
HAL Id: hal-02088529
https://laas.hal.science/hal-02088529v2

Submitted on 1 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A certificate-based approach to formally verified
approximations

Florent Bréhard, Assia Mahboubi, Damien Pous

To cite this version:
Florent Bréhard, Assia Mahboubi, Damien Pous. A certificate-based approach to formally verified
approximations. ITP 2019 - Tenth International Conference on Interactive Theorem Proving, Sep
2019, Portland, United States. pp.1-19, �10.4230/LIPIcs.ITP.2019.8�. �hal-02088529v2�

https://laas.hal.science/hal-02088529v2
https://hal.archives-ouvertes.fr


A certificate-based approach to formally verified
approximations
Florent Bréhard
Plume and AriC teams, LIP, ENS de Lyon, Université de Lyon, Lyon, France
MAC team, LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Assia Mahboubi
Gallinette team, LS2N, INRIA, Université de Nantes, Nantes, France

Damien Pous
Plume team, LIP, CNRS, ENS de Lyon, Université de Lyon, Lyon, France

Abstract
We present a library to verify rigorous approximations of univariate functions on real numbers, with
the Coq proof assistant. Based on interval arithmetic, this library also implements a technique of
validation a posteriori based on the Banach fixed-point theorem. We illustrate this technique on
the case of operations of division and square root. This library features a collection of abstract
structures that organise the specfication of rigorous approximations, and modularise the related
proofs. Finally, we provide an implementation of verified Chebyshev approximations, and we discuss
a few examples of computations.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases approximation theory, Chebyshev polynomials, Banach fixed-point theorem,
interval arithmetic, Coq

Related Version Except for the appendix, this paper appears in Proc. ITP 2019

Supplement Material https://gitlab.inria.fr/amahboub/approx-models

Funding This work has been funded by the European Research Council (ERC) under the European
Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157), and was supported by the
LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program "Investissements
d’Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).
This work was supported in part by the project FastRelax ANR-14-CE25-0018-01

1 Introduction

While numerical analysis offers sophisticated computational methods to solve various function
space problems, the numerical errors caused by floating-point computations, discretisations or
finite iterations, are a major concern in domains like safety-critical engineering or computer
assisted proofs in mathematics. To address these issues, rigorous numerics [37] provides
algorithms to compute validated enclosures of the exact solution. However, their correctness
is ensured by pen-and-paper mathematical proofs. In particular, there is no guarantee
concerning their implementations.

In this regard, formal proof offers the highest level of confidence. Several noteworthy works
use formally proved rigorous numerics to completely formalise highly nontrivial mathematical
results, like the Flyspeck project [18] for the Kepler conjecture or the formal verification [22] of
the computer-aided proof of the Lorenz attractor [36]. However, those methods often require
intensive computations, which rapidly becomes restrictive inside proof assistants. In the
context of formal verification, certificate-based methods is an appealing strategy [19, 12, 1]. It
consists in discharging part of the computation work load to external oracles, while correctness
remains guaranteed via a posteriori validation steps performed inside the proof assistant.

https://gitlab.inria.fr/amahboub/approx-models


2 A certificate-based approach to formally verified approximations

This approach has mostly been used for the purpose of verifying symbolic computations, e.g.
primality proofs [17], but we illustrate here how it can also by used in the context of rigorous
numerical analysis.

Interval arithmetic. Invented in the 60s by Moore [32] and significantly developed in the
80s by Kulisch et al., interval arithmetic is an essential building block of rigorous numerics.
The key idea consists in using real intervals with representable endpoints (e.g., floating-
point numbers) as rigorous enclosures of real numbers, and providing operations preserving
correctness. For example, from π ∈ [3.1415, 3.1416] and e ∈ [2.7182, 2.7183], one obtains
π + e ∈ [3.1415, 3.1416]⊕ [2.7182, 2.7183] = [5.8597, 5.8599]. Efficient implementations are
available, as MPFI [33], IntLab [34], C-XSC [27], ARB [23]. The CoqInterval library [31]
moreover provides a fully verified implementation inside the Coq proof assistant.

Rigorous Chebyshev approximations. Interval arithmetic is however not a panacea, and
replacing all operations on real numbers by interval ones should always be considered with
caution: the dependency phenomenon may lead to disastrous over-approximations. In such
cases, higher order methods such as rigorous polynomial approximations (RPAs) are preferable.
A pioneer work is that of Berz and Makino on Taylor models [4]. Those provide not only a
polynomial, but also a remainder s.t. the latter contains the difference between the former
and the represented function. Since then, efforts were made to clarify the definition of RPAs
and extend them to other bases, in particular the Chebyshev basis [10, 25], due to their far
better approximation properties than Taylor expansions [35].

On the formal proof side, the CoqInterval library includes an implementation of Taylor
models called CoqApprox [30], allowing in particular for an automated rigorous evaluation
procedure of definite integrals inside Coq [29]. Unfortunately, an equally accomplished
equivalent with Chebyshev approximations does not exist now. Our contribution is a first step
towards a formally proved counterpart of the popular Chebfun package [14] for Matlab.

Fixed-point based a posteriori validation. Some operations in function spaces admit
straightforward self-validating algorithms by replacing all operations in R by interval ones.
Unfortunately, more complicated operations (e.g., division, square root, differential equations)
face several obstructions: the intervals may fail to give sufficiently tight enclosures, bounds for
the remainders may be unknown, or only asymptotic, or depend on noneffective quantities.

In such cases, a posteriori validation techniques are an attractive alternative, widely
used in rigorous numerics. They consist in reconstructing afterwards an error bound for
a candidate approximation. Dating back from the works of Kantorovich about Newton’s
method, they gained prominence with the rise of modern computers and were applied to
numerous functional analysis problems [26, 39, 38, 28]. Even more recently, those methods
were used to compute RPAs for solutions of linear ODEs [2, 8]. Broadly speaking, the
function of interest is characterised as a fixed-point of a contracting operator, from which
an error bound is recovered thanks to the Banach fixed-point theorem [3, Thm. 2.1]. Such
techniques are of special interest for formal verification, for they allow one to rely on efficient
but untrusted external tools while keeping the trusted codebase small: it suffices to formalise
the theory about contracting operators and provide means of computing with those operators.

Contributions and outline. We present a Coq library that makes it possible to compute
rigorous Chebyshev approximations of functions on reals. We support basic operations like
multiplication or integration in the standard way. For more complex operations like division



F. Bréhard, A. Mahboubi, and D. Pous 3

and square root, we resort to a posteriori validation techniques, thus making a first step
towards a potential cooperation between external numerical tools and Coq.

We use the interval arithmetic provided by CoqInterval, but we design our abstractions
for RPAs from scratch: this allows us to experiment with different design choices, with more
flexibility. We first describe the main lines of the hierarchy (Section 2): we rely on canonical
structures to abstract over the concrete implementation details of interval arithmetic, and
we use them to denote both real valued functions and their rigorous approximations. We
also abstract away from the concrete basis for approximations, to work in the future with
different bases, even non polynomial ones (e.g., Bessel functions). We provide instances for
the monomial and Chebyshev bases, the latter being described in Section 3.

The main theorem we need to perform a posteriori validation is the Banach fixed-point
theorem, whose formalisation is described in Section 4. We show in Section 5 how to apply
this theorem to compute rigorous approximations for division and square root using Newton-
like operators. We finally discuss the benefits of our approach on two examples (Section 6):
RPAs for the absolute value function, and verified computation of integrals related to the
second part of Hilbert’s 16th problem.

2 Approximating real numbers and functions

Numerical errors come from the estimation of both real numbers, e.g. using floating-point
numbers, and real functions, e.g. using polynomials. Rigorous estimations must take all these
uncertainties into account. For this purpose, interval arithmetic provides an explicit enclosure
and rigorous polynomial approximations attach an interval to a polynomial approximant,
which bounds the method error on a given domain. Note that the coefficients of polynomial
approximations are usually themselves obtained from evaluations of the function or of its
derivatives, and therefore also subject to numerical errors. A formal library about rigorous
approximation thus implements several variants of each operation, on real numbers, floats,
intervals, mathematical functions, approximants, etc., whose relationships are made precise
in the various layers of specifications. Our library features a small hierarchy of structures
which formalises and organises the dependencies between these variants.

2.1 Reals and Intervals
At the bottom of the hierarchy, structure Ops0 collects the operations available on reals,
floats, intervals, but also on polynomials and rigorous approximations. It provides the
signature of a ring structure, with symbols +, −, ∗, 1 and 0 shared by all instances thanks
to Coq’s system of canonical structures. Yet the ring equational theory is a priori only
available for real numbers. These operations are also those trivially self-validating. A
super-structure Ops1 collects other operations required on data-structures used for scalars:
reals, floats, interval endpoints, intervals, etc. They are not meant to be implemented on
polynomial approximations.
Record Ops0 := {
car:> Type;
add: car → car → car;
sub: car → car → car;
mul: car → car → car;
zer, one: car }.

Record Ops1 := {
ops0:> Ops0;
fromZ: Z → ops0;
div: ops0 → ops0 → ops0;
sqrt, cos, abs: ops0 → ops0;
pi: ops0 }.

Structure Rel0 specifies the relationship between the operations of Ops0 on reals and those
on intervals. The field rel is a relation between the two instances C and D, which share
overloaded notations. The relation will eventually be instantiated with the containment



4 A certificate-based approach to formally verified approximations

relation between intervals and reals. When doing so, the requirements on the relation precisely
correspond to the fact that interval operations properly approximate real operations. A
record Rel1 is defined in the very same way for Ops1.

Record Rel0 (C D: Ops0) := {
rel:> C → D → Prop;
radd: ∀ x y, rel x y → ∀ x’ y’, rel x’ y’ → rel (x+x’) (y+y’);
rsub: ∀ x y, rel x y → ∀ x’ y’, rel x’ y’ → rel (x-x’) (y-y’);
rmul: ∀ x y, rel x y → ∀ x’ y’, rel x’ y’ → rel (x*x’) (y*y’);
rzer: rel 0 0;
rone: rel 1 1 }.

As much as possible, we will work with polymorphic functions like the following one:

Definition f (C: Ops1) (x: C): C := 1 / (1 + sqrt x).

First of all, this allows us to define at once a function on real numbers (here, x 7→ 1
1+
√
x
) and

a function on intervals, whatever the implementation of intervals. Second, and even more
importantly, the corresponding approximation correctness theorem will always hold—by a
parametricity meta-result, such a function f will always satisfy the following lemma:

Lemma rf: ∀ C D (T: Rel1 C D), ∀ x y, T x y → T (f x) (f y).

This is only a meta-result: we need to provide a proof for each function f ; but the proof is
always trivial, and we automatise it.

There are however operations which cannot be implemented at this level of abstraction,
even if we were to add some operations to the record Ops1. This is typically the case for
division and square root of rigorous approximations, which require operations on intervals
that do not make sense on real numbers (e.g., computing the range of a function and checking
that it is bounded). In order to define those operations while remaining rather agnostic
about the choice of interval implementation, we setup an intermediate layer of abstraction
using the structure NBH (for neighbourhood):

Record NBH := {
II:> Ops1; (* abstract intervals *)
contains: Rel1 II ROps1; (* containment relation; ROps1 is the Ops1 instance on R *)
convex: ∀ Z x y, contains Z x → contains Z y → ∀ z, x≤z≤y → contains Z z };
(* additional operations on intervals *)
bnd: II → II → II; (* directed convex hull *)
is_lt: II → II → bool; (* strict above test *)
min,max: II → option II; (* min, max, if any *)
bot: II; (* uninformative, contains all reals *)
(* specification of the above operations *)
bndE: ∀ X x, contains X x → ∀ Y y, contains Y y → ∀ z, x≤z≤y →contains (bnd X Y) z;
is_ltE: ∀ X Y, wreflect (∀ x y, contains X x → contains Y y → x<y) (is_lt X Y);
minE, maxE, botE: ... }.

We will also make use of the two following derived operations:

Definition mag (N: NBH) (X: II): option II := max (abs X).
Definition sym (N: NBH) (X: II): II := let X := abs X in bnd (-X) X.

The first one approximates the magnitude as an interval, if possible; the second one returns
an interval centered in 0 that contains the argument. Note that we assume that intervals
are convex. We provide an instance of this structure using the CoqInterval library, using
intervals of floating point numbers from the Flocq library [6]. It is actually a family of
instances indexed by the desired precision.



F. Bréhard, A. Mahboubi, and D. Pous 5

2.2 Abstract functions
The structure FunOps describes inductively the catalogue of expressions that the library can
approximate.
Record FunOps (C: Type) := {
funcar:> Ops0; (* abstract type for functions, and pointwise basic operations *)
id: funcar;
cst: C → funcar;
eval: funcar → C → C;
integrate: funcar → C → C → C;
div’: nat → funcar → funcar → funcar;
sqrt’: nat → funcar → funcar }.

It is parameterised by a type C of ground values (typically, reals or intervals); it packages a
set of basic operations on some abstract type for functions (pointwise addition, multiplica-
tion. . . ), together with operations specific to functions: identity, constant function, evaluation,
integration. It also asks for division and square root operations; those have an additional
argument which is used to pass parameters to the oracles used in the implementation of
those operations (for now, the degree of the interpolants).

When C is R, the type of real numbers, this structure is instantiated with the standard
operations on R→R (ignoring the extra parameters for division and square root); our main goal
is to provide instances with intervals for C, with which it is possible to perform computations.

Like for ground values, the structure FunOps makes it possible to write polymorphic
functions like:
Definition g (C: Ops1) (F: FunOps C): F :=

let f: F := div’ 33 1 (1 + sqrt’ 33 id ) in
let a: C := integrate f 0 1 in
pi + id * cst a

Such a declaration defines at the same time a function on reals (x 7→ π + x
∫ 1

0
dt

1+
√
t
) and

approximations of it, which will be obvious to prove correct whenever the chosen instance F

satisfies appropriate properties. Those instances are obtained using rigorous approximations.

2.3 Rigorous Approximations
Approximating a function usually consists in projecting this function onto a finite dimension
vector space, by expansion on a basis with appropriate properties. For instance, so-called
Taylor models [4], are an instance of rigorous polynomial approximation. They attach an
interval bounding the remainder to a certain polynomial, in this case represented in monomial
basis, so as to describe a set of functions containing the one to be approximated. More
generally in this section, a rigorous approximation refers to a linear combination of elements
in a suitable basis, packaged with an interval remainder. In the code, we will also use the
shorter term model, by analogy with Taylor models.

A basis is described by a family of functions, non necessarily polynomials, indexed by
natural numbers, that is a term T: nat→R→R. The structure BasisOps_on below describes the
signature required on a basis T. It is parameterised by the type C of coefficients; sequences of
such coefficients (seq C) represent linear combinations of elements of T. Linear operations
(+,−, 0) need not be provided since they can be implemented independently from the basis.
The range operation is important: its role is to bound the range on the given domain; it
should be as accurate as possible since it is used at many places to compute error bounds
in rigorous approximations (e.g., for multiplication and a posteriori validation). We define
BasisOps to be a polymorphic function so that we capture with a single object the idealised
operations on reals and their concrete implementation with intervals.



6 A certificate-based approach to formally verified approximations

Record BasisOps_on (C: Type) := {
lo, hi: C; (* bounds for the domain *)
beval: seq C → C → C; (* (efficient) evaluation *)
bmul: seq C → seq C → seq C; (* multiplication *)
bone, bid: seq C; (* constant to 1, identity *)
bprim: seq C → seq C; }. (* primitive *)
brange: seq C → C*C; }. (* range *)

Definition BasisOps := ∀ C: Ops1, BasisOps_on C.

Given such operations, we equip type seq C with the basic operations in Ops0. Then we
can define rigorous approximations:

Record Model C := { pol: seq C; rem: C }.

Like with seq C, we equip Model C with the basic operations in Ops0, and then with those
from FunOps. For instance, addition, evaluation and integration are defined as follows:

Definition madd (C: Ops1) (M N: Model C): Model C :=
{| pol := pol M + pol N; rem := rem M + rem N |}.

Definition meval (C: Ops1) (M: Model C) (X: C): C := beval (pol M) X + rem M.
Definition mintegrate (C: Ops1) (M: Model C) (a b: C): C :=

let N := bprim (pol M) in beval N b - beval N a + (b-a)*rem M.

For those relatively simple operations, it suffices to have the basic operations (Ops1) on C.
For other operations like the range of a model, we actually need the additional operations on
intervals provided by the structure NBH:

Definition mrange (N: NBH) (M: Model II) :=
let (a,b) := brange (pol M) in bnd a b + rem M.

This is also the case for division and square root, which we will discuss in Section 5. All in
all, we obtain instances FunOps through a construction of the following type:

Canonical Structure MFunOps (N: NBH) (B: BasisOps): FunOps II.
(* with carrier [Model II] *)

It finally remains to show that those operations defined on rigorous approximations
properly match the idealised operations on functions over reals. We fix in the sequel an
instance N: NBH of neighbourhood and basis operations B: BasisOps, and we write Model for
Model II). The central definition to establish this correspondence is the following one, where
the function eval is the obvious evaluation function for linear combinations of elements of T.

Definition mcontains (F: Model) (f: R → R) :=
∃ p: seq R, scontains (pol F) p /\ ∀ x, lo≤x≤hi → contains (rem F) (f x - eval T p x)

Intuitively, a model contains a real-valued function f if it contains a generalised polynomial
which is close enough to f on the domain of the basis. (The binary predicate scontains

denotes the pointwise extension of the relation contains to sequences: in the definition, the
real coefficients of p should be pointwise contained in the interval coefficients of pol F.)

Equipped with this definition, we prove lemmas like:

Lemma rmmul: ∀ F f G g,
mcontains F f → mcontains G g → mcontains (F*G) (f*g).

Lemma rmdiv: ∀ n F f G g,
mcontains F f → mcontains G g → mcontains (div’ n F G) (div’ n f g).

Lemma rmintegrate: ∀ F f A a B b,
(∀ x, lo≤x≤hi → continuous_at f x) → lo≤a≤hi → lo≤b≤hi →
mcontains F f → contains A a → contains B b →
contains (integrate F A B) (integrate f a b).



F. Bréhard, A. Mahboubi, and D. Pous 7

Of course, we need assumptions on the basis operations in order to do so. Those
assumptions are summarised in the following structure. Recall that a B: BasisOps provides
us with operations B ROps1 on reals and operations B II on intervals. The structure assumes:
1) the expected properties on the operations on reals, i.e, efficient evaluation corresponds
to evaluation with T, multiplication indeed corresponds to pointwise multiplication under
evaluation, etc.; and 2) a relationship between the operations on reals and on intervals. This
separation of concerns is very convenient: the latter containment lemmas are always proved
in a trivial way (i.e., automatically), and the former properties do not involve intervals at all,
but only real numbers and functions, for which usual mathematical intuitions apply.
Record ValidBasisOps (N: NBH) (B: BasisOps) := {
(* properties of operations on reals (B ROps1) *)
lohi: lo < hi;
bevalE: ∀ p x, beval p x = eval T p x;
eval_cont: ∀ p x, continuity_pt (eval T p) x;
eval_mul: ∀ p q x, eval T (bmul p q) x = eval T p x * eval T q x;
eval_prim: ∀ p a b, eval T (bprim p) b - eval T (bprim p) a = RInt (eval T p) a b;
...
(* relationship between operations on intervals (B II) and on reals (B ROps1) *)
rbeval: ∀ P p X x, scontains P p → contains X x → contains (beval P X) (beval p x);
rbmul: ∀ P p Q q, scontains P p → scontains Q q → scontains (bmul P Q) (bmul p q);
rbprim: ∀ P p, scontains P p → scontains (bprim P) (bprim p);
... }.

3 Arithmetic on Chebyshev polynomials

In order to use the previously described rigorous approximations, it remains to provide
implementation of operations (BasisOps) for certain families T of functions. We provide two
instances of them: one for the standard monomial basis, where T n x = x^n, and one described
in this section for Chebyshev basis, where T n is the n-th Chebyshev polynomial.

Chebyshev polynomials are defined by the following recurrence, which immediately
translates to a recursive definition in Coq.

T0 = 1 T1 = X Tn+2 = 2XTn+1 − Tn

We can then prove simple properties of those polynomials, for instance:

TnTm = (Tn+m + Tm−n)/2 (n ≤ m) (1)

T0 = T ′1 T1 = T ′2
4 Tn+3 =

T ′n+3
2(n+ 3) −

T ′n+1
2(n+ 1) (2)

Tn(cos t) = cos(nt) (3)

Those are proved in a few lines using existing lemmas about derivation and cosine.

3.1 Clenshaw’s evaluation algorithm
The first operation we must implement for BasisOps is the evaluation function (beval). This
operation should be polymorphic and as efficient as possible: it will be executed repeatedly
when constructing and using rigorous approximations. We use Horner evaluation scheme
for the monomial basis, and Clenshaw’s algorithm [15] for Chebyshev, which are both linear
in the number of elementary operations. The latter is usually presented as a dynamic
programming routine. We fix abstract operations C: Ops1 for the remaining Coq snippets in
this section, and we translate this routine into a recursive function with two accumulators:



8 A certificate-based approach to formally verified approximations

Fixpoint Clenshaw b c (p: seq C) x :=
match p with
| [] => c - x*b
| a::q => Clenshaw c (a + 2*x*c - b) q x
end.

Definition beval (p: seq C) x := Clenshaw 0 0 (rev p) x.

This code might look mysterious; it is justified by the following invariant on real numbers:

Lemma ClenshawR b c p x: Clenshaw b c p x = eval T (catrev p [c - 2*x*b; b]) x.

In the right-hand side, catrev is the function that reverses its first argument and catenate it
with the second one. The proof is done by induction in just three lines, using the Coq tactic
for ring equations [16]. Correctness (i.e., field bevalE from structure ValidBasisOps) follows.

Note that while the definition of beval can be used with any Ops1 structure, its correctness
is proved only on reals: the lemma ClenshawR does not hold in every Ops1 structure. The
behaviour of beval on those structures is specified only through the fact that it respects
containments (field rbeval from structure ValidBasisOps, which is proved automatically.)

3.2 Multiplication

Another important operation is multiplication. Again, this operation should be polymorphic,
and efficient. A difficulty here is that due to Equation (1), the n-th coefficient of a multipli-
cation potentially depends on all coefficients of its arguments, not only on the coefficient of
smaller rank. We use the following definition, with two auxiliary recursive functions:

Fixpoint mul_pls (p q: seq C): seq C :=
match p,q with
| [],_ | _,[] => []
| a::p’, b::q’ => sadd (a*b::(sadd (sscal a q’) (sscal b p’))) (0::0::mul_pls p’ q’)
end.

Fixpoint mul_mns (p q: seq C): seq C :=
match p,q with
| [],_ | _,[] => []
| a::p’, b::q’ => sadd (a*b::(sadd (sscal a q’) (sscal b p’))) (mul_mns p’ q’)
end.

Definition smul (p q: seq C): seq C := sscal (1/2) (sadd (mul_mns p q) (mul_pls p q))

where sscal is the scalar multiplication for polynomials— we cannot yet use the standard
notation for this operation since we are in the process of defining an Ops0 structure on
seq C. The function mul_pls actually corresponds to multiplication in the monomial basis,
it covers the first summand in the right-hand side of (1). The function mul_mns differs only
in the fact that the recursive call is not pushed away using two ‘cons’ operations; it covers
the second summand in the right-hand side of (1). Like previously, that smul preserves
containments (field rbmul of structure ValidBasisOps) is obvious: this operation only performs
a finite sequence of operations preserving containments. Proving that it behaves correctly on
reals numbers is more interesting; the key invariant is the following one:

Lemma eval_mul_: ∀ (p q: seq R) n x,
eval_ n p x * eval_ n q x = (eval (mul_mns p q) x + eval_ (n+n) (mul_pls p q) x)/2.

Here, eval_ n p evaluates P padded with n zeros in front of it. Again, the difficulty is to find
the lemma: it is proved in six lines using (1), and correctness of smul on reals immediately
follows. Taking primitives in Chebyshev basis follows the same pattern (see Appendix A).



F. Bréhard, A. Mahboubi, and D. Pous 9

3.3 Range
As mentioned above, we need accurate estimations of the range of a given polynomial in
order to be able to compute precise rigorous approximations. This range can always be
estimated by evaluating the polynomial on the interval representing the domain (i.e., given
p: seq C, compute beval p (bnd lo hi)). This technique is however not sufficient in practice:
this tends to produce largely over-estimated bounds. With Chebyshev basis we can proceed
differently: indeed, thanks to Equation (3), Tn ranges over [−1; 1] on [−1; 1]. Therefore, the
range of a polynomial on [−1; 1] can be estimated by using the sum of the absolute values of
the coefficients in Chebyshev basis (and actually, we do not need to take the absolute value
of the first coefficient since T0 = 1).
Definition range_: seq C → C := foldr (fun A X => abs A + X) 0.
Definition range (P: seq C): C*C :=

match p with
| [] => (0,0)
| A::Q => let R := range_ Q in (A-R,A+R)
end.

3.4 Rescaling
Putting everything together, we obtain the polymorphic operations chebyshev.basis: BasisOps,
which can readily be used to construct rigorous approximations, with the instance MFunOps

from Section 2.3. This basis however requires to work on the domain [−1; 1] (for estimating the
range as explained in the previous section, but also to perform interpolation, see Section 5.1).
In order to use it on other domains, we provide a rescaling function that takes a B: BasisOps

and rescales it to a given interval [a; b] using the obvious affine function. We show that this
operation preserves validity of basis operations, so that we can use it whenever needed.

4 Formalisation of Banach fixed-point theorem

Banach fixed-point theorem is the cornerstone of the method discussed here.

I Theorem 1 (Banach fixed-point). Let (X, ‖ ·‖) be a Banach space, an operator F : X → X,
h◦ ∈ X, and µ, b, r ∈ R+, satisfying the following conditions:

(i) ‖h◦ − F · h◦‖ ≤ b;
(ii) F is µ-Lipschitz over the closed ball B(h◦, r) := {h ∈ X | ‖h− h◦‖ ≤ r}:

∀h1, h2 ∈ X, h1 ∈ B(h◦, r) ∧ h2 ∈ B(h◦, r) ⇒ ‖F · h1 − F · h2‖ ≤ µ‖h1 − h2‖;

(iii) µ < 1 : F is contracting over B(h◦, r);
(iv) b+ µr ≤ r.

Then F admits a unique fixed-point h∗ in B(h◦, r).

This classic result has been formalised in various flavours of logic and proof assistants. In
particular, Boldo et al. have provided a formal proof of a version of this fixed-point theorem,
based on the Coquelicot library, for the purpose of the formalisation of the Lax-Milgram
theorem [5]. Using the same backbone library, we formalise an alternative version of the
theorem: our version is significantly more concise, and closer to the computational content
of the result. We describe below this formalisation.



10 A certificate-based approach to formally verified approximations

The Coquelicot library formalises topological concepts using filters [7, 20], which we
briefly recall here. A filter on a type T is a collection of collections of inhabitants of T which
is non-empty, upward closed and stable under finite intersections:

Record Filter (T : Type) (F : (T → Prop) → Prop) := {
filter_true : F (fun _ => True) ;
filter_and : ∀ P Q : T → Prop, F P → F Q → F (fun x => P x /\ Q x) ;
filter_imp : ∀ P Q : T → Prop, (∀ x, P x → Q x) → F P → F Q }.

While filters are used to formalise neighbourhoods, balls allow for expressing the relative
closeness of points in the space. Balls are formalised using a ternary relation between two
points in the carrier type, and a real number, with the following axioms:

ball : M → R → M → Prop ;
ax1 : ∀ x (e > 0), ball x e x ;
ax2 : ∀ x y e, ball x e y → ball y e x ;
ax3 : ∀ x y z e1 e2, ball x e1 y → ball y e2 z → ball x (e1 + e2) z

Two points are called close when they cannot be separated by balls:

Definition close (x y : M) : Prop := ∀ eps > 0, ball x eps y.

A filter is called a Cauchy filter when it contains balls of arbitrary (small) radius:

Definition cauchy (T : UniformSpace) (F : (T → Prop) → Prop) :=
∀ eps > 0, ∃ x, F (ball x eps).

Finally, a uniform space is a type equipped with a ball relation and a complete space moreover
has a limit operation on filters, which ensures the convergence of Cauchy sequences via the
following axioms (where ProperFilter F is equivalent to Filter F /\ ∀ P, F P → ∃ x, P x):

lim : ((T → Prop) → Prop) → T ;
ax1 : ∀ F, ProperFilter F → cauchy F → ∀ eps > 0, F (ball (lim F) eps) ;
ax2 : ∀ F1 F2, F1 ⊆ F2 → F2 ⊆ F1 → close (lim F1) (lim F2)

The above formal definition of balls does not enforce closedness nor openness. We thus intro-
duced the relation associated with the closure of balls, so as to model closed neighbourhoods:

Definition cball x r y := ∀ e > 0, ball x (r+e) y.

Equipped with this definition, hypothesis (ii) of Theorem 1 is formalised as follows:

Definition lipschitz_on (F : U → U) (mu : R) (P : U → Prop) :=
∀ x y : U, ∀ r ≥ 0, P x → P y → cball x r y → cball (F x) (mu*r) (F y).

We now sketch our formalised proof, using mathematical notations. We consider a com-
plete space X and we write y ∈ B(x, r) for the formal (ball x r y), and y ∈ B(x, r) for
(cball x r y). The key notion is that of strongly stable ball (see Figure 1):

I Definition 2 (Strongly stable ball). A ball B(u, r) is µ-strongly stable for F if F is
µ-Lipschitz on B(u, r) and if there is a non-negative real number s, called the offset, s.t.:

F · u ∈ B(u, r) and s+ µr ≤ r.

I Remark 3 (Stability). For any x in B(u, r), a strongly stable ball for F , F · x ∈ B(u, r).

I Remark 4 (Contracting case). When 0 ≤ µ < 1, for any µ-strongly stable ball B(v, ρ), with
offset σ, B(F · v, µρ) is also a strongly stable ball, with offset µσ. Moreover, B(F · v, µρ) is
included in B(v, ρ).



F. Bréhard, A. Mahboubi, and D. Pous 11

u

F ·u

F
2 · u

r

s

μ rμ s

B(u,
r)

Figure 1 Balls B0 and B1.

Assume that F has a µ-strongly stable ball B(u, r) of offset s, with µ < 1. In particular,
F is contracting on B(u, r). Consider the sequence of balls defined as follows:

Bn = B(un, rn) with un = F n · u and rn = rµn

where F n · u denotes the iterated images of u under F . By Remark 4, (Bn)n∈N is a nested
sequence of µ-strongly stable ball for F , with offset sµn. Let F be the family of collections
of points in U defined as:
F = {P ⊆ U | ∃ n,Bn ⊆ P}.

It is a proper filter: F contains U , it is obviously upward closed, and for P,Q ∈ F , P ∩Q
is also in F because (Bn)n∈N is decreasing for inclusion. Thus F has a limit w, such that
for any ε > 0, balls Bn are eventually included in B(w, ε). We provide a formal proof of
Theorem 5, a reformulation of Theorem 1 using the vocabulary of the Coquelicot library:

I Theorem 5. The limit w of the filter F is in B0, and w is a fixed point of F . Moreover,
w is close to every other fixed point of F in B0.

Proof. In this statement “w is a fixed point of F ” means “w is close to F ·w”. First, w ∈ Bn
for all n. Indeed, for any ε > 0, there is an m ≥ n s.t. Bm ⊆ B(w, ε), and since Bm ⊆ Bn,
um ∈ Bn ∩B(w, ε). In particular, w ∈ B0. It is also clear by stability that F · w ∈ Bn for
all n. Moreover, w is close to any point v s.t. v ∈ Bn for all n (for any ε > 0, choose n s.t.
2µrn < ε). Taking v := F · w proves that w is a fixed point of F .

Finally, if w′ ∈ B0 is another fixed point of F , then it follows from an easy induction
that w′ ∈ Bn for all n. Hence, the foregoing shows that w is close to w′. J

Strongly stable balls model the requirements set on the untrusted data to be formally
verified. They can also be seen as balls centered at the initial point, and large enough
to include all its successive iterates, i.e. as instances of the locus at stake in classical
presentations of the proof. The version proved by Boldo et al. has a slightly more technical
wording, which seems to be made necessary by its further usage in the verification of the
Lax-Milgram theorem. Our proof script is significantly shorter, partly because we automate
proofs of positivity conditions (for radii of balls) using canonical structures for manifestly
positive expressions. But the key ingredient for concision is to make most of the filter device
in the proof, and to refrain from resorting to low-level properties of geometric sequences. To



12 A certificate-based approach to formally verified approximations

the best of our knowledge, the other libraries of formalised analysis featuring a proof of this
result, notably Isabelle/HOL and HOL-Light, are based on variant of proof strategy closer
to the approach of Boldo et al. than to ours.

5 Newton-like validation operators

The purpose of this section is twofold. We first present the general principle of fixed-point
based a posteriori validation methods, and more particularly, the use of Newton-like validation
operators. Then we apply it to the division and square root of models.

Throughout this section, let (X, ‖·‖) denote a Banach space, and h∗ the exact solution of an
equation in X. In this article, X stands for the space C(I) of real-valued continuous functions
defined over a compact segment I = [a, b], with the uniform norm ‖h‖ := supx∈I |h(x)|. The
division and square root of functions are simple examples of solutions of equations in C(I),
but there are also differential equations, integral equations, delay equation, etc. The general
scheme for Banach fixed-point based a posteriori validation methods follows two steps:

1. Approximation step. A numerical approximation h◦ ∈ X of h∗ is obtained by an
oracle, which may resort to any approximation method. In particular, this step requires
no mathematical assumption and can be executed purely numerically outside the proof
assistant, good approximation properties being only desirable for efficiency. In our setting
with X = C(I), interpolation at Chebyshev nodes (Section 5.1) is an efficient and accurate
oracle for a wide range of function space problems.

2. Validation step. The initial problem is rephrased in such a way that h∗ is a fixed point
of a (locally) contracting operator F : X → X. An a posteriori error bound on ‖h◦−h∗‖
is deduced from the Banach fixed-point theorem (Theorem 1).

We thus need to find a contracting operator F of which h∗ is a fixed point. To this end,
we use Newton-like validation methods, which transform an equation M · h = 0 into an
equivalent fixed-point equation F · h = h with F contracting. More specifically, suppose that
M : X → Y is differentiable; we use a Newton-like operator F : X → X defined as:

F · h = h−A ·M · h, h ∈ X,

with A : Y → X an injective bounded linear operator, intended to be close to (DMh◦)−1.
The operator A may be given by an oracle and does not need to be this exact inverse, which
anyway might be non representable on computers exactly. The mean value theorem yields a
Lipschitz ratio µ for F over any convex subset S of X:

∀h1, h2 ∈ S, ‖F ·h1−F ·h2‖ ≤ µ‖h1−h2‖, with µ = sup
h∈S
‖DF h‖ = sup

h∈S
‖1X−A ·DMh‖,

which is expected to be small over some neighbourhood of h◦.
Concretely, in order to apply Theorem 1, one needs to compute the following quantities:

a bound b ≥ ‖A ·M · h◦‖ = ‖h◦ − F · h◦‖;
a bound µ0 ≥ ‖1X −A · DMh◦‖ = ‖DF h◦‖;
a bound µ′(r) ≥ ‖A · (DMh −DMh◦) ‖ = ‖DF h − DF h◦‖ valid for any h ∈ B(h◦, r),
and parameterised by a radius r ∈ R+.

If we are able to find a radius r ∈ R+ satisfying:

µ(r) := µ0 + µ′(r) < 1, and b+ rµ(r) ≤ r, (4)

then Theorem 1 guarantees the existence and uniqueness of a root h∗ of M in B(h◦, r).



F. Bréhard, A. Mahboubi, and D. Pous 13

I Remark 6. Finding an r as small as possible while satisfying (4) may be an nontrivial
task for automated validation procedures. For many problems, µ′(r) is polynomial, hence
conditions (4) are polynomial inequalities over r: this is called the radii polynomial ap-
proach [21] in rigorous numerics. In our case, division (resp. square root) induces an affine
(resp. quadratic) equation, which admits closed form solutions.

5.1 Approximation step: interpolation
Since they are certified a posteriori, (non-rigorous) approximations for division and square
root of given models can be obtained using arbitrary numerical techniques. We use interpo-
lation at Chebyshev nodes of the second kind for its efficiency and excellent approximation
properties [35].

Ideally, we would implement this operation outside of the proof assistant, in order not
to pay the price of an interpreted language. This would however require a lot of work in
order to design a proper interface between Coq values and external values (e.g., converting
Coq representation of floating points numbers into machine level floating points, and back).
Instead, and for now, we implement the oracles inside Coq, as unspecified functions. To this
end, we add a field to the structure BasisOps_on, to compute interpolants of a given degree:

interpolate: nat → (C → C) → seq C;

We implement this operation for Chebyshev basis using the discrete orthogonality relations
on Chebyshev polynomials.

To reduce the price of staying inside Coq for those computations, we exploit the poly-
morphism built in our framework to perform those computations on floating-point numbers
rather than intervals. To this end, we add the following fields to the structure NBH:

FF: Ops1; (* abstract type for floating points and their operations *)
I2F: II → FF; (* conversion from intervals to floating points to (midpoint) *)
F2I: FF → II; (* conversion from floating points to intervals (singleton) *)

Equipped with these operations, we can define conversion operations between models (on
intervals) and polynomials with floating point coefficients:

Definition mcf (M: Model): seq FF := map I2F (pol M).
Definition mfc (p: seq FF): Model := {| pol := map F2I p; rem := 0 |}.

The field FF, of type Ops1, will make it possible to call the functions interpolate and beval

from the basis with C as FF, i.e., to let them operate on floating point numbers. By doing so
we do not have to reimplement Clenshaw’s evaluation scheme on floating point numbers.

5.2 Validation step for division
For f, g ∈ C(I) with g nonvanishing over I, the quotient f/g is the unique root of M : h 7→
gh− f . Let h◦ be a candidate approximation given by the approximation step. Constructing
the Newton-like operator F requires an approximation A of (DMh◦)−1 : k 7→ k/g. For that
purpose, suppose w ≈ 1/g ∈ C(I) is also given by an oracle, and define:

F · h = h− w(gh− f). (5)

The next proposition computes an upper bound for ‖h◦−f/g‖; it is implemented in div.newton.

I Proposition 7. Let f, g, h◦, w ∈ C(I), and µ, b ∈ R+ such that:



14 A certificate-based approach to formally verified approximations

(7 i) ‖w(gh◦ − f)‖ ≤ b, (7 ii) ‖1− wg‖ ≤ µ, (7 iii) µ < 1.

Then g does not vanish over I and ‖h◦ − f/g‖ ≤ b/(1− µ).

Proof. Conditions (7 ii) and (7 iii) imply that F (Equation (5)) is contracting over C(I) with
ratio µ. The radius r := b

1−µ makes the ball B(h◦, r) strongly stable with offset b (7 i), since
b+ µr = r. Therefore, h∗ is the (global) unique root of M , and ‖h◦ − h∗‖ ≤ r.

Finally, w and g do not vanish because ‖1− wg‖ ≤ µ < 1. Hence, h∗ = f/g over I. J

The concrete division of models is implemented as follows:

Definition mdiv_aux (F G H W: Model): Model :=
let K1 := 1-W*G in
let K2 := W*(G*H - F) in
match mag (mrange K1), mag (mrange K2) with
| Some mu, Some b when is_lt mu 1 => {| pol := pol H; rem := rem H + sym (b/(1-mu)) |}
| _ => mbot
end.

Definition mdiv n (F G: Model): Model :=
let p, q := mcf F, mcf G in
mdiv_aux F G (mfc (interpolate n (fun x => beval p x / beval q x)))

(mfc (interpolate n (fun x => 1 / beval q x))).

Note that we use the trivial model mbot={|pol:=[];rem:=bot|} as a default value, when the
concrete computations fail to validate the guess of the oracle (either because this guess is
just wrong, or because of over-approximations in the computations). The correctness lemmas
use the properties of operations on models to prove the assumptions of div.newton.

Lemma rmdiv_aux F f G g H h W w:
mcontains F f → mcontains G g → mcontains H h → mcontains W w →
mcontains (mdiv_aux F G H W) (f/g).

Lemma rmdiv n F f G g: mcontains F f → mcontains G g → mcontains (mdiv’ n F G) (f/g).

5.3 Validation step for square root

Let f ∈ C(I) be strictly positive over I. The square root
√
f is one of the two roots of the

quadratic equation M · h := h2 − f = 0 (the other being −
√
f). Let h◦ be a candidate

approximation. Since DMh : k 7→ 2hk, one also needs an approximation w ≈ 1/(2h◦) ≈
1/(2
√
f) ∈ C(I) in order to define A : k 7→ wk, approximating (DMh◦)−1. Then:

F : h 7→ h− w(h2 − f). (6)

The next proposition (implemented by sqrt.newton), computes an upper bound for ‖h◦−
√
f‖.

I Proposition 8. Let f, h◦, w ∈ C(I), µ0, µ1, b ∈ R+ and t0 ∈ I such that:

(8 i)
∥∥∥w (h◦2 − f

)∥∥∥ ≤ b, (8 ii) ‖1− 2wh◦‖ ≤ µ0, (8 iii) ‖w‖ ≤ µ1,

(8 iv) µ0 < 1, (8 v) (1− µ0)2 − 8bµ1 ≥ 0, (8 vi) w(t0) > 0.
Then f > 0 over I and

∥∥h◦ −√f∥∥ ≤ r∗, where:

r∗ :=
1− µ0 −

√
(1− µ0)2 − 8bµ1

4µ1
.



F. Bréhard, A. Mahboubi, and D. Pous 15

Proof. First, since ‖1 − 2wh◦‖ ≤ µ0 < 1 (by (8 ii) and (8 iv)) and w(t0) > 0 (8 vi), w and
h◦ are strictly positive over I, by continuity. Using (8 iii), µ1 > 0.

If b = 0, then r∗ = 0 and h◦ =
√
f over I, because w(h◦2 − f) = 0 (8 i) and w, h◦ > 0.

Hence the conclusion holds.
From now on, we assume b > 0. F is Lipschitz of ratio µ(r) := µ0 + 2µ1r over B(h◦, r)

for any r ∈ R+, because:

F ·h1−F ·h2 = (h1−h2)−w(h2
1−h2

2) = [(1− 2wh◦) + w(h◦ − h1) + w(h◦ − h2)] (h1−h2).

Therefore, satisfying b+ µ(r)r ≤ r is equivalent to the quadratic inequality:

2µ1r
2 + (µ0 − 1)r + b ≤ 0. (7)

Condition (8 v) implies that (7) admits solutions, and r∗ is the smallest one. Moreover, since
b, µ1 > 0, we get r∗ > 0, so that b+ µ(r∗)r∗ = r∗ also implies µ(r∗) < 1.

Now, all the assumptions of Theorem 1 are fulfilled. Hence, F has a unique fixed point
h∗ in B(h◦, r∗). To obtain h∗ =

√
f over I, it remains to show that h∗ > 0. This follows

from w > 0 and:

‖1− 2wh∗‖ ≤ ‖1− 2wh◦‖+ ‖2w(h∗ − h◦)‖ ≤ µ0 + 2µ1r
∗ = µ(r∗) < 1. J

I Remark 9. Contrary to the case of division where continuity was not needed at all, it is
here used for w. Therefore, sqrt.newton requires w to be continuous over I.

The Coq code for the corresponding operations on models msqrt_aux and msqrt, together
with the statements of their correctness lemmas, are given in Appendix B.

6 Examples

6.1 Playing with approximations of the absolute value function
Consider the function fε : x 7→

√
ε+ x2 over [−1, 1], with ε > 0. When ε→ 0, fε converges

uniformly to the absolute value function x 7→ |x| (which is not analytic at 0), with:

|f(x)− |x|| =
∣∣∣√ε+ x2 −

√
x2
∣∣∣ =

∣∣∣∣ ε
√
ε+ x2 +

√
x2

∣∣∣∣ ≤ √ε. (8)

Rigorous uniform approximations. Approximating fε with polynomials becomes harder
for small ε, due to the complex singularities ±i

√
ε getting closer to the interval [−1, 1].

Nevertheless, Chebyshev interpolation still works and our implementation computes rigorous
approximations as accurate as desired (see Figure 2b), of exponential convergence with ratio
determined by ε. Note that for too small degree, the computed approximation of the square
root is too far from the solution, and the a posteriori validation returns an infinite remainder.

In order to provide a comparison with CoqApprox’s Taylor models, we used the
tactic interval with (i_depth 1, i_bisect_taylor x N, i_prec p) to build a Taylor model of
degree N with precision p. Timings given in Table 2c reveal a significant advantage of
our implementation (there we use ε = 2 to avoid convergence issues of Taylor models).
Concerning accuracy, our experiments tend to show that when ε ≤ 1, CoqApprox fails to
compute converging Taylor models. Indeed, even with large L, a goal like:
Goal Fail : ∀ x : R, -1 ≤ x ≤ 1 → sqrt (1/100+x*x) ≤ L

is not solved when the degree N becomes too large, probably indicating that the Taylor
models diverge due to complex singularities inside the unit disk. (Note that the interval

tactic can solve this goal, but only by resorting to subdivision techniques.)



16 A certificate-based approach to formally verified approximations

Error bounding. We want to bound |fε(x) − |x|| for x ∈ [−1, 1] without making use of
any symbolic manipulation like (8). At first glance, one can choose to use the rigorous
approximations over [−1, 1] obtained previously, and evaluate fε(x) − x (resp. fε(x) + x)
over [0, 1] (resp. [−1, 0]) using Clenshaw’s algorithm. However, even if the approximations
are quite good, this evaluation strategy gives huge overestimations because [0, 1] and [−1, 0]
are not small intervals. Instead, we compute separately two approximations for fε: one
over [0, 1] and one over [−1, 0], and we evaluate fε(x)− x (resp. fε(x) + x) over [1, 0] (resp.
[−1, 0]) using the Chebyshev range function. This approach yields bounds that are rather
close to the optimal

√
ε (see Figure 2d). However, this does not allow for arbitrary accuracy:

a subdivision procedure would be necessary here.

ϵ = 0.1

ϵ = 0.01

ϵ = 0.001

x

-1.0 -0.5 0.5 1.0
x

0.2

0.4

0.6

0.8

1.0

fϵ

(a) Functions fε and x 7→ |x| over [−1, 1].

ϵ = 0.1

ϵ = 0.01

ϵ = 0.001

20 40 60 80 100
N

10
-13

10
-8

10
-3

rem

+∞

(b) Magnitude of the remainders of degree-N
Chebyshev models approximating fε over [−1, 1].

N
time (in seconds)

Chebyshev CoqApprox
10 0.11 0.10
20 0.16 0.12
30 0.22 0.14
40 0.31 0.20
50 0.42 0.29
60 0.56 0.44
70 0.71 0.64
80 0.89 0.93
90 1.08 1.33
100 1.31 1.84
120 1.80 3.34
140 2.43 5.60
160 2.98 8.89
180 3.86 13.47
200 4.75 19.71

(c) Timings of degree-N models for f2.

ϵ = 0.01

ϵ = 0.001

ϵ = 0.0001

5 10 15 20 25 30
N

0.005

0.010

0.050

0.100

rem - ϵ

ϵ

(d) Overapproximation ratio of the remainder
of the degree-N Chebyshev model for fε − 1
over [0, 1], compared to the optimal bound

√
ε.

Figure 2 Approximating functions fε and x 7→ |x| with Chebyshev models.

6.2 Evaluating an Abelian integral
Abelian integrals naturally appear when computing the number of limit cycles bifurcating
from a Hamiltonian polynomial vector field in the plane. Indeed, the number of sign
alternations of those contour integrals (parameterised by the energy level of the potential
function) gives a lower bound on the number of limit cycles of the perturbed system, which



F. Bréhard, A. Mahboubi, and D. Pous 17

is a hard question related to Hilbert’s 16th problem.
In [24], the author claims to prove the existence of 26 limit cycles for a well-constructed

quartic system, whereas the previous record for degree 4 was 22 [13]. However, the im-
plementation with which the Abelian integrals were “rigorously” computed was erroneous,
which led to apparently more sign alternations than in reality. By tuning the coefficients and
computing the integrals with another rigorous numerics library, the authors of the ongoing
work [9] obtain 24 limit cycles, which, if not 26, is still greater than the current record 22.

To conclude this article, we rigorously evaluate some of these integrals inside Coq to
show how our implementation behaves on non-crafted examples. Below are the formulas
defining a family of integral Iij(r) which need to be computed precisely for several values of
r. Table 1 summarises the results of our computational experiments. In each line, we chose
parameters that were enough to obtain the desired precision. These encouraging results give
us hope that it will be possible to fully verify the critical computations involved in recent
work of the first author [9].

Iij(r) =
∫ x+

x−

xi(y+(x)j−1 − y−(x)j−1)dx+
∫ y+

y−

(x−(y)i−1 + x+(y)i−1)yj y
2 − y0

δx(y) dy.

x0 = 9
10 , x± =

√
x0 ± r/

√
2 , δy(x) =

√
r2 − (x2 − x0)2

, x±(y) =
√
x0 ± δx(y) ,

y0 = 11
10 , y± =

√
y0 ± r/

√
2 , δx(y) =

√
r2 − (y2 − y0)2

, y±(x) =
√
y0 ± δy(x) .

r N p time (s) I00 I20 I22 I40 I04

0.5 13 32 0.38 2,4e-05 2,9e-05 4,1e-05 3,0e-05 4,8e-05
0.78 15 32 0.47 4,6e-05 2,0e-05 2,7e-05 2,4e-05 1,1e-04
0.88 65 128 17.34 2,5e-08 5,0e-11 8,5e-11 5,3e-11 6,3e-08
0.89 95 128 35.13 2,0e-08 1,8e-11 2,9e-11 2,0e-11 5,1e-08
0.895 135 300 173.23 2,6e-08 1,7e-11 1,8e-11 1,3e-11 6,7e-08

Table 1 Reached precision for Iij(r) for different values of r, computed with degree-N Chebyshev
models and floating-point precision p (in each cell we display the width of the computed enclosure).

7 Conclusion and future work

The Coq development is available online [11]. It consists of around 1300 lines of specifications
and 1500 lines of proofs. We leave several directions for future work: integrate it with
CoqInterval to benefit from its automatic subdivision techniques; interface the library with
external tools for the approximation steps; implement other bases; address higher-dimensional
problems. Applying this approach to verify solutions of linear ODEs in a systematic way [2, 8]
is also a longer-term perspective.



18 A certificate-based approach to formally verified approximations

References
1 Henk Barendregt and Erik Barendsen. Autarkic computations in formal proofs. Journal of

Automated Reasoning, 28(3):321–336, Apr 2002.
2 Alexandre Benoit, Mioara Joldeş, and Marc Mezzarobba. Rigorous uniform approximation of

D-finite functions using Chebyshev expansions. Math. Comp., 86(305):1303–1341, 2017. URL:
https://doi.org/10.1090/mcom/3135.

3 Vasile Berinde. Iterative approximation of fixed points, volume 1912 of Lecture Notes in
Mathematics. Springer, Berlin, 2007.

4 Martin Berz and Kyoko Makino. Verified integration of odes and flows using differential
algebraic methods on high-order Taylor models. Reliable Computing, 4(4):361–369, 1998.

5 Sylvie Boldo, François Clément, Florian Faissole, Vincent Martin, and Micaela Mayero. A
Coq formal proof of the Lax–Milgram theorem. In 6th ACM SIGPLAN Conference on
Certified Programs and Proofs, Paris, France, January 2017. URL: https://hal.inria.fr/
hal-01391578, doi:10.1145/3018610.3018625.

6 Sylvie Boldo and Guillaume Melquiond. Verifying Floating-point Algorithms with the Coq
System. Elsevier, 2017.

7 Nicolas Bourbaki. General Topology. Springer, 1995. Original French edition published by
MASSON, Paris, 1971. doi:10.1007/978-3-642-61701-0.

8 Florent Bréhard, Nicolas Brisebarre, and Mioara Joldes. Validated and numerically efficient
Chebyshev spectral methods for linear ordinary differential equations. ACM Transactions on
Mathematical Software, 2018.

9 Florent Bréhard, Nicolas Brisebarre, Mioara Joldes, and Warwick Tucker. A New Lower
Bound on the Hilbert Number for Quartic Systems, 2019. URL: http://www.jncf2019.uvsq.
fr/program/abs-brehard.pdf.

10 Nicolas Brisebarre and Mioara Joldeş. Chebyshev interpolation polynomial-based tools for
rigorous computing. In Proceedings of the 2010 International Symposium on Symbolic and
Algebraic Computation, pages 147–154. ACM, 2010.

11 Florent Bréhard, Assia Mahboubi, and Damien Pous. Web appendix to the present paper.
https://gitlab.inria.fr/amahboub/approx-models.

12 Olga Caprotti and Martijn Oostdijk. Formal and efficient primality proofs by use of computer
algebra oracles. J. Symb. Comput., 32(1/2):55–70, 2001.

13 Colin Christopher. Estimating limit cycle bifurcations from centers. In Differential equations
with symbolic computation, Trends Math., pages 23–35. Birkhäuser, Basel, 2005. doi:10.1007/
3-7643-7429-2_2.

14 Tobin A Driscoll, Nicholas Hale, and Lloyd N Trefethen. Chebfun guide, 2014.
15 L. Fox and I. B. Parker. Chebyshev polynomials in numerical analysis. Oxford University

Press, London-New York-Toronto, Ont., 1968.
16 Benjamin Grégoire and Assia Mahboubi. Proving equalities in a commutative ring done right

in coq. In Joe Hurd and Thomas F. Melham, editors, Theorem Proving in Higher Order Logics,
18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings,
volume 3603 of Lecture Notes in Computer Science, pages 98–113. Springer, 2005. URL:
https://doi.org/10.1007/11541868_7, doi:10.1007/11541868\_7.

17 Benjamin Grégoire and Laurent Théry. A purely functional library for modular arithmetic and
its application to certifying large prime numbers. In Automated Reasoning, Third International
Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume
4130 of Lecture Notes in Computer Science, pages 423–437. Springer, 2006.

18 Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison, Truong Le
Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat Nguyen, Truong Quang
Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, An Hoai Thi
Ta, Trung Nam Tran, Diep Thi Trieu, Josef Urban, Ky Khac Vu, and Roland Zumkeller. A
formal proof of the Kepler conjecture. CoRR, abs/1501.02155, 2015. URL: http://arxiv.
org/abs/1501.02155.

https://doi.org/10.1090/mcom/3135
https://hal.inria.fr/hal-01391578
https://hal.inria.fr/hal-01391578
http://dx.doi.org/10.1145/3018610.3018625
http://dx.doi.org/10.1007/978-3-642-61701-0
http://www.jncf2019.uvsq.fr/program/abs-brehard.pdf
http://www.jncf2019.uvsq.fr/program/abs-brehard.pdf
https://gitlab.inria.fr/amahboub/approx-models
http://dx.doi.org/10.1007/3-7643-7429-2_2
http://dx.doi.org/10.1007/3-7643-7429-2_2
https://doi.org/10.1007/11541868_7
http://dx.doi.org/10.1007/11541868_7
http://arxiv.org/abs/1501.02155
http://arxiv.org/abs/1501.02155


F. Bréhard, A. Mahboubi, and D. Pous 19

19 John Harrison and Laurent Théry. A skeptic’s approach to combining HOL and maple. J.
Autom. Reasoning, 21(3):279–294, 1998.

20 Johannes Hölzl, Fabian Immler, and Brian Huffman. Type classes and filters for mathematical
analysis in isabelle/hol. In Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie,
editors, Interactive Theorem Proving, pages 279–294, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

21 Allan Hungria, Jean-Philippe Lessard, and Jason D. Mireles James. Rigorous numerics for
analytic solutions of differential equations: the radii polynomial approach. Math. Comp.,
85(299):1427–1459, 2016.

22 Fabian Immler. A verified ODE solver and the Lorenz attractor. Journal of automated
reasoning, pages 1–39, 2018.

23 Fredrik Johansson. Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE
Transactions on Computers, 66(8):1281–1292, 2017.

24 Tomas Johnson. A quartic system with twenty-six limit cycles. Exp. Math., 20(3):323–328,
2011. doi:10.1080/10586458.2011.565252.

25 Mioara Joldeş. Rigorous Polynomial Approximations and Applications. PhD thesis, École
normale supérieure de Lyon – Université de Lyon, Lyon, France, 2011. URL: https://tel.
archives-ouvertes.fr/tel-00657843.

26 Edgar W Kaucher and Willard L Miranker. Self-validating numerics for function space
problems: Computation with guarantees for differential and integral equations, volume 9.
Elsevier, 1984.

27 Rudi Klatte, Ulrich Kulisch, Andreas Wiethoff, and Michael Rauch. C-XSC: A C++ class
library for extended scientific computing. Springer Science & Business Media, 2012.

28 Jean-Philippe Lessard and Christian Reinhardt. Rigorous numerics for nonlinear differential
equations using Chebyshev series. SIAM J. Numer. Anal., 52(1):1–22, 2014.

29 Assia Mahboubi, Guillaume Melquiond, and Thomas Sibut-Pinote. Formally verified approxi-
mations of definite integrals. Journal of Automated Reasoning, 62(2):281–300, Feb 2019. URL:
https://doi.org/10.1007/s10817-018-9463-7, doi:10.1007/s10817-018-9463-7.

30 Érik Martin-Dorel and Guillaume Melquiond. Proving tight bounds on univariate expressions
with elementary functions in coq. Journal of Automated Reasoning, 57(3):187–217, Oct 2016.
URL: https://doi.org/10.1007/s10817-015-9350-4, doi:10.1007/s10817-015-9350-4.

31 Guillaume Melquiond. Proving bounds on real-valued functions with computations. In
International Joint Conference on Automated Reasoning, pages 2–17. Springer, 2008.

32 Ramon E. Moore. Interval Analysis. Prentice-Hall, 1966.
33 Nathalie Revol and Fabrice Rouillier. Motivations for an arbitrary precision interval arithmetic

and the mpfi library. Reliable computing, 11(4):275–290, 2005.
34 Siegfried M Rump. Intlab—interval laboratory. In Developments in reliable computing, pages

77–104. Springer, 1999.
35 Lloyd Nicholas Trefethen. Approximation Theory and Approximation Practice. SIAM, 2013.

See http://www.chebfun.org/ATAP/. URL: http://www.chebfun.org/ATAP/.
36 Warwick Tucker. A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math.,

2(1):53–117, 2002. URL: http://www.math.cornell.edu/~warwick/main/rodes/JFoCM.pdf.
37 Warwick Tucker. Validated numerics: a short introduction to rigorous computations. Princeton

University Press, 2011.
38 Jan Bouwe Van Den Berg and Jean-Philippe Lessard. Chaotic braided solutions via rigorous

numerics: Chaos in the Swift–Hohenberg equation. SIAM Journal on Applied Dynamical
Systems, 7(3):988–1031, 2008.

39 Nobito Yamamoto. A numerical verification method for solutions of boundary value problems
with local uniqueness by Banach’s fixed-point theorem. SIAM J. Numer. Anal., 35(5):2004–
2013, 1998.

http://dx.doi.org/10.1080/10586458.2011.565252
https://tel.archives-ouvertes.fr/tel-00657843
https://tel.archives-ouvertes.fr/tel-00657843
https://tel.archives-ouvertes.fr/tel-00657843
https://doi.org/10.1007/s10817-018-9463-7
http://dx.doi.org/10.1007/s10817-018-9463-7
https://doi.org/10.1007/s10817-015-9350-4
http://dx.doi.org/10.1007/s10817-015-9350-4
http://www.chebfun.org/ATAP/
http://www.chebfun.org/ATAP/
http://www.math.cornell.edu/~warwick/main/rodes/JFoCM.pdf


20 A certificate-based approach to formally verified approximations

A Coq code for primitive in Chebyshev basis

Fixpoint prim_ (C: Ops1) (n: nat) (p: seq C): seq C :=
match P,n with

| [],_ => []
| a::q,0 => sadd [0; a] (prim_ 1 q)
| a::q,1 => 0 :: (sadd [0; a/4] (prim_ 2 q))
| a::q,_ => sadd [-a/(2(n-1)); 0; a/(2(n+1))] (0 :: prim_ (n+1) Q)

end.
Definition prim (C: Ops1) (P: seq C) := prim_ 0 P.

The key lemma is the following one:
Lemma eval_prim_ n (p: seq R) x: Derive (eval_ T (n-1) (prim_ n P)) x = eval_ T n P x.

B Coq code for the square root of a model

Let msqrt_aux (F H W: Model) (x: II): Model :=
let Wx := meval W x in
if ~~ (is_lt lo x && is_lt x hi && is_lt 0 Wx) then mbot else
let K1 := 1 - 2*W*H in
let K2 := W*(H*H-F) in
match mag (mrange K1), mag (mrange W), mag (mrange K2) with
| Some mu0, Some mu1, Some b =>

let delta := (1 - mu0)^2 - 8*b*mu1 in
let rmin := (1 - mu0 - sqrt delta)/(4*mu1) in
let mu := mu0 + 2*mu1*rmin in
if is_lt mu0 1 && is_lt 0 delta && is_lt mu’ 1 then
{| pol := pol H; rem := rem H + sym rmin’ |}
else mbot

| _ => mbot
end.

Let msqrt n (F: Model): Model :=
let p: seq FF := mcf F in
let h: seq FF := interpolate n (fun x => sqrt (beval p x)) in
msqrt_aux M (mfc h) (mfc (interpolate n (fun x => 1/(2*beval h x)))) ((lo+hi)/2).

Lemma rmsqrt_aux (F H W: Model) (X: II) (f h w : R → R) (x: R):
mcontains F f → mcontains H h → mcontains W w → contains X x → lo≤x≤hi →
(∀ x, lo≤x≤hi → continuity_pt w x) →
mcontains (msqrt_aux F H W X) (sqrt f).

Lemma rmsqrt n F f: mcontains F f → mcontains (msqrt’ n F) (sqrt f).


	Introduction
	Approximating real numbers and functions
	Reals and Intervals
	Abstract functions
	Rigorous Approximations

	Arithmetic on Chebyshev polynomials
	Clenshaw's evaluation algorithm
	Multiplication
	Range
	Rescaling

	Formalisation of Banach fixed-point theorem
	Newton-like validation operators
	Approximation step: interpolation
	Validation step for division
	Validation step for square root

	Examples
	Playing with approximations of the absolute value function
	Evaluating an Abelian integral

	Conclusion and future work
	Coq code for primitive in Chebyshev basis
	Coq code for the square root of a model

