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aLAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
bInsight Centre for Data Analytics and Confirm Centre for Smart Manufacturing,

School of Computer Science & IT, University College Cork, Ireland

Abstract

Most studies related to parallel and portfolio search for solving combinatorial

problems, such as those found in Boolean satisfiability or constraint program-

ming, evaluate search cost in terms of runtime. However, given the complex

computing architectures available today and the focus on the environmental

impact of computing, there is growing interest in also considering the energy

cost associated with solving these problems. In the context of combinatorial

problem-solving, a simple approximation of energy cost is the product of the

number of machines multiplied by the runtime spent to solve a problem instance.

However, the picture is much more complex due to the impact that the distribu-

tion of runtimes, even for solving a single specific instance, can have on search

cost. In this paper we present an initial, but comprehensive, study on the im-

pact of runtime distribution on the amount of energy required for combinatorial

problem solving characterized by two common continuous runtime distributions,

namely the Weibull and Pareto distributions. The primary contribution of this

paper is to demonstrate that there is an interesting and non-trivial relationship

between runtime, parallelisation, and energy cost in combinatorial solving that

is worthy of further study.
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1. Introduction

Cloud computing is ubiquitous in solving combinatorial problems, whereby

a number of machines are rented, or shared from a common pool, to solve a

particular instance using parallel or portfolio search. Clearly, the more machines

used, the faster a solution might be found. However, this will increase the cost

of renting the cloud system, as well as the amount of energy used in the process.

The search cost in this context is typically proportional to the energy consumed

where the energy can be approximated by the number of cores (i.e., machines)

used multiplied by the runtime [1, 2]. While many studies in the literature focus

on the time speed-up with parallel and portfolio search, little is known in terms

of energy consumption.

Modern combinatorial solvers are typically randomized and are known to

exhibit a variance in runtime that can be extremely large [3]. Specifically, the

runtime that a randomised algorithm A (Las Vegas type [4]) takes to solve an

instance I can be very different using two different random seeds. Researchers

have used the notion of “runtime distribution” to describe and study this phe-

nomenon [3, 4, 5, 6, 7]. It turns out that the variation in runtime of combina-

torial problems can often be characterised by heavy-tailed distributions [3].

Runtime distributions have a long history in combinatorial search [3, 6, 7, 8].

Previous work focuses on the impact of such distributions on the solution time

and the time speed-up in parallel seach [5, 7]. Moreover, recently, machine

learning techniques were developped for predicting the runtime distributions [1,

2, 8, 9, 10]. In this paper we consider the impact of runtime distributions from

an energy perspective. Our objective is to understand how runtime distribution

affects the energy required to solve combinatorial problems. We consider two

of the most common continuous runtime distributions: Weibull and Pareto.

Both have been shown to usefully characterise runtime distributions [3, 11].

A Weibull distribution is denoted by W (λ, b) where λ ∈ (0,+∞) is the scale

parameter and b ∈ (0,+∞) is the shape parameter. The cumulative distribution

function (CDF) of W (λ, b) is F (x) = 1−e−( xλ )b for all x ∈ [0,+∞). The Weibull
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distribution can model exponential, heavy-tailed, and light-tailed distributions:

if b < 1, the distribution is heavy-tailed; if b > 1, the distribution is light-

tailed; and, if b = 1 the distribution is exponential. A Pareto distribution

P (m,α), where m ∈ (0,+∞) is called the scale parameter and α ∈ (0,+∞) is

called the shape parameter, is defined with a cumulative distribution function

F (x) = 1 − (mx )α where x ≥ m. Figure 1 gives the log-log plot of the survival

function (1- CDF) of different Weibull and Pareto distributions.

Our analysis of time and energy variation shows that while the expected time

of parallel search is a decreasing function in the number of CPU cores, energy

consumption can, theoretically, exhibit a diverse set of behaviours depending

on the runtime distribution of the instance. We prove that Pareto distributions

always have an optimal number of cores that minimises energy consumption

that one can calculate. However, energy cost associated with runtimes char-

acterised by Weibull distributions can either be decreasing (heavy-tailed case),

constant (exponential case), or increasing (light-tailed case). In addition to

energy variation, we compute the exact time speed-up for both types of distri-

bution. In terms of expected time and time speed-up, we show that parallel

Pareto distributions are bounded, whereas Weibull distributions are not.

Figure 1: Survival Function (1-CDF) for Different Weibull (left) and Pareto (right) Distribu-

tions
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2. Expected Time and Energy Consumption

We consider combinatorial search with a Las Vegas algorithm (randomized

algorithm that always produces the correct answer when it stops but its run-

ning time is a random variable [4]). Let I be a decision problem instance and A

be a randomized algorithm to solve I (i.e., to decide I and eventually to find a

solution). Let k ≥ 1 be an integer. We denote by Parallel(A, k, I) the search al-

gorithm that runs algorithm A k independent times to solve I. Parallel(A, k, I)

stops when one of the k runs solves I. Suppose that A follows a (continuous)

probability distribution X when solving I (in terms of runtime). Denote by

f(x) its probability density function (PDF) and by F (x) its cumulative distri-

bution function (CDF). We assume that there exists x0 ∈ [0,+∞) such that

f(x) = F (x) = 0 for all x ≤ x0. We denote by Yk the probability distribution of

the runtime of Parallel(A, k, I). Let gk(x) be the PDF of Yk and let Gk(x) be

the CDF of Yk. Let T (k) be the expected time associated with Parallel(A, k, I).

Inspired by the study of [1] on finite and discrete distributions, we define the

energy consumption of Parallel(A, k, I) to be E(k) = k× T (k). In the remain-

der of this paper, we use the energy E(k) as a function of the number of runs k.

Proposition 1 gives the exact formula for energy consumption in parallel search.

Proposition 1. (Energy as a function of the number of cores/runs k) E(k) =

k2 ×
∫∞
x0
x× (1− F (x))(k−1) × f(x) dx.

Proof. We can adapt the formulae of the expected time from [7] to compute

E(k). Since the parallel runs are independent, then Yk satisfies P [Yk > x] =

P [X > x]k. Hence 1−Gk(x) = P [X > x]k. Therefore Gk(x) = 1− (1−F (x))k.

We can also infer that gk(x) = k × (1− F (x))(k−1) × f(x). Since the expected

value of Yk is
∫∞
x0
x×gk(x) dx, then T (k) = k×

∫∞
x0
x×(1−F (x))(k−1)×f(x) dx.

Hence the result. �

There are two observations that should be taken into account regarding en-

ergy consumption. First, despite the fact that the expected time of Parallel(A, k, I)
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is always decreasing as a function of the number of cores (k), the energy con-

sumption is not necessarily monotonic. A counter-example is given later with

Pareto distributions (see Figure 7). Second, theoretically, since E(k) = k×T (k)

and T (k) is a mean of a distribution, then it might be case that the value of

expected energy is infinite or might not exist. We define the notion of time

speed-up based on [5, 7]. Let k1 be the first integer such that T (k) is finite. If

k1 exists, then we define the time speed-up for every k > k1 to be T (k1)
T (k) .

3. Runtimes Characterised by Weibull Distributions

Recall that the cumulative distribution function of a Weibull distribution

W (λ, b) is F (x) = 1 − e−( xλ )b for all x ∈ [0,+∞), i.e. x0 = 0. The probability

density function of W (λ, b) is given by f(x) = b
λ × (xλ )(b−1) × e−(

x
λ )
b

for all

x ∈ [0,+∞). Let Γ be the Gamma function: Γ(z) =
∫∞
0
uz−1 × e−u du.

Proposition 2 gives the (expected) energy function for W (λ, b).

Proposition 2. The energy function of W (λ, b) is E(k) = k1−
1
b λΓ(1 + 1

b ).

Proof. (Sketch) E(k) = k2 b
λb

∫∞
0
xb × e−

k

λb
xb dx. Let u = k

λb
xb. Thus, du =

bk
λb
xb−1dx, and E(k) = k2 × b

λb

∫∞
0

λb

bk
λ

k
1
b
u

1
b × e−u du = k1−

1
b λΓ(1 + 1

b ). �

Proposition 3 describes the energy behavior of a Weibull distribution.

Proposition 3. The energy function for W (λ, b) is: decreasing if b < 1, i.e.,

heavy-tailed; increasing if b > 1, i.e., light-tailed; and constant otherwise, i.e.,

exponential distribution.

Proof. Obviously if b = 1, the energy E(k) = λ × Γ(1 + 1
b ) for all k ≥ 1. If

b 6= 1, then E′(k) = (1− 1
b )×λ×Γ(1+ 1

b )×k− 1
b . Therefore, E is either decreasing

or increasing. The result is immediate from the fact that E(2) > E(1) when

b > 1 and E(2) < E(1) when b < 1. �

Proposition 4 gives the time speed-up for W (λ, b), proven by construction.

Proposition 4. The time speed-up of W (λ, b) is T (1)
T (k) = k

1
b for all k ≥ 2.
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Figure 2: Time Speed-up for W (λ, b) Figure 3: Time Speed-up for P (m,α)

Proposition 4 clearly shows that the time speed-up function is not bounded

for Weibull distributions. This is not the case for Pareto distributions as we

show in the next section. We give the log-log plot of the time speed-up function

in Figure 2 for a visual interpretation for different Weibull distributions.

Figure 4 gives the log-log plots of expected runtime as a function of the

number of cores for different Weibull distributions, from light-tailed to heavy-

tailed distributions. Figure 5 plots the energy consumption for the same runtime

distributions. Figure 4 shows that the “heavier” the runtime distribution, i.e.,

the smaller the value of the shape parameter b, the more beneficial parallel

search is in terms of solution time. This is particularly true for time speed-

up (Proposition 4). When it comes to energy consumption (Figure 5), we find

three different behaviours. First, when b = 1 (i.e., exponential distribution),

energy consumption is constant, as we showed in Proposition 3. Second, in

the case of heavy-tailed runtime distribution (b < 1), energy consumption is

decreasing. In other words, the heavier the distribution, the better parallelism

helps in reducing overall energy consumption. Last, if the runtime distribution

is light-tailed (b > 1), then parallelism clearly makes energy consumption worse.

In fact, the “lighter”, i.e., the bigger the shape b, the runtime distribution, the

worse energy consumption becomes. This makes intuitive sense since there is

far less variation in runtime, and using additional cores has no benefit in terms

of overall runtime.
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Figure 4: Expected Time for W (λ, b) Figure 5: Energy Function for W (λ, b)

4. Runtimes Characterised by Pareto Distribution

A Pareto distribution P (m,α) is defined with a probability density function

f(x) = αmα

xα+1 and a cumulative distribution function F (x) = 1 − (mx )α where

x ≥ m (see Figure 1).

Proposition 5. The energy function of P (m,α) is E(k) = k2αm
αk−1 when αk > 1

and infinite otherwise.

Proof. (Sketch) E(k) = k2αmαk
∫∞
m
x−αk dx. If αk = 1, then E(k) = +∞.

Suppose that αk 6= 1, then E(k) = k2αmαk 1
−αk+1 [x−αk+1]∞m . If αk < 1 then

E(k) = +∞. When αk > 1, we have E(k) = k2αm
αk−1 . �

Let k1 = min{k ≥ 1 ∈ N | αk > 1}. In the following, T (k) and E(k) are defined

for k ≥ k1, otherwise they are infinite.

Proposition 6. The energy function of P (m,α) has a unique minimum: at

k = 2
α if 2

α > k1; and at k1 otherwise.

Proof. (Sketch) If αk − 1 > 0, then E′(k) = αmk∗(αk−2)
(αk−1)2 . We have E′(k) = 0

iff k = 2
α . Moreover ∀k < 2

α , E
′(k) < 0 and ∀k > 2

α , E
′(k) > 0. Therefore, if

2
α ≥ k1, E(k) has a unique minimum at k = 2

α . Otherwise, the minimum is at

k1, i.e., the energy is increasing. �

Proposition 7 gives the time speed-up. The proof is by construction.
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Figure 6: Expected Time for P (m,α) Figure 7: Energy Function for P (m,α)

Proposition 7. The time speed-up function of a parallel Pareto distribution

P (m,α) is T (k1)
T (k) = k1×(αk−1)

k(αk1−1) for all k > k1.

From Proposition 7 one can deduce that the time speed-up cannot exceed

αk1
(αk1−1) . Observe also that the expected time is also bounded: T (k) > m. We

give the log-log plot of the time speed-up function in Figure 3 for different Pareto

distributions.

We plot the expected time in Figure 6 for different Pareto distributions. The

corresponding energy consumption is plotted in Figure 7. These figures confirm

exactly the observations that we made about the upper bound of the expected

time and the existence of the minimum point of energy consumption.

5. Conclusion & Discussion

We have studied energy variation in parallel search algorithms via two of

the most common continuous runtime distributions: Weibull and Pareto. Our

theoretical study showed that while the expected runtime of parallel search is

a decreasing function of the number of cores, energy consumption has diverse

behaviour depending on the runtime distribution of the problem at hand. On the

one hand, we showed that Pareto distributions always have an optimal number

of cores for energy consumption that one can calculate. On the other hand,
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we proved that the energy function with Weibull distributions can either be

decreasing (heavy-tailed), constant (exponential), or increasing (light-tailed).

Our study provides a basis for understanding the relationship between time

and energy consumption in parallel search. Our results can be used in parallel

solving to estimate the energy consumption. Indeed, by predicting the runtime

distribution [8], one can use the energy formulas we proposed to predict its

variation and its relationship with the solution time.

It would be interesting in the future to consider recent advances in parallel

and portfolio solving from an energy perspective. Indeed, modern approaches

often use diverse sets of algorithms that might share information. Furthermore,

often when restarting search, the search algorithm might use information col-

lected during previous executions. We expect it to be challenging to formally

incorporate how such information can impact the energy consumption of search.
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