ‘ \\ .
> >
o o
2 &
2 05 1 Uniform —— A = 0.5 )
o 1/500 —+— \ 4 Uniform ——
e 1/1000 P 0.001 —+—
£ 1/2000 - 0.01
K 1/5000 —+— 2 0.1
a 025 | 1/10000 —— a 025 1.0 ——
ZRC —— ZRC ——
105 1074 T 102 105 104 Te 102
False positive rate False positive rate
(¢) Random 1-out-of-N (d) Systematic time-based
1
[}
-3
=
=
[}
2
B A\
b x
&'3 Uniform —— A
O 0.001 —+— A\
2 0.01 \
K 0.1
a 025 1.0 ——
ZRC \
105 1074 Te 1072

False positive rate

(e) Random time-based

Figure 5 IDS operation curves for the several sampling algorithms and multiple sampling
rates.



AATAC’s DDoS Detection 433

traffic IDS operation curves stays above the other ones. However, regardless
of the sampling algorithm, the efficiency decrease stays very low. This
is shown in Table 2: the Intrusion Detection Effectiveness only increases
by a very low amount when the sampling rate reduces. This table also
confirms that the /-out-of-N technique has the most stable results, especially
for Tpp = 1073,

From those results, time-based sampling stands out. With high sampling
rates, AATAC achieves a detection that is exceptionally good, looking better
than with unsampled traffic. This may be explained by the fact that time-based
sampling tends to smooth out the short term variations of the traffic, reducing
the FPR. Also, AATAC relies on densities that depend on the number of
packets received per second. Making this rate constant makes the detection
less dependent on the packet rate itself, and more on other properties of the
traffic. This has probably enhanced the detection.

Regarding the impact of sampling over FastNetMon accuracy, our evalua-
tion showed that FastNetMon was completely unable to perform its detection
over sampled traffic. Indeed, with standard sampling rate of one packet out
of 2000, FastNetMon generated 7 false positives in our evaluation, while
detecting no attacks out of 12. Decreasing the threshold only increased the
number of false positives generated by FastNetMon. The detector’s inability
to detect DDoS is probably due to the fact it operates at an IP address level.

Table 2 Intrusion Detection Effectiveness for all 2sampling techniques and several values
of TF P

Systematic Count-based

Trp Unsampled 1/500 1/1000 1/2000 1/5000 1/10000

0.01 0.1543 0.0853 0.1023 0.1197 0.1051 0.1568

0.001 0.0680 0.1026 0.0819 0.0789 0.0958 0.1053

0.0001 0.0155 0.2602 0.0208 0.0163 0.0263 0.0256
1-out-of-N Probabilistic

Trpp 1/500 1/1000 1/2000 1/5000 1/10000 1/500 1/1000 1/2000 1/5000 1/10000
0.01 0.0804 0.0903 0.0968 0.1371 0.1204 0.0758 0.0822 0.0909 0.1285 0.2127
0.001 0.0910 0.0804 0.0851 0.0902 0.0899 0.0661 0.0649 0.1014 0.1092 0.2328
0.0001 0.0286 0.0197 0.0274 0.0351 0.0654 0.0232 0.0136 0.0276 0.0390 0.0610

Systematic Time-based Random Time-based

Trp 1ms 10ms 100ms 1s 1ms 10ms 100ms 1s
0.01 0.0631 0.0394 0.2959 0.8424 0.0851 0.0939 0.2954 0.2402
0.001  0.2308 0.0242 0.2113 1.0000 0.1364 0.1127 0.1580 0.1607
0.0001  0.8993 0.0101 0.1238 1.0000 0.2495 0.0207 0.0274 0.0927




434 G Roudiere and P. Owezarski

Indeed, at such sampling rates, the amount of data corresponding to a specific
IP address is too low for the detector to take a pertinent decision. This implies
raising more false positive.

As a conclusion, we can see that AATAC performs an accurate detection
independently for the sampling technique used. It even performs better at
high sampling rates with time-based sampling. The sampling rate has a very
limited impact on the quality of AATAC’s detection, which is not the case for
FastNetMon, which was totally unable to operate with sampled traffic at a
standard sampling rate.

5.2 Computing power requirements

The calculated processing time of AATAC for each sampling algorithm are
depicted on Figure 6. To process the traffic in real time, the continuous

’g‘ 0,8 120,00
S 07 -~ Systematic count-based = 10000
= @ )
€ 06 1-out-of-N E n—&—-———'/
s =¥ Probabilistic count-based S 80,00 g
< 05 =
5 g
g 0,4 £ 60,00
(2]
@ -4 Systematic count-based
- 03 £ 40,00 ¥
§ 0,2 o 1-out-of-N
]

2 01 £ 20,001 _g. propabilistic count-based
s Y E
8 0 0,00
g 0 2000 4000 6000 8000 10000 0 5000 10000
= N for a sampling rate of 1/N N for a sampling rate of /N

(a) Continuous processing for (b) Discrete processing for

count-based sampling count-based sampling

g 3 100
% 251 Random time-based ,g Zg ]
= -4 Systematic time-based ot i
hS) 2 g 70
§ g 60
g 15 = 50
ha © 40
» 1 ° 30 .
3 o) Random time-based
S 05 \ o 20
“g. ’ N E 10 - Systematic time-based
o 0 L. = 0
£ 0,001 0,010 0,100 1,000 0,001 0,010 0,100 1,000
= Time interval between two samples Time interval between two samples

(¢) Continuous processing for (d) Discrete processing for

time-based sampling time-based sampling

Figure 6 AATAC’s processing times for several sampling techniques and sampling rate



AATAC’s DDoS Detection 435

processing was designed to process the traffic with a linear complexity
regarding the number of instances. This is confirmed on Figures 6(a) and (b).
As the X axis corresponds to the inverse of how many packets are processed
per second, the processing time follows a z +— % pattern.

Regarding the discrete processing, we can see on Figures 6(c) and (d) that
the sampling has little impact on the time required to create a snapshot. Indeed
there is no specific reason why the treatment should be more complex with a
snapshot built from a sampled traffic than with unsampled ones. However, we
can see a slight increase of the processing time when few packets per second
are sampled. This is probably due to the fact that a stronger sampling implies
that the impact of each instance has to be higher on the model. This thus
produces a more varying characterization of the traffic which might create
more complex histogram prototypes. This impact is however minimal.

We can also see from the several curves that only the sampling rate has an
impact on the processing time, while the sampling technique has none.

This evaluation proved that using AATAC with sampled traffic is possible
and allows a significant resource consumption reduction, proportional to the
sampling rate.

6 Conclusion

In this paper, we evaluated the AATAC DDoS detector’s performances over
sampled traffic. For sampling rates going up to 1 packet out of 2000, AATAC
has shown an almost unchanged detection accuracy while benefiting from
a substantial reduction of the required computational resources. From the
several sampling techniques used, count-based sampling techniques produce
results less dependent on the sampling rate (especially for the [-out-of-
N technique). However, at very high sampling rates, time-based sampling
techniques tend to produce better results, as they smooth the short-term
variations of the traffic. For further studies, it thus would be interesting to
study a new sampling technique. An ideal one would probably use an adaptive
mechanism, combining both time-based sampling for high sampling rates and
count-based for lower ones.

References

[1] G. Roudiere and P. Owezarski, “A Lightweight Snapshot-Based DDoS
Detector,” in 2017 13th International Conference on Network and
Service Management (CNSM), 2017.



436 G Roudiere and P. Owezarski

[2] K. Bartos, M. Rehak, and V. Krmicek, “Optimizing flow sampling for
network anomaly detection,” in IWCMC 2011 - 7th Int. Wirel. Commun.
Mob. Comput. Conf., pp. 1304-1309, 2011.

[3] Z. Jadidi, V. Muthukkumarasamy, E. Sithirasenan, and K. Singh, “A
Probabilistic Sampling Method for Efficient Flow-based Analysis,”
J. Commun. Networks, vol. 18, no. 5, pp. 818-825, 2016.

[4] G. Androulidakis and S. Papavassiliou, “Intelligent flow-based sampling
for effective network anomaly detection,” in GLOBECOM — IEEE Glob.
Telecommun. Conf., pp. 1948-1953, 2007.

[5] J. M. C. Silva, P. Carvalho, and S. R. Lima, “A Modular Sampling
Framework for Flexible Traffic Analysis,” 2015.

[6] J. M. C. Silva, P. Carvalho, and S. R. Lima, “Analysing traffic flows
through sampling: A comparative study,” in Proc. - IEEE Symp. Comput.
Commun., vol. 2016-Feb., pp. 341-346, 2016.

[7] J.-h. Jun, D. Lee, and S.-h. Kim, “DDoS Attack Detection Using Flow
Entropy and Packet Sampling on Huge Networks,” Thirteen. Int. Conf.
Networks., no. c, pp. 185-190, 2014.

[8] M. Roesch, “Snort: Lightweight Intrusion Detection for Networks.,”
LISA °99 13th Syst. Adm. Conf., pp. 229-238, 1999.

[9] “suricata.” https://suricata-ids.org/

[10] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina,
“Impact of packet sampling on anomaly detection metrics,” Proc. 6th
ACM SIGCOMM Conf. Internet Meas., pp. 159-164, 2006.

[11] B. Claise, “Cisco systems netflow services export version 9,” RFC 3954,
RFC Editor, October 2004.

[12] J. Quittek, T. Zseby, B. Claise, and S. Zander, “Requirements for ip flow
information export (ipfix),” RFC 3917, RFC Editor, October 2004.

[13] Y. Chen and L. Tu, “Density-Based Clustering for Real-Time Stream
Data,” in Proc. 13th ACM SIGKDD Int. Conf. Knowl. Discov. data Min.,
pp- 133-142, 2007.

[14] U. K. Archive, “KDD Cup 1999 Data.” http://kdd.ics.uci.edu/data
bases/kddcup99/kddcup99.html. Accessed: 2018-01-24.

[15] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab : Combin-
ing Diverse Anomaly Detectors for Automated Anomaly Labeling and
Performance Benchmarking,” in Proc. 6th Int. Conf. Emerg. Netw. Exp.
Technol. Co-NEXT’10, 2010.

[16] A. Shiravi, H. Shiravi, M. Tavallaece, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” Comput. Secur., vol. 31, no. 3, pp. 357-374, 2011.



AATAC’s DDoS Detection 437

[17] “Ontic.” http://ict-ontic.eu/. Accessed: 2017-05-12.

[18] “Pcapsampler.” https://github.com/groud/pcapsampler.

[19] M. Bar-Hillel, “The Base-Rate Fallacy In Probability Judgments,” Acta
Psychol. (Amst)., vol. 44, no. 3, pp. 211-233, 1980.

[20] K. Nasr, A. A.-e. Kalam, and C. Fraboul, “Performance Analysis of
Wireless Intrusion Detection Systems,” in Internet Distrib. Comput. Syst.
Sth Int. Conf. IDCS 2012, Wuyishan,, pp. 238-252, 2012.

Biographies

Gilles Roudiere received his PhD from Université de Toulouse in 2018. He
prepared it at LAAS (Laboratory for Analysis and Architecture of Systems),
in Toulouse, France. As his field of research relates to Internet security issues,
he is currently working on building a new network anomaly detector that
provides a more autonomous detection. His researches lead him to investigate
techniques that are able to deal with networks big data, such as machine
learning and data mining.

Philippe Owezarski is director of research at CNRS (the French center
for scientific research), working at LAAS (Laboratory for Analysis and
Architecture of Systems), in Toulouse, France. He got a PhD in computer
science in 1996 from Paul Sabatier University, Toulouse I1I, and an habilitation



438 G Roudiere and P. Owezarski

for advising research in 2006. His main interests deal with next generation
Internet. More specifically Philippe Owezarski takes advantage of IP networks
monitoring for enforcing Quality of Service and security. It especially focuses
on techniques as machine learning and data mining on the big data collected
from the networks for making the network related analytics autonomous and
cognitive.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


