A Modeling Tentative of Operation of Gas Sensor through Atomic Scale Insights

A. Hémeryck

J.-M. Ducéré, A. Estève, M. Djafari Rouhani and Ph. Ménini
Gassensing based on metal oxide sensing layer

Measure of conductivity

Variations come from **electronic transfers** caused by **reactions** occurring at the surface of the sensing layer due to the target gas &

Transformation of those charge transfer processes into **measurable changes** in electrical resistance of the sensing layer

To push forward sensor development: nanostructuration, doping ...
Answers provided during this meeting!

- Molecules adsorption on the surface of the sensing layer
- Charges transfers btw surface species and Oxide
- Concentration of adsorbed or formed specie on the surface,
 Tinfluence

Other route: Fundamental Understanding

Atomic scale characterization of the phenomena occurring at the nanoscale at the surface of the sensing layer

- **In situ and advanced characterizations**
- **Theoretical concerns** (DFT calculations)
Challenge: Be able to predict and depict phenomena occurring at the surface of sensing layer

- **Provide a predictive simulation of the sensor operation**

Key points to consider:
- Molecular level descriptions of atomistic and molecular surface reactions associated charge transfers of each formed surface species

- Understanding of the macroscopic gas sensor behavior as a function of the microscopic aspects of the sensing layer

Predictive modelling to improve performances facing gas detection

- **Atomic scale** precision
- **Mesoscopic scale**

Multi-levels approach
Predictive modelling

From atom … to sensor detection

- **Applications**

 SnO2 based sensor as a sensing layer

 For CO(g) detection

- **Overall methodology**: Multi-levels strategy

DFT calculations

- Adsorbed / formed species
- ΔE activation barriers
- Kinetics

Coupled effects

- **Adsorption**
- **Vacancy**

- **Charge Transfers** Δe-

- Theoretical IR spectra

And byproducts…

2015
Predictive modelling
From atom ... to sensor detection

- Applications
 SnO2 based sensor as a sensing layer
 For CO(g) detection

- Overall methodology: Multi-levels strategy

I. Atomic Scale insights
 Diving among ‘CO-based’ species existing at the surface of the sensing layer CO(g) and byproducts

II. Toward macroscopic modelling development of the sensor operation

J.M. Ducéré, A. Hémeryck, ... P. Ménini, ...
Atomic Scale Insights

- **Detection of CO(g) on SnO2 surface**

 \[\Delta E = -0.45 \text{ eV} \]
 \[\text{CO(ads)} \]

 \[\Delta E = -0.33 \text{ eV} \]
 \[\text{CO(formate-like)} + \text{Sn(lat)} \]

 \[\Delta E = -0.69 \text{ eV} \]
 \[\text{CO(carboxylate-like)} + \text{O(lat) up or down} \]

 \[\Delta E = +0.22 \text{ eV} \]
 \[\text{CO2(g) & V} \]

Byproducts:

\[\Delta E = 0.16 \text{ eV} \]

\[E_{ac} = 0.16 \text{ eV} \]
Detection of CO(g) on SnO2 surface

- **Detection of CO(g) on SnO2 surface**

\[\Delta E = -0.45 \text{ eV} \]

CO(ads)

\[\Delta E = -0.69 \text{ eV} \]

CO2(ads)

Byproducts:

CO2(g) & V

Eac = 0.16 eV

CT = 0.056

CT = 0.449

CT = 1
Detection of CO(g) on SnO2 surface

\[\Delta E = -2.62 \text{ eV} \]

CO (carbonate-tridentate-like)

Kinetics to be evaluated ... But seems tricky
- CO(g) on Vacancy as a surface reduction by CO oxidation

Due to kinetics and low adsorption energy: CO(g) diffuses back and forth on the SnO2 surface and adsorbs on Sn(lat) on « perfect lattice »

→ CO2 desorption + V formation favored
Reaction of CO2(g) as byproduct of CO(g) oxidation – surface reduction

- \(\Delta E = -0.21 \text{eV} \) for CO2(ads)
- \(\Delta E = -0.15 \text{eV} \) for CO(carbonate-bidentate-like)
- \(\Delta E = -0.36 \text{eV} \) for CO(carboxylate-like)
- \(\Delta E = +1 \text{eV} \) for CO(carbonate-tridentate-like)
- \(E_{ac} = 0.15 \text{eV} \)
- CT = -0.15 eV
- \(\Delta E = -1.32 \text{eV} \)

CT = -0.15
- CO(g) is a reductant gas \rightarrow O depleted surface
- To pursue sensing: An oxygen source is needed

\[\Delta E = -1.25 \text{ eV} \]

\[\Delta E = -2.74 \text{ eV} \]
- CO(g) is a reductant gas \rightarrow O depleted surface
- To pursue sensing: An oxygen source is needed

Catalytic Cycle of reduction / oxidation

of the SnO$_2$ surface facing CO(g)

1. Oxidation & regeneration
 - SnO$_2$ + O$_2$(ads) + V
2. Reduction
 - SnO$_2$ + V
3. Oxidation
 - SnO$_2$ + O$_2$(ads)
4. Reduction
 - CO

GSSMO, Tübingen - June 8th - 9th, 2015
- Effect of Humidity (1 adsorbed H2O)

\[\Delta E = -0.4 \text{ eV} \]

\[\Delta E = -1.42 \text{ eV} \]

\[\Delta E = -0.34 \text{ eV} \]

\[\Delta E = 0.047 \]

\[\Delta E = -1.42 \text{ eV} \]

- CO adsorption in presence of humidity leads to stable structure
- Water is troublesome for CO detection
Summary of DFT results: CO(g) detection on SnO\textsubscript{2}(101) surface

- **CO(g)**
 - CO oxidation \rightarrow Vacancies formation associated to high Charge Transfers \rightarrow O depletion
 - Tricky to form carbonate from CO(g), no carbonyl, no carboxylate
 - Operation under O-environment \rightarrow surface regeneration
 - **a catalytic cycle: oxidation/reduction**

- **CO\textsubscript{2}(g)** (byproduct)
 - Reacts in defects such as Vacancies
 - Form carbonate species

- Carbonates appear as ‘pollutants’ because very stable

- Competition btw O\textsubscript{2}(g) and CO\textsubscript{2}(g) adsorption

- Water decreases CO(g) detection
II. Toward **macrophscopic modelling** development of the sensor operation

- **Applications**
 - SnO₂ based sensor as a sensing layer
 - For CO(g) detection

- **Overall methodology**: Multi-levels strategy

Software development & simulations

Sensor detection: Gas composition, T, P
Toward a macroscopic modeling from atomic scale considerations

Measure of conductivity
Variations come from electronic transfers caused by reactions (adsorption, products) occurring at the surface of the sensing layer (SnO_2)

- Sensor electric response: controlled by surface chemical reaction
 - Link between Chemistry and ‘electrical response’

SPECIFICATIONS
- CT depend on adsorbed / formed specie on the surface
 - Each specie must be followed
- Depend on concentration of specie
- Depend on kinetics of reaction (rate)
- Depend on Temperature and pressure operation

Macroscopic code developed under atomic scale considerations
→ Mixing all DFT events / Interplay of the different reactions
Toward a macroscopic modeling from atomic scale considerations

- **Kinetic Rates Theory**

 \[A + B \leftrightarrow C \]

 \[
 \frac{-d[A]}{dt} = \frac{-d[B]}{dt} = \frac{d[C]}{dt} = k_i \cdot [A] \cdot [B] - k_{-i} \cdot [C]
 \]

 - Rate constants are kinetics of the reactions (DFT activation barrier)

 \[
 k_i = \frac{k_B T}{h} \times \exp\left(\frac{-\Delta E_i}{k_B T}\right)
 \]

- **CTα Specie concentration**

 \[
 \frac{d(CT)}{dt} = \sum_i CT_i \frac{d[i]}{dt}
 \]

- **Detection Operation**

 Gas Flux: Maxwell-Boltzmann Statistics

 \[
 C \frac{P_{gas} S}{\sqrt{M_{gas} T_{gas}}}
 \]
Toward a macroscopic modeling from atomic scale considerations

Illustrations: Chemical kinetics for CO(ads) species & 2 surface reactions

- **Physisorption**: Weak interaction, physisorption
- **Chemisorption**: Strong interaction, covalent link

To do for each species on the surface (CO(ads), carb, CO2(ads), Sn(lat), O(lat), V...) for all reactions
Toward a macroscopic modeling from atomic scale considerations

- Signal varies with the Concentration
- No significant signal for CO(g) detection

$T_{\text{gas}} = 300 \, \text{K}$

$600 \, \text{K}$

- 1 ppm
- 200,000 ppm
- 200 ppm

- No significant signal for CO(g) detection
Toward a macroscopic modeling from atomic scale considerations
Conclusions

- **DFT**
 - A non exhaustive list of surface chemical reactions
 - Catalytic oxidation mechanism of CO involving successive reduction and reoxidation of the oxide layer
 - CO detection:
 - characterization of SnO₂-catalyzed CO combustion
 - SnO₂ reoxidation step being slower: accumulation of vacancies → negative charge transfer // conductivity increases
 - fast and highly exothermic reactions, large charge transfers → easy detection
 - CO₂ detection:
 - CO₂ form stable carbonate specie
 - small charge transfers → small electric response per CO₂ → troublesome detection
 - Sensitivity to interferents (H₂O)

- **Mesoscopic modelling**
 - CO detection by the sensor
 - CO₂ detection is troublesome due to weak response
 - Interfering role of H₂O
Conclusions

- Agreement with the experimental surface characterizations and with experimental tendencies on conductivity measurement
 - Increase of the sensor conductivity under CO(g) exposure
 - Uneasy CO₂(g) detection
 - Interfering role of H₂O

- Multi-levels modeling to support technological development of sensor

- To provide tool for engineer and propose new routes toward nano-engineered materials

- Water role & Thermodynamics (T, P, vibrational properties) must be fully understand to consider interplay of external parameters → our future modeling goal