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Abstract: Structural elements inserted in proteins are essential to define folding/unfolding1

mechanisms and partner recognition events governing signaling processes in living organisms.2

Here, we present an original approach to model the folding mechanism of these structural elements.3

Our approach is based on the exploitation of local, sequence-dependent structural information4

encoded in a database of three-residue fragments extracted from a large set of high-resolution5

experimentally determined protein structures. The computation of conformational transitions leading6

to the formation of the structural elements is formulated as a discrete path search problem using this7

database. To solve this problem, we propose a heuristically-guided depth-first search algorithm. The8

domain-dependent heuristic function aims at minimizing the length of the path in terms of angular9

distances, while maximizing the local density of the intermediate states, which is related to their10

probability of existence. We have applied the strategy to two small synthetic polypeptides mimicking11

two common structural motifs in proteins. The folding mechanisms extracted are very similar to12

those obtained when using traditional, computationally expensive approaches. These results show13

that the proposed approach, thanks to its simplicity and computational efficiency, is a promising14

research direction.15

Keywords: proteins; structural elements; conformational transitions; structural database; heuristic16

search algorithms17

1. Introduction and related work18

Proteins are biomacromolecules that perform essential functions in living organisms. They are19

composed of chains of amino acid residues1 (also called polypeptide chains) that, in most of the20

cases, fold into functional three-dimensional structures. The amino acid sequence determines the21

three-dimensional structure and its stability. The sequence also determines the frequency and the22

transition rate between unfolded and folded states. Understanding the mechanisms of protein folding23

and unfolding as a function of the amino acid sequence is of paramount importance, giving their24

relevance in biological processes [1]. Furthermore, numerous diseases are related to the inability of25

proteins to fold correctly or to form insoluble amyloidogenic aggregates due to mutations or metabolic26

deregulation [2,3].27

Intensive research efforts over several decades, using both experimental and computational28

approaches, have yielded important bricks of knowledge on the underlying mechanisms of protein29

1 In the following, we will use the word residue to refer to an amino acid residue.
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folding, unfolding and other conformational transitions [4–9]. Nevertheless, we still lack of a complete30

understanding of these mechanisms. Some theories about protein folding give more importance to31

interactions between the protein side-chains, whereas others consider that the propensity of protein32

backbone fragments to form secondary structural elements, such as α-helices, β-sheets and turns, is the33

most important mechanism for protein folding. Note that, in addition to their importance in the overall34

protein folding process, small structural elements may play key roles in molecular recognition in35

intrinsically disordered proteins (IDPs). These elements, the so called Molecular Recognition Elements36

(MOREs), are partially folded fragments inserted into otherwise disordered chains [10,11]. MOREs37

recognize with high specificity their globular partners while displaying a moderate affinity, explaining38

their fundamental role in signalling, metabolic regulation and homeostasis [12].39

We believe that local, sequence-dependent structural preferences are essential to drive the40

formation of structural elements, while other phenomena such as hydrophobic effects or electrostatic41

forces help stabilizing the overall structure. Following this hypothesis, we propose a theoretical42

approach to compute conformational transitions using local structural information extracted from43

experimental data. Interactions between distant residues are (explicitly) neglected for the exploration of44

transition paths, with the exception of collisions that would lead to unrealistic conformations. However,45

as further explained below, non-bonded interactions associated with local structural preferences are46

implicitly considered, and can be propagated along the sequence thanks to the application of constrains47

within the path search algorithm.48

Information extracted from experimentally determined protein structures is frequently used in49

computational biology. The usual usage is the prediction of the conformation of the protein side-chains,50

using the so-called rotamer libraries [13], which encode the most frequent values of the side-chain51

dihedral angles for each amino acid type. The construction of protein backbone structural databases is52

less straightforward than for the side-chains as it requires to subdivide proteins into fragments. The53

length of the fragments and considerations regarding the amino acid sequence may depend on the54

specific application. Statistics about the most frequent values of the backbone dihedral angles of amino55

acid types have been frequently used to explore the conformational sampling of highly-flexible proteins56

or regions [14–16]. However, such minimalistic single-residue fragments neglect the effects exerted by57

neighboring residues. Structural libraries involving larger fragments (usually, from 3 to 14 residues)58

have been shown to be powerful tools for the prediction of probable (stable) conformations of globular59

proteins and peptides [17–20]. Fragment libraries can also be used to investigate conformational60

transitions in proteins. In a recent work, local moves using a fragment library were combined with61

other types of structural perturbations to compute transitions between several folded states of a62

protein [21]. Since the aforementioned fragment libraries were mainly conceived for protein structure63

prediction, they are focused on the most probable conformations of small and medium-sized fragments.64

As a consequence, they are not exhaustive enough for the study of conformational transitions. This65

limitation is more evident when the length of the fragments increases. Fragments involving three66

consecutive amino acid residues (called tripeptides from now on) represent a good trade-off between67

sequence-dependent structural preferences and exhaustiveness. Indeed, tripeptides contain relevant68

structural information [22] and are sufficiently small to capture the conformational variability of the 2069

proteinogenic amino acids in their sequence context. Recently, we showed that an extensive database70

of tripeptides allows to accurately sample the conformational variability of IDPs [23]. Here, we exploit71

the combination of this type of local structural information with a path search algorithm to compute72

conformational transitions in small proteins and protein fragments corresponding to relevant structural73

elements.74

A protein cannot exhaustively explore its huge conformational space to seek transition pathways.75

This idea, referred to as the Levinthal’s paradox [24,25], is widely accepted. Indeed, a protein performs76

some search process to find the most efficient folding and transition pathways. We can say that the77

protein follows a powerful heuristic to avoid exploring an astronomically large number of possible78

pathways. This heuristic is not well understood yet, but, as mentioned above, we believe that local79
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sequence-dependent structural preferences play an important role in it. Our contribution investigates80

this open question, and proposes a simple, heuristically-guided search algorithm, inspired from81

Artificial Intelligence (AI) and Robotics, to compute conformational transitions. AI and Robotics82

planning representations and techniques have been found valuable for solving several computational83

biology problems [26–28]. This paper illustrates through an original approach their effectiveness in84

modeling folding mechanisms of structural elements in proteins.85

The approach presented herein is very different from the ones in related work. First, the structural86

information is collected and used in a different way, and secondly, the algorithmic approach is87

totally different. Concretely, we use a heuristically guided depth-first algorithm, adapted from88

search techniques in constraint satisfaction problems over finite sets (CSP) and in automated task89

planning [29]. In our case, the state variables are the protein tripeptides, which range over finite90

sets of conformations extracted from a global database. The equivalent of an action is a constrained91

local change in a state variable. The algorithm relies on adjacency graphs of the state variables [30],92

which are computed at preprocessing time and are essential for efficiently testing the feasibility of93

transitions and for calculating the heuristic, which is based on statistical physics considerations. Our94

approach tends to favor paths going through high-density states, which are the most probable ones95

according to experimental observations recorded in the structural database. In other words, if we96

assume that the probability of the observed states for each tripeptide follows a Boltzmann distribution,97

we can say that the path search tends to follow the valleys of the free-energy landscape [31]. The98

search process also gives priority to short paths, which should correspond to faster transitions. The99

structural preferences for a tripeptide (i.e. at the state variable level) tend to be propagated along100

the sequence due to constraints imposed on the bond angles in the state transition validation, which101

reinforces neighbor-dependent structural preferences encoded in the database (see Section S2 in102

supplementary material for details). Thus, the path search process incorporates in an implicit way103

non-local interactions along the sequence such as backbone hydrogen bonds in α-helices.104

We applied our approach to two synthetic mini-proteins, Chignolin [32] and DS119 [33], which105

were particularly designed to fold into well-defined structural motifs present in natural proteins.106

These two molecules have been investigated in recent years using different methods [34,35]. The107

results reported in this paper are consistent with respect to those described in related literature, and108

already show the interest of the proposed approach, which is extremely fast when compared with109

currently-used computational methods based on molecular dynamics (MD) simulations [36]. Indeed,110

MD simulations of large-amplitude protein motions require ad-hoc computer architectures [8] or111

massively-distributed computing [37]. The efficiency of our approach allows to widely investigate,112

with modest computational resources, the effect of mutations on protein folding and unfolding, or on113

other functionally-important conformational transitions.114

2. Results and Discussion115

This section presents results obtained with the proposed approach for the analysis of the folding116

process of two synthetic mini-proteins, Chignolin and DS119, which were designed to fold into117

structural motifs present in natural proteins. First, we present a deeper analysis for Chignolin and118

two point mutants. Then, results presented for DS119 show that the approach is general and can be119

applied to the investigation of different structural elements.120

2.1. Chignolin121

Chignolin is a synthetic polypeptide consisting of 10 residues [32]. Despite its small size, Chignolin122

behaves as a macromolecular protein from structural and thermodynamic points of view: it folds123

into a well-defined structure in water, and shows a cooperative thermal transition between unfolded124

and folded states [39]. The folded conformation of Chignolin corresponds to a β-hairpin motif, which125

can be found in many natural proteins (Figure 1.d). Therefore, elucidating the folding mechanism of126

Chignolin helps to understand the folding patterns of more complex proteins. This has motivated127
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Figure 1. The left side panel represents the structural propensities at the residue level observed
from a set of 1, 000 conformations randomly generated from the structural database. Each plot
displays the DSSP structural classes using the WebLogo format for (a) Chignolin, and two mutants:
(b) Chignolin-P4A, and (c) Chignolin-W9A. (d) Structural representation of Chignolin: superposition
of an experimentally determined structure (with carbon atoms in green) and the closest one in the set
of 1, 000 sampled conformations (with carbon atoms in orange). For clarity, only the protein backbone
is represented, using PyMOL [38].

several experimental and computational studies on Chignolin in recent years. Here, we compare our128

results with those of Enemark et al. [34], which are based on extensive molecular dynamics simulations,129

and provide detailed information at the single-residue level.130

Table 1 provides the number of conformations (i.e., number of values of state variables) contained131

in our database for the eight overlapping tripeptides composing Chignolin. The search space size132

is upper-bounded by ∏i |Di| ≈ 4× 1023, which is huge when compared to the extremely focused133

explorations performed by our algorithm. Thanks to the search guidance of its heuristics, we observed134

a manageable complexity growth, as explained in Section 3.3 and in the supplementary material.135

In a first experiment, we assessed the ability to obtain realistic conformations of Chignolin using136

the structural information encoded in our tripeptide database. We generated an ensemble of 1, 000137

Chignolin states by randomly sampling values of the state variables one by one, in an incremental138

manner, enforcing the consistency with neighbor state variables, and rejecting those leading to collisions139

between atoms. Interestingly, several states in this relatively small ensemble are close to the folded140

Tripeptide sequence Nb conformations
Gly-Tyr-Asp 994
Tyr-Asp-Pro 710
Asp-Pro-Glu 1541
Pro-Glu-Thr 1030
Glu-Thr-Gly 1446
Thr-Gly-Thr 1779
Gly-Thr-Trp 545
Thr-Trp-Gly 240

Table 1. Number of conformations (i.e. number of values of state variables) for the eight overlapping
tripeptides composing Chignolin.
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b)a)

Figure 2. Structural representation of Chignolin. (a) A set of extended conformations involving the
initial turn at the C-terminal side. (b) Folded conformation. Only the protein backbone is represented,
using PyMOL [38].

conformation of Chignolin [32]. Indeed, 240 over the 1, 000 sampled states have an angular RMSD141

distance to the folded conformation below 0.5 radian, the closest one being around 0.2 radians (see142

Figure 1.d). This confirms that the most important regions of the conformational space can be sampled143

by building states from the tripeptide database.144

In order to better characterize the conformational ensemble, secondary structure types for each145

state were identified at the single residue level using DSSP [40]. DSSP distinguishes eight types of146

structural classes, labeled with a letter: H for α-helix, B for β-bridge, E for strand, G for helix-3, I for147

helix-5, T for turn, S for bend, and "blank" (here labeled as L) for coil/loop. We used the WebLogo148

tool [41] to display the structural propensities in the ensemble. WebLogo is usually applied to analyze149

results of multiple sequence alignment, but it can be used in a different context, as we did. Each150

logo consists of stacks of symbols, one stack for each position in the sequence. The overall height of151

the stack indicates the conservation of the DSSP structural class at that position, while the height of152

symbols within the stack indicates the relative frequency of each class at that position. The results in153

Figure 1.a clearly show the propensity of the central residues to adopt a turn conformation. The rest of154

the molecule tends to be more extended, although turns are also formed in the C-terminal region. As155

discussed in detail below, these turns in residues 8 and 9 play a key role in the folding mechanism of156

Chignolin. Conversely, turns are not observed in the N-terminal side. These observations are fully157

consistent with the original study [34], and show that the states sampled using the tripeptide database158

are structurally relevant.159

We repeated the experiment for two mutants of Chignolin: Chignolin-P4A (Pro4 replaced by160

Ala) and Chignolin-W9A (Trp9 replaced by Ala). Figure 1.b shows that, for Chignolin-P4A, the turn161

propensity slightly decreases in the central region, and that it increases in the N-terminal side. For162

Chignolin-W9A, Figure 1.c shows that the propensity to form turns in the central region is similar to163

that of the native Chignolin molecule. However, it decreases in the C-terminal region, which may have164

consequences for the efficiency of the folding process. Overall, these observations are very similar to the165

results reported in [34], which use computationally expensive molecular dynamics simulations; they166

show the strong influence of single modifications in the sequence on the conformational preferences of167

the molecule, and that our approach captures these perturbations.168

It has been suggested that the turn in Chignolin originates in the C-terminal region, and then169

propagates along the chain until reaching the middle residues [34]. This has been called the "roll-up"170

mechanism. To investigate this mechanism, we selected (among the set of 1, 000 conformations) 15171
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conformations of Chignolin presenting turns in residues 8 and 9, and with a relatively extended172

conformation for the rest of the chain. These conformations were used as initial states to compute173

folding paths, as illustrated in Figure 2. The goal state was defined as the closest conformation to the174

experimental structure of Chignolin built from values contained in the tripeptide database. These175

two conformations are very similar, with an angular RMSD of 0.1 radians. The HDFS algorithm was176

applied 20 times to solve each of these 15 problems (i.e. 300 runs in total). On average, the algorithm177

required around 10 seconds to find folding pathways (1st column in Table 2), which is extremely fast.2178

Intermediate states along each path were selected with a step-size corresponding to 1/10th of its total179

length. The left side panel in Figure 3 shows the structural propensities at the residue level for these180

intermediate states. It can be observed that the turns in the C-terminal residues tend to disappear,181

while these structural elements appear in the middle residues. This "roll-up" mechanism can also be182

observed in the right side panel in Figure 3, which represents several intermediate states along one183

of the folding paths. The first frames (starting from the top) show that the curvature of the molecule,184

initially involving residues 8 and 9, rapidly propagates to residues 6 and 7. Then, residues 5 and 4 also185

bend successively, and the molecule tends to form a hairpin-like structure. Finally, the two terminal186

parts adopt a relatively extended conformation.187

As explained in related work [39], the folding process of Chignolin may lead to misfolded states,188

which are characterized by interactions between residue pairs Tyr2-Thr8 and Asp3-Gly7, rather than189

Tyr2-Trp9 and Asp3-Thr8, as in the correctly folded structure. We generated a representative model of190

a misfolded state, and we computed conformational transitions from initial conformations with the191

C-terminal turn (C-ter T) to this state. We also computed transitions from fully-extended conformations192

to folded and misfolded states. The results are summarized in the top part of Table 2. This table193

provides average values (over 300 runs) for: the computing time required by the HDFS algorithm to find194

a path; the number of recursions and backtracks; the number of steps in the solution path; the length195

of the solution path, computed as the sum of the lengths associated to edges in the adjacency graphs;196

the density of the solution paths, computed as the average of the density of all the state variables197

along the path. The most meaningful numbers in this table are those associated with the density, since198

they reflect the probability of existence of each pathway. Compared to the extended→folded pathway,199

the C-ter T→folded pathway goes across more dense and probable regions. This may explain why200

Chignolin efficiently folds from unfolded states involving this structural feature. In both cases, starting201

from C-ter T or fully-extended states, the transitions to misfolded states seem to be much less probable.202

This may explain why the misfolded state of Chignolin is much less frequently observed than the203

correctly folded state [42].204

We repeated the experiments for the mutant Chignolin-W9A. The results are summarized in205

the bottom part of Table 2. As mentioned above, the set of conformations generated for these two206

molecules look structurally similar (see Figure 1 and the associated comments). The figures in Table 2207

also show a very similar behavior of the HDFS algorithm when computing transition paths for this208

mutant compared to the original Chignolin. Interestingly, the main difference is observed for the209

density of the path extended→misfolded. This path is significantly more favorable in the case of210

the mutant. Our results complement the study of Enemark et al. [34], which suggested that the211

replacement of Trp9 by Ala facilitates a "roll-back" mechanism, acting against the "roll-up" mechanism,212

hindering the formation of the native turn in the middle residues. We show another possible effect of213

this mutation, favoring the formation of misfolded states in competition with the native structure.214

2.2. DS119215

DS119 is another synthetic polypeptide, consisting of 36 amino acid residues, which was designed216

to fold into a βαβ motif [33] (see last frame in Figure 4). The folding process of DS119 has been studied217

2 CPU time was measured with an Intel R© CoreTM i7 processor at 2.8 GHz, using a single core.
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Figure 3. The left side panel represents the evolution of the structural propensities at the residue
level along Chignolin folding pathway (see Figure 1 and the associated comments for additional
explanations about this representation). The right side panel shows some intermediate states along one
of the computed folding paths. Only the protein backbone is represented, using PyMOL [38].
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chignolin (original sequence)
C-ter T→folded C-ter T→misfolded extended→folded extended→misfolded

CPU time (s) 11.1 8.7 5.2 3.5
# states 5416.4 2587.7 2800.1 849.5
# backtracks 234.6 136.6 124.6 39.2
Path length (# steps) 133.8 54.5 106.3 48.7
Path distance (rad) 8.8 5.1 6.0 7.0
Path density 31.9 5.5 23.3 4.5

chignolin-W9A (mutant)
C-ter T→folded C-ter T→misfolded extended→folded extended→misfolded

CPU time (s) 12.2 8.8 5.6 5.1
# states 4943.6 2567.8 2317.0 2946.0
# backtracks 219.6 139.0 101.3 126.3
Path length (# steps) 140.3 51.3 103.0 125.7
Path distance (rad) 8.2 9.0 5.8 8.2
Path density 31.2 4.6 23.4 23.8

Table 2. Performance indicators of the HDFS algorithm to compute different conformational transitions
of Chignolin (top) and the mutant Chignolin-W9A (bottom). CPU time was measured with an
Intel R© CoreTM i7 processor at 2.8 GHz, using a single core.

using molecular dynamics simulations [35]. This previous work showed that the N-terminal side of218

the central helix tends to form very quickly. Then, the C-terminal side of the helix starts to form, and219

the full helix is finally stabilized. The relatively extended fragments at the two ends of the molecule220

tend to come together at the end of the folding process.221

To investigate the folding mechanism of DS119, we applied a similar procedure as for Chignolin.222

In this case, we selected 15 relatively extended conformations, involving only the L DSSP structural223

class for all the residues, from a set of 1, 000 randomly generated conformations using the tripeptide224

database. These conformations were used as initial states for the HDFS algorithm. As final state, we225

used the closest conformation to the experimentally solved structure of DS119 (PDB ID: 2KI0) built226

from values contained in the tripeptide database. These two conformations are very similar, with an227

angular RMSD of 0.06 rad. The algorithm was applied 20 times to solve each of these 15 problems (i.e.228

300 runs in total).229

Figure 4 illustrates the results obtained by the HDFS algorithm. The left side panel shows the230

evolution of the structural propensities along the folding path, using logos based on DSSP classes.231

The right side panel represents several intermediate states along one of the solution paths. For clarity232

purposes, only a few intermediate states are shown using a "cartoon" representation of the backbone,233

where the helical fragments can be easily identified. It can be observed that, starting from an extended234

conformation, the protein backbone rapidly starts to bend around residues 12-13. Recall that the S letter,235

for "bend", corresponds to a highly curved protein backbone. Hydrogen bonds required to stabilize the236

helical conformation are not yet identified by DSSP at this early stage. Next, curved/helical fragments237

start to appear in all central residues (from residue 14 until residue 27), as well as in three residues238

in the N-terminal side (residues 3-5). The central helix continues to fold, and it is almost completely239

formed at the 7th intermediate frame. In the final part of the path, the extended fragments at the240

two ends get close to each other, nearly forming a parallel β-sheet. This description of the folding241

process strongly resembles the one reported in the literature, based on computationally-expensive242

simulations [35].243

Table 3 presents numbers (averaged over the 300 runs) concerning the performance of the HDFS244

algorithm to compute folding paths of DS119. The required CPU time (and the number of recursions)245

is only about three times the one requited to compute folding paths for Chignolin. This shows that,246

despite the theoretical (worst-case) exponential complexity, in practice, the computing time scales247

approximately linearly with the number of variables. This tendency has been confirmed by preliminary248
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Figure 4. The left side panel represents the evolution of the structural propensities at the residue
level along DS119 folding pathway. The right side panel shows some intermediate states along one
of the computed folding paths. The "cartoon" representation clearly shows the formation of the helix.
PyMOL [38] was used for the structural visualization.

tests for larger molecules (not presented in this paper). Once again, we insist that computing time249

is orders of magnitude faster that traditional molecular dynamics simulation methods. The higher250

density of the path compared to Chignolin can be explained by the lager number of conformations251

for some of the tripeptides, particularly for those composing the middle helix. Table 4 provides the252

numbers of conformations (i.e., number of values of state variables) contained in our database for the253

34 overlapping tripeptides composing DS119.254

3. Materials and Methods255

The proposed approach relies on a large database of protein structures, represented as sequences of256

partially overlapping tripeptides. As stressed above, tripeptides are the minimal structurally-relevant257

units in proteins. The problem is formalized as a search in a space of tripeptide conformations for258

a feasible path from an initial state to a target state of a protein. The state variables correspond to259

tripeptides; their values are the conformations of tripeptides actually observed and recorded in the260

database. A state variable in the sequence describing a protein shares its first two residues with its261

predecessor and its last two with its successor state variables in the sequence (see Figure 6). A transition262
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DS119 : extended→folded
CPU time (s) 25.2
# states 70558.2
# backtracks 8210.4
Path length (# steps) 158.2
Path distance (rad) 11.3
Path density 124.4

Table 3. Performance indicators of the HDFS algorithm on DS119.

Tripeptide sequence Nb conformations Tripeptide sequence Nb conformations
Gly-Ser-Gly 3727 Lys-Lys-Leu 2286
Ser-Gly-Gln 1118 Lys-Leu-Lys 1996
Gly-Gln-Val 1294 Leu-Lys-Glu 3100
Gln-Val-Arg 607 Leu-Glu-Glu 1631
Val-Arg-Thr 970 Glu-Glu-Ala 2591
Arg-Thr-Ile 757 Glu-Ala-Lys 1514
Thr-Ile-Trp 181 Ala-Lys-Lys 1714
Ile-Trp-Val 180 Lys-Lys-Ala 1629

Trp-Val-Gly 279 Lys-Ala-Asn 1009
Val-Gly-Gly 2443 Ala-Asn-Ile 1010
Gly-Gly-Thr 2510 Asn-Ile-Arg 647
Gly-Thr-Pro 1428 Ile-Arg-Val 998
Thr-Pro-Glu 1738 Arg-Val-Thr 1351
Pro-Glu-Glu 1752 Val-Thr-Phe 888
Glu-Glu-Leu 3433 Thr-Phe-Trp 151
Glu-Leu-Lys 2378 Phe-Trp-Gly 192
Leu-Lys-Lys 2528 Trp-Gly-Asp 257

Table 4. Number of conformations (i.e. number of values of state variables) for the eight overlapping
tripeptides composing DS119.

between two values of a state variable is feasible if it meets a consistency constraint with respect to263

the predecessor and successor state variables, and if the corresponding conformation of the protein264

is collision free. The search algorithm seeks a feasible path using a heuristically-guided depth-first265

search schema. The heuristic function is a weighted sum of the distance between two conformations,266

an estimate of the distance to the target and a density term to advantage energetically favorable states.267

We present next the construction of the structural database, then the statement of the268

conformational transition problem as a discrete path search problem; we detail the proposed algorithm269

and the heuristics used to solve this problem.270

3.1. Structural database271

A tripeptide database was built from a large set of high-resolution experimentally-determined272

protein structures. We generated this set from SCOPe (release 2.06) [43], avoiding redundancies273

in protein sequence and structure. The total number of tripeptides extracted from these protein274

structures is 5, 630, 271. The tripeptides are characterized by their amino acid sequence. Since natural275

proteins involve 20 types of amino acids, the total number of tripeptides is 203 = 8, 000. The database276

construction process is illustrated in Figure 5.a-c. All the 8, 000 tripeptides appear in our database. The277

number of their instances ranges between 9 for the less frequent tripeptide (Cys-Cys-Trp) to 4, 512 for278

the most frequent one (Ala-Ala-Ala).3 The average number of instances is about 688.279

It is important to highlight that the database includes fragments extracted from coil regions, which280

have been shown to be useful elements to model unfolded or disordered proteins [23,44]. Therefore,281

3 These standard three-letter abbreviations stand respectively for Cysteine, Tryptophan and Alanine.
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Figure 5. Construction of the tripeptide database: (a) A non-redundant set of
experimentally-determined protein structures is used as input. (b) For each protein, fragments of
three consecutive residues (called tripeptides) are analyzed. (c) The structural information is stored
in a database containing one record for each tripeptide (8, 000 in total). (d) For each tripeptide, the
conformations recorded in the database are related with a proximity criterion and structured into an
adjacency graph (the figure shows a simplified representation of this graph for tripeptide Pro-Ser-Ile).

we assume that the structural information encoded in the database is not limited to folded states, and282

that it can be useful to investigate folding processes.283

We adopt a rigid geometry simplification [45], which assumes constant bond lengths and bond284

angles. Indeed, the standard deviation for the bond lengths and the bond angles in our database285

is two orders of magnitude smaller that their average value, and therefore, we can neglect their286

variation. In addition, as usually done to simplify protein modeling, we assume that the torsion angles287

corresponding to peptide bonds (i.e., the bonds connecting consecutive residues) are constant. This is288

also a reasonable assumption given that this angle slightly fluctuates around a value of 0 or π radians289

(that is, the cis and trans conformations), with a standard deviation of around 0.1 radians. Therefore290

the only variables required to determine the conformation of a protein backbone correspond to the φ291

and ψ dihedral angles of each amino acid residue. The database stores these angular values for each292

tripeptide extracted from the ensemble of protein structures (i.e., 6 angles for each tripeptide). Figure 6293

represents a protein fragment involving 5 residues, from which 3 tripeptides are extracted. The angles294

defining the conformation of each residue are represented on the corresponding bonds.295

In this work, we do not consider an all-atom model of the protein side-chains, but a simplified296

model involving a pseudo-atom for each side-chain. The pseudo-atom is centered at the position of297
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Figure 6. Illustration of a protein fragment involving 5 residues. Each residue is represented using a
different colors for the carbon atoms. The backbone is represented using thicker lines. Considering
constant bond lengths, bond angles and peptide bond torsions, the protein backbone conformation can
be defined from a pair of angles (φ and ψ) for each residue. The gray lines indicate the 3 overlapping
tripeptides composing this 5-residue fragment.

the β-carbon atom, and the size depends on the amino acid type, as originally proposed by Levitt [46].298

Therefore, no additional variables are required to represent the side-chains.299

Let X be the set of all 8, 000 tripeptides. An element xi ∈ X is a state variable in our representation.300

Let Di be the set of all the conformations of xi recorded in our database. The conformation of xi is301

characterized by the six backbone dihedral angles of the three residues in the tripeptide, denoted302

φi,j and ψi,j, for 1 ≤ j ≤ 3. Although a conformation is characterized by an angular vector of 6303

real numbers, for the purpose of our search algorithm over biologically observed conformations, we304

consider that the range of each state variable xi is the finite set Di of the recorded conformations in the305

database. We write xi = vi for some vi ∈ Di.306

The distance d(vi, v′i) between two values vi and v′i is defined as the angular root-mean-square
deviation (RMSD) between the two corresponding angular vectors. More precisely:

d(vi, v′i) =

√√√√1/6
3

∑
j=1

(
(φi,j − φ′i,j)

2 + (ψi,j − ψ′i,j)
2
)

We also define the central distance dc(vi, v′i) with an identical formula for j = 2 solely, i.e., restricted to307

the central amino acid residue of xi. The idea is to compute a feasible path in the conformations of a308

protein as a sequence of elementary transitions focused on the central residue of each tripeptide.309

These distances d and dc allows us to structure the finite range Di of each state variable as an310

adjacency graph, as illustrated in Figure 5.d. Its vertices are the elements in Di. There is an edge311

(vi, v′i) when dc(vi, v′i) < θ and d(vi, v′i) < θ + ξ, where θ is a variable adjacency threshold and ξ312

is a small constant tolerance margin. The adjacency threshold θ represents a tradeoff between a313

fully connected graph (no transition constraints between conformations) and an unconnected one314

(unreachable conformations), both cases being unrealistic. We set the threshold such that the adjacency315

graph of each tripeptide has a single connected component with moderate edge connectivity. This316

threshold θ is slightly different for different tripeptides, with an average value around 1.0 radian. The317

value of ξ was set to 0.35 radians in all the cases.318

The vertices are also characterized by a density function defined as follows:

ρ(vi) = 1 + |{v′i | v′i connected to vi and d(vi, v′i) < ζ}|.

The threshold ζ has to be smaller than the adjacency threshold θ. Here, we set ζ = 0.2 radians for all the319

tripeptides. The density ρ is related to the probability of existence of the corresponding conformation320
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of the tripeptide. Considering basic principles in statistical physics (i.e., the Boltzmann distribution),321

this probability depends on the energy of the state of the molecule. Thus, the most dense regions in322

the adjacency graph are also the most energetically-favorable ones.323

3.2. Formal statement of the conformation path finding problem324

A protein (or protein region) of interest is defined by a sequence of state variables325

〈x1, . . . , xi, . . . , xn〉, with overlaps. For example, the mini-protein Chignolin is a sequence of 10326

amino acid residues: 〈Gly-Tyr-Asp-Pro-Glu-Thr-Gly-Thr-Trp-Gly〉; it is defined with 8 state variables327

x1 =Gly-Tyr-Asp, x2 =Tyr-Asp-Pro, . . . x8 =Thr-Trp-Gly. Hence, the state variables are not328

independent: a transition in a state variable may or may not be consistent with another transition in329

the previous or following state variables in the sequence.330

For a given conformational state of the protein s = 〈(x1 = v1), . . . , (xi = vi) . . . , , (xn = vn)〉, the
overlap between consecutive state variables means that a tripeptide xi shares its first two residues with
its predecessors in the sequence and its last two with its successors; that is:

φi,1 = φi−1,2 = φi−2,3, φi,2 = φi−1,3 = φi+1,1, and φi,3 = φi+1,2 = φi+2,1 , (1)

and similarly for the ψ angles.331

An elementary state transition with respect to xi, from the value vi to an adjacent value v′i, involves
a conformational change mainly in the central residue of xi (by construction of the adjacency graph).
This entails constraints on xi−1 and xi+1 with respect to their current values in state s. We express these
constraints as inequalities with a tolerance margin as follows:

|φ′i,2 − φi−1,3| < ε, |φ′i,2 − φi+1,1| < ε,

|ψ′i,2 − ψi−1,3| < ε, |ψ′i,2 − ψi+1,1| < ε.
(2)

where the angles for the last and first residues of xi−1 and xi+1 correspond to their current values vi−1332

and vi+1. These constraints can be relaxed during the search by dynamically adjusting the value of ε,333

as explained below. Here, we set initially ε = 0.35 radians.334

Definition 1 (Feasible transition). A transition in the conformation of a protein from a state s where335

xi = vi to a state s′ where xi = v′i is said to be a feasible transition if and only if:336

(i) the values vi−1 and vi+1 meet the constraints of Equation 2, and337

(ii) there are no collisions between the atoms of the protein in the state s′.338

A feasible path is a sequence of feasible transitions.339

Let γ(s, (vi → v′i)) denotes the state s′ corresponding to this transition when it is feasible,340

otherwise γ is undefined.341

The conformation path finding problem can be formally stated as follows: given X and the342

adjacency graphs of all the state variables in a protein, and given an initial state s0 and a goal state sg,343

the problem is to find a feasible path that transforms the protein conformation from s0 into sg, if there344

exists such a path.345

3.3. Search algorithm346

To generate a feasible path from s0 to sg, we rely on a heuristically-guided depth-first search in347

the space ∏i Di, over all state variables xi in the protein. To ease the presentation, the algorithm is348

stated in the pseudo-code of Figure 7 as a simple recursive nondeterministic search procedure called349

HDFS. The initial call is HDFS(s0, 〈s0〉). The nondeterministic choice (step labelled /) is a convenient350

notation meaning that the algorithm makes at this point a branching decision; it explores potentially351

all possible options, expressed here as the set E ; it stops on the first path which succeeds or it returns352
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HDFS(s, Path)
if s = sg then return(Path · s)
E ← ∅
for each state variable xi in s do
E ← E ∪ Transition-Filter(s, xi, Path)

if E = ∅ then return(failure)
else do

Nondeterministically choose in E a transition (vi → v′i) /
s′ ← γ(s, (vi → v′i)
HDFS(s′, Path · s)

Transition-Filter(s, xiPath)
vi ← value of xi in s
A ← set of values adjacent to vi in adjacency graph Di
for each v′i ∈ A do

if γ(s, (vi → v′i)) is undefined or
if it is a state already in Path

then remove v′i from A
return(A)

Figure 7. Main procedure as a recursive nondeterministic best-first search. The choice (in step /) is
guided with the heuristic cost function used to order the set A. In the case of failure, backtracking is
performed at this step to other remaining options in the set E , which is computed incrementally.

failure if all paths fail.4 The deterministic implementation of HDFS makes at this step a heuristic choice353

over which it backtracks in case of failure; if needed, this is repeated as long as an option in E remains354

unexplored. The heuristic driving this choice is detailed below.355

The algorithm iterates over all tripeptides in the protein to find their feasible transitions. For a356

given state variable xi = vi in s, procedure Transition-Filter checks the values adjacent to vi in graph Di.357

Unfeasible transitions are disregarded, as well as transitions that loop back into a circuit of the search358

space. The set E is the union of all retained transitions (vi → v′i) over all state variables. When E is359

empty, then s is a dead end; a backtracking is performed.360

In our more efficient and deterministic implementation of the algorithm, E is computed361

incrementally. E starts with the transitions of a single state variable, which has feasible transitions. E362

is augmented with respect to new state variables when backtracking requires alternative options. In363

our current code, the ordering of the state variables in the HDFS loop is not heuristically guided. The364

effects of state variable ordering heuristics, such as the proximity to the goal or the average density in365

the adjacency graph, remain to be investigated.366

Heuristic guidance function367

For the results presented in this paper, the search is guided though the ordering in procedure
Transition-Filter of the set A of feasible values. A is ordered with the following cost function:

cost(vi, v′i) = d(vi, v′i) + w1 × h(v′i, vg
i ) + w2/ρ(v′i),

where d and ρ are the distance and density functions defined earlier, vg
i is the value of xi in the goal state368

sg, h is the shortest path in the transition graph to the goal, and w1 and w2 are weight parameters. The369

first term seeks to minimize the distance between consecutive states along the path (i.e., to maximize370

the continuity of the path). The second term is the sum of the distances of a minimal path from v′i to the371

goal. The third term intends to maximize the density of the states along the path, which, as explained372

4 The metaphor to help explain a nondeterministic specification of an algorithm is that of a machine able to multiply itself at
each branching point into identical copies, each copy pursuing the search in parallel until one finds a solution or all fail.
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earlier, are the most energetically favorable ones. The weights w1 and w2 permit a tuning of the three373

components; their proper setting remains to be investigated. Here, we simply set w1 = w2 = 1. Note374

that h is a lower bound for the remaining cost from v′ to vg, since a path in the transition graph, minimal375

with respect to the distance d, relaxes the feasibility constraints of Definition 1 and cannot be longer376

than a feasible path.377

In order to speedup the search, a preprocessing of the adjacency graphs labels edges with their378

distance d and computes for every vertex the shortest path to the goal as well as the density of every379

node in each graph. This is done with a standard graph search algorithm.380

The test of collision-free states is computed using a variant of the classical Cell Linked-List (CLL)381

algorithm [47]. A pair of non-bonded (pseudo-)atoms is considered to be in collision if their distance382

is less than 65% of the sum of their radii. In this work, we considered the radii values proposed by383

Bondi [48] for the backbone atoms, and those proposed by Levitt [46] for the side-chains pseudo-atoms.384

Note that the feasibility constraints in Equation 2 are too conservative. A more flexible definition385

would also accept as feasible the transitions for which either the current values of xi−1 and xi+1, or386

some of their respectively adjacent values v′i−1 and v′i+1, meet these constraints. In that case, the state387

s′ = γ(s, (vi → v′i)) involves changes in xi but also in its predecessor and successor state variables. The388

cost function driving the search would naturally be extended to cost(s, s′) over entire states. Instead,389

we have implemented a simpler mechanism to locally relax this constraint if the search process gets390

blocked : if state transitions fail f consecutive times ( f = 5 in our implementation), the tolerance391

value ε is increased to 0.7 radians. ε is reset to 0.35 radians after a successful transition. The next392

section shows that, even with such a simplified implementation, the proposed approach already gives393

meaningful results.394

Properties of HDFS395

The algorithm is sound; that is, it returns a path which is feasible, in case of success. This is because396

each transition meets Definition 1. HDFS is also complete; that is, it finds a feasible path if one exists397

with respect to the transitions in the adjacency graphs of the state variables. This is the case since in398

each search state s, E is the entire set of feasible transitions over all state variables, loops are avoided,399

and backtracking is systematic.400

As for any backtrack search algorithm, the worst case complexity is exponential, in O(∏i |Di|).5401

A more useful complexity model is in O(db), where d is the depth of the search (i.e., the length of the402

found path), and b is the branching factor. An upper bound on the branching factor is n× p, where n is403

the length of the protein and p is the maximum degree of vertices over all adjacency graphs. However,404

thanks to the search guidance of its heuristics, we observed a manageable complexity growth. Our405

experiments with seven proteins, ranging in length 10 ≤ n ≤ 67 residues, show that b does not406

grow with n; it is constant and very small, about b ' 1.04. The overall search complexity has a407

low polynomial growth in n. Furthermore, we confirmed that, as expected for a local propagation408

mechanism, the computation time required for each search state is not a function of n, but a quite small409

constant, of about 0.9 ms per state on a standard CPU. The Section S1 in the supplementary material410

details this analysis as well as a discussion contrasting the scalability of our approach with that of MD411

methods.412

5 It is possible to compute the total size of the search space for each given problem (using Dynamic Programming and taking
into account state variable dependencies); but this information is not very useful since in practice the algorithm explores a
very small fraction of the search space.
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4. Conclusion413

Despite the simplicity of both the algorithm and the heuristic, the results presented in this414

paper show that the proposed approach constitutes a promising new research direction towards the415

identification of relevant protein folding pathways. The structural analysis of the folding mechanisms416

of Chignolin and DS119 are consistent with respect to descriptions provided in the literature. Note417

however that a more detailed and quantitative comparison between the paths obtained with other418

methods and trajectories obtained from MD simulations would not be very meaningful, since the419

aims of both methods are different: The paths provided by our algorithm are an approximation, from420

which interesting information about folding mechanisms can already be obtained, but that should be421

refined (using other methods and models) to get access to accurate information at the atomic level (as422

provided by MD simulations). On the other hand, our algorithm is orders of magnitude faster than423

atomistic MD simulations.424

Overall, the results highlight the importance of local structural preferences, which are encoded in425

our tripeptide database. They also suggest that interactions between distant residues in the sequence,426

even though they can be essential for stabilization of the final fold, are less important at an earlier stage427

to drive the formation of structural elements.428

The good results obtained with the implementation presented in this paper motivate us to continue429

in this research direction. Several points remain to be further investigated. One important question430

is about the possibility to include non-local interactions in the heuristic cost function. Although this431

does not seem to be necessary for structural elements or small proteins, interactions between distant432

residues in the sequence can be essential to study folding processes of larger molecules, or aspects433

related to stability. We also plan to implement and evaluate transitions over several state variables, as434

well as different heuristics for variable ordering. More sophisticated, tree-based search algorithms [29]435

can improve the quality and the diversity of the solutions, particularly for large proteins. Finally, let us436

mention the limitations imposed by the information contained in the structural database. Structural437

information is very limited in some regions of the conformational space corresponding to states of low438

probability, but which may be relevant for an accurate modeling of conformational transitions. With439

the increasing number of experimentally-determined high-resolution protein structures, we expect that440

more extensive and higher-quality tripeptide databases will be constructed in the future. Alternatively,441

these sparsely populated transition regions can be identified using our approach and subsequently442

explored using physics-based molecular models and (continuous) motion planning algorithms [49].443

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/xx/1/5/s1:444

Section S1 - Scalability analysis; Section S2 - Neighbor-dependent structural preferences.445

Author Contributions: A.E., M.G. and J.C. conceived the methods; A.E. implemented the methods; P.B. and J.C.446

conceived and designed the experiments; A.E. performed the experiments and analyzed the data; all the authors447

wrote the paper.448

Funding: This work was supported by the European Research Council under the H2020 Programme (2014-2020)449

chemREPEAT [648030], and Labex EpiGenMed (ANR-10-LABX-12-01) awarded to P.B. The CBS is a member of450

the French Infrastructure for Integrated Structural Biology-FRISBI (ANR-10-INSB-05).451

Conflicts of Interest: The authors declare no conflict of interest.452

References453

1. Vendruscolo, M.; Zurdo, J.; Macphee, C.; M Dobson, C. Protein folding and misfolding: A paradigm of454

self-assembly and regulation in complex biological systems. Philosophical Transactions. Series A, Mathematical,455

Physical, and Engineering Sciences 2003, 361, 1205–22.456

2. Valastyan, J.S.; Lindquist, S. Mechanisms of protein-folding diseases at a glance. Disease Models &457

Mechanisms 2014, 7, 9–14.458

3. Knowles, T.; Vendruscolo, M.; Dobson, C. The amyloid state and its association with protein misfolding459

diseases. Structure 2014, 15, 384–396.460

4. Baldwin, R.L. Protein folding: Matching speed and stability. Nature 1994, 369, 183–184.461

http://www.mdpi.com/1420-3049/xx/1/5/s1


Version March 26, 2019 submitted to Molecules 17 of 18

5. Wolynes, P.; Onuchic, J.; Thirumalai, D. Navigating the folding routes. Science 1995, 267, 1619–1620.462

6. Dobson, C.M. Protein folding and misfolding. Nature 2003, 426, 884–890.463

7. Rose, G.D.; Fleming, P.J.; Banavar, J.R.; Maritan, A. A backbone-based theory of protein folding. Proceedings464

of the National Academy of Sciences of the United States of America 2006, 103, 16623–16633.465

8. Lindorff-Larsen, K.; Piana, S.; Dror, R.O.; Shaw, D.E. How fast-folding proteins fold. Science 2011,466

334, 517–520.467

9. Best, R.B. Atomistic molecular simulations of protein folding. Current Opinion in Structural Biology 2012,468

22, 52–61.469

10. Pancsa, R.; Fuxreiter, M. Interactions via intrinsically disordered regions: What kind of motifs? IUBMB470

Life 2012, 64, 513–520.471

11. Tompa, P.; Davey, N.E.; Gibson, T.J.; Babu, M.M. A Million Peptide Motifs for the Molecular Biologist.472

Molecular Cell 2014, 55, 161–169.473

12. Tompa, P.; Schad, E.; Tantos, A.; Kalmar, L. Intrinsically disordered proteins: emerging interaction474

specialists. Current Opinion in Structural Biology 2015, 35, 49 – 59.475

13. Dunbrack, R. Rotamer libraries in the 21st century. Current Opinion in Structural Biology 2002, 12, 431–440.476

14. Smith, L.J.; Bolin, K.A.; Schwalbe, H.; MacArthur, M.W.; Thornton, J.M.; Dobson, C.M. Analysis of477

main chain torsion angles in proteins: Prediction of NMR coupling constants for native and random coil478

conformations. Journal of Molecular Biology 1996, 255, 494 – 506.479

15. Jha, A.K.; Colubri, A.; Freed, K.F.; Sosnick, T.R. Statistical coil model of the unfolded state: Resolving the480

reconciliation problem. Proceedings of the National Academy of Sciences 2005, 102, 13099–13104.481

16. Bernadó, P.; Blanchard, L.; Timmins, P.; Marion, D.; Ruigrok, R.W.H.; Blackledge, M. A structural model482

for unfolded proteins from residual dipolar couplings and small-angle X-ray scattering. Proceedings of the483

National Academy of Sciences of the United States of America 2005, 102, 17002–17007.484

17. Kolodny, R.; Koehl, P.; Guibas, L.; Levitt, M. Small libraries of protein fragments model native protein485

structures accurately. Journal of Molecular Biology 2002, 323, 297 – 307.486

18. Rohl, C.A.; Strauss, C.E.; Misura, K.M.; Baker, D. Protein structure prediction using Rosetta. In Numerical487

Computer Methods, Part D; Academic Press, 2004; Vol. 383, Methods in Enzymology, pp. 66 – 93.488

19. Baeten, L.; Reumers, J.; Tur, V.; Stricher, F.; Lenaerts, T.; Serrano, L.; Rousseau, F.; Schymkowitz, J.489

Reconstruction of protein backbones from the BriX collection of canonical protein fragments. PLOS490

Computational Biology 2008, 4, 1–11.491

20. Maupetit, J.; Derreumaux, P.; Tufféry, P. A fast method for large-scale De Novo peptide and miniprotein492

structure prediction. Journal of Computational Chemistry 2010, 31, 726–738.493

21. Molloy, K.; Shehu, A. A general, adaptive, roadmap-based algorithm for protein motion computation.494

IEEE Transactions on NanoBioscience 2016, 15, 158–165.495

22. Huang, J.R.; Ozenne, V.; Jensen, M.R.; Blackledge, M. Direct prediction of NMR residual dipolar couplings496

from the primary sequence of unfolded proteins. Angewandte Chemie-International Edition 2013, 52, 687–690.497

23. Estaña, A.; Sibille, N.; Delaforge, E.; Vaisset, M.; Cortés, J.; Bernadó, P. Realistic ensemble models of498

intrinsically disordered proteins using a structure-encoding coil database. Structure 2019, 27, 381–391.e2.499

24. Levinthal, C. How to fold graciously. Mössbauer Spectroscopy in Biological Systems Proceedings 1969, pp.500

22–24.501

25. Rooman, M.; Dehouck, Y.; Kwasigroch, J.; Biot, C.; Gilis, D. What is paradoxical about Levinthal paradox?502

Journal of Biomolecular Structure & Dynamics 2003, 20, 327–9.503

26. Al-Bluwi, I.; Siméon, T.; Cortés, J. Motion planning algorithms for molecular simulations: A survey.504

Computer Science Review 2012, 6, 125–143.505

27. Gipson, B.; Hsu, D.; Kavraki, L.; Latombe, J.C. Computational models of protein kinematics and dynamics:506

Beyond simulation. Annual Review of Analytical Chemistry 2012, 5, 273–91.507

28. Shehu, A.; Plaku, E. A survey of computational treatments of biomolecules by robotics-inspired methods508

modeling equilibrium structure and dynamic. Journal of Artificial Intelligence Research 2016, 57, 509–572.509

29. Ghallab, M.; Nau, D.; Traverso, P. Automated Planning: Theory and Practice; Morgan Kaufmann Publishers,510

Elsevier, 2004.511

30. Richter, S.; Westphal, M. The LAMA planner: Guiding cost-based anytime planning with landmarks.512

Journal of Artificial Intelligence Research 2010, 39, 127–177.513



Version March 26, 2019 submitted to Molecules 18 of 18

31. Wales, D. Energy Landscapes: Applications to Clusters, Biomolecules and Glasses; Cambridge University Press,514

2003.515

32. Honda, S.; Yamasaki, K.; Sawada, Y.; Morii, H. 10 residue folded peptide designed by segment statistics.516

Structure 2004, 12, 1507–1518.517

33. Liang, H.; Chen, H.; Fan, K.; Wei, P.; Guo, X.; Jin, C.; Zeng, C.; Tang, C.; Lai, L. De novo design of a βαβ518

Motif. Angewandte Chemie International Edition 2009, 48, 3301–3303.519

34. Enemark, S.; Kurniawan, N.A.; Rajagopalan, R. β-hairpin forms by rolling up from C-terminal: Topological520

guidance of early folding dynamics. Scientific Reports 2012, 2.521

35. Qi, Y.; Huang, Y.; Liang, H.; Liu, Z.; Lai, L. Folding simulations of a de novo designed protein with a βαβ522

fold. Biophysical Journal 2010, 98, 321 – 329.523

36. Rapaport, D.C. The art of molecular dynamics simulation; Academic Press, 2007.524

37. Snow, C.; Zagrovic, B.; Pande, V. The Trp-cage: Folding kinetics and unfolded state topology via molecular525

dynamics simulations. Journal of the American Chemical Society 2003, 124, 14548–9.526

38. The PyMOL Molecular Graphics System, Version 2.0, Schrödinger, LLC.527

39. Satoh, D.; Shimizu, K.; Nakamura, S.; Terada, T. Folding free-energy landscape of a 10-residue mini-protein,528

chignolin. FEBS Letters 2006, 580, 3422–3426.529

40. Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded530

and geometrical features. Biopolymers 1983, 22, 2577–2637.531

41. Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: a sequence logo generator. Genome532

Research 2004, 14, 1188–1190.533

42. Kührová, P.; De Simone, A.; Otyepka, M.; Best, R.B. Force-field dependence of Chignolin folding and534

misfolding: Comparison with experiment and redesign. Biophysical Journal 2012, 102, 1897–1906.535

43. Fox, N.K.; Brenner, S.E.; Chandonia, J.M. SCOPe: Structural classification of proteins–extended, integrating536

SCOP and ASTRAL data and classification of new structures. Nucleic Acids Research 2014, 42, D304–D309.537

44. Jha, A.K.; Colubri, A.; Freed, K.F.; Sosnick, T.R. Statistical coil model of the unfolded state: Resolving the538

reconciliation problem. Proceedings of the National Academy of Sciences of the United States of America 2005,539

102, 13099–13104.540

45. Scott, R.A.; Scheraga, H.A. Conformational analysis of macromolecules. III. Helical structures of541

polyglycine and poly-L-alanine. The Journal of Chemical Physics 1966, 45, 2091–2101.542

46. Levitt, M. A simplified representation of protein conformations for rapid simulation of protein folding.543

Journal of Molecular Biology 1976, 104, 59–107.544

47. Ruiz de Angulo, V.; Cortés, J.; Porta, J.M. Rigid-CLL: Avoiding constant-distance computations in cell545

linked-lists algorithms. Journal of Computational Chemistry, 33, 294–300.546

48. Bondi, A. Van der Waals Volumes and Radii. Journal of Physical Chemistry 1964, 68, 441–451.547

49. Devaurs, D.; Molloy, K.; Vaisset, M.; Shehu, A.; Siméon, T.; Cortés, J. Characterizing energy landscapes548

of peptides using a combination of stochastic algorithms. IEEE Transactions on NanoBioscience 2015,549

14, 545–552.550

c© 2019 by the authors. Submitted to Molecules for possible open access publication under the terms and conditions551

of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).552

http://creativecommons.org/licenses/by/4.0/.

	Introduction and related work
	Results and Discussion
	Chignolin
	DS119

	Materials and Methods
	Structural database
	Formal statement of the conformation path finding problem
	Search algorithm

	Conclusion
	References

