M. O. Aqel, M. H. Marhaban, M. I. Saripan, and N. B. Ismail, Review of visual odometry: types, approaches, challenges, and applications, vol.5, p.1897, 2016.

R. Bajcsy, Active perception, Proceedings of the IEEE, vol.76, issue.8, pp.966-1005, 1988.

C. Beder and R. Steffen, Determining an initial image pair for fixing the scale of a 3d reconstruction from an image sequence, Joint Pattern Recognition Symposium, pp.657-666, 2006.

A. De-maio and S. Lacroix, Towards a versatile framework to integrate and control perception processes for autonomous robots, 12th national conference on Software & Hardware Architectures for Robots Control & Autonomous CPS, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01552360

L. Ferraz-colomina, X. Binefa, and F. Morenonoguer, Leveraging feature uncertainty in the pnp problem, Proceedings of the BMVC, 2014.

, British Machine Vision Conference, pp.1-13

P. Furgale, P. Carle, J. Enright, and T. D. Barfoot, The devon island rover navigation dataset, The International Journal of Robotics Research, vol.31, issue.6, pp.707-713, 2012.

S. Govindaraj, J. Gancet, M. Post, R. Dominguez, F. Souvannavong et al., Infuse: A comprehensive framework for data fusion in space robotics, 14th Symposium on Advanced Space Technologies in Robotics and Automation, p.8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01536099

W. Hartmann, M. Havlena, and K. Schindler, Predicting matchability, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.9-16, 2014.

M. Maimone, Y. Cheng, and L. Matthies, Two years of visual odometry on the mars exploration rovers, Journal of Field Robotics, vol.24, issue.3, pp.169-186, 2007.

D. Nistér, O. Naroditsky, and J. Bergen, Visual odometry, Computer Vision and Pattern Recognition, vol.1, 2004.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, Orb: An efficient alternative to sift or surf, Computer Vision (ICCV), 2011 IEEE international conference on, pp.2564-2571, 2011.

D. Scaramuzza and F. Fraundorfer, Visual odometry [tutorial, IEEE robotics & automation magazine, vol.18, pp.80-92, 2011.
DOI : 10.1109/mra.2011.943233

O. Sorkine-hornung and M. Rabinovich, Least-squares rigid motion using svd, Computing, vol.1, p.1, 2017.

S. Urban, J. Leitloff, and S. Hinz, , 2016.

, Mlpnp-a real-time maximum likelihood solution to the perspective-n-point problem