A. Nicollet, L. Salvagnac, V. Baijot, A. Estève, and C. Rossi, Fast circuit breaker based on integration of Al/CuO nanothermites, Sensor Actuat a-Phys, vol.273, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01743964

L. Glavier, A. Nicollet, F. Jouot, B. Martin, J. Barberon et al., Nanothermite/RDXBased Miniature Device for Impact Ignition of High Explosives, Propell Explos Pyrot, vol.42, pp.307-316, 2017.

G. Taton, D. Lagrange, V. Conedera, L. Renaud, and C. Rossi, Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane, J Micromech Microeng, vol.23, 2013.

L. Glavier, G. Taton, J. M. Ducere, V. Baijot, S. Pinon et al., Nanoenergetics as pressure generator for nontoxic impact primers: Comparison of Al/Bi2O3, Al/CuO, Al/MoO3 nanothermites and Al/PTFE, Combust Flame, vol.162, pp.1813-1820, 2015.

A. H. Kinsey, K. Slusarski, S. Sosa, and T. P. Weihs, Gas Suppression via Copper Interlayers in Magnetron Sputtered Al-Cu2O Multilayers, Acs Appl Mater Inter, vol.9, pp.22026-22036, 2017.

J. L. Yi, Y. P. Zhang, X. X. Wang, C. L. Dong, and H. C. Hu, Characterization of Al/Ti Nano Multilayer as a Jointing Material at the Interface between Cu and Al2O3, vol.57, pp.1494-1497, 2016.

A. Duckham, Applying localized heat for brazing and soldering, Weld J, vol.85, pp.44-46, 2006.

X. Zhou, R. Q. Shen, Y. H. Ye, P. Zhu, Y. Hu et al., Influence of Al/CuO reactive multilayer films additives on exploding foil initiator, J Appl Phys, vol.110, 2011.

P. Zhu, R. Q. Shen, Y. H. Ye, S. Fu, and D. L. Li, Characterization of Al/CuO nanoenergetic multilayer films integrated with semiconductor bridge for initiator applications, J Appl Phys, vol.113, 2013.

P. Zhu, R. Q. Shen, Y. H. Ye, X. Zhou, Y. Hu et al., Energetic Igniters Based on Al/CuO/B/Ti Reactive Multilayer Films, Proceedings of the 2011 International Autumn Seminar on Propellants, Explosives and Pyrotechnics, pp.756-760, 2011.

A. Nicollet, G. Lahiner, A. Belisario, S. Souleille, M. Djafari-rouhani et al., Investigation of Al/CuO multilayered thermite ignition, J Appl Phys, vol.121, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01480996

M. Bahrami, G. Taton, V. Conedera, L. Salvagnac, C. Tenailleau et al., Magnetron Sputtered Al-CuO Nanolaminates: Effect of Stoichiometry and Layers Thickness on Energy Release and Burning Rate, vol.39, pp.365-373, 2014.

I. Abdallah, J. Zapata, G. Lahiner, B. Warot-fonrose, J. Cure et al., Structure and Chemical Characterization at the Atomic Level of Reactions in Al/CuO Multilayers, ACS Applied Energy Materials, vol.1, pp.17-62, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01759153

G. C. Egan, E. J. Mily, J. P. Maria, and M. R. Zachariah, Probing the Reaction Dynamics of Thermite Nanolaminates, J Phys Chem C, vol.119, pp.20401-20408, 2015.

K. J. Blobaum, A. J. Wagner, J. M. Plitzko, D. Van-heerden, D. H. Fairbrother et al., Investigating the reaction path and growth kinetics in CuOx/Al multilayer foils, J Appl Phys, vol.94, pp.2923-2929, 2003.

E. J. Mily, A. Oni, J. M. Lebeau, Y. Liu, H. J. Brown-shaklee et al., The role of terminal oxide structure and properties in nanothermite reactions, Thin Solid Films, vol.562, pp.405-410, 2014.

G. Lahiner, A. Nicollet, J. Zapata, L. Marín, N. Richard et al., A diffusion-reaction scheme for modeling ignition and self-propagating reactions in Al/CuO multilayered thin films, J Appl Phys, vol.122, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01620567

M. Petrantoni, C. Rossi, L. Salvagnac, V. Conedera, A. Esteve et al., Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro, J Appl Phys, vol.108, 2010.

J. B. Delisio, F. Yi, D. A. Lavan, and M. R. Zachariah, High Heating Rate Reaction Dynamics of Al/CuO Nanolaminates by Nanocalorimetry-Coupled Time-of-Flight Mass Spectrometry, J Phys Chem C, vol.121, pp.2771-2777, 2017.

C. Rossi, Engineering of Al/CuO reactive multilayer thin films for tunable initiation and actuation, Propellants, Explosives, Pyrotechnics, vol.44, pp.94-108, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01847132

K. T. Sullivan, O. Cervantes, J. M. Densmore, J. D. Kuntz, A. E. Gash et al., Quantifying Dynamic Processes in Reactive Materials: An Extended Burn Tube Test, vol.40, pp.394-401, 2015.

T. Bazyn, N. Glumac, H. Krier, T. S. Ward, M. Schoenitz et al., Reflected shock ignition and combustion of aluminum and nanocomposite thermite powders, Combust Sci Technol, vol.179, pp.457-476, 2007.

H. Y. Feng, L. Zhang, S. G. Zhu, R. Wu, Y. Li et al., Research on the Temperature and Its Duration of Semiconductor-Bridge Plasma, vol.37, pp.1830-1835, 2009.

D. Ng and G. Fralick, Use of a multiwavelength pyrometer in several elevated temperature aerospace applications, Rev Sci Instrum, vol.72, pp.1522-1530, 2001.

P. Lynch, H. Krier, and N. Glumac, Emissivity of Aluminum-Oxide Particle Clouds: Application to Pyrometry of Explosive Fireballs, J Thermophys Heat Tr, vol.24, pp.301-308, 2010.

J. J. Granier and M. L. Pantoya, Laser ignition of nanocomposite thermites, Combust Flame, vol.138, pp.373-383, 2004.

S. Goroshin, J. Mamen, A. Higgins, T. Bazyn, N. Glumac et al., Emission spectroscopy of flame fronts in aluminum suspensions, P Combust Inst, vol.31, pp.2011-2019, 2007.

D. Linne, Handbook of Chemistry and Physics, 2007.

M. Chase and N. Tables, , 1998.

P. Lynch, H. Krier, and N. Glumac, Micro-alumina particle volatilization temperature measurements in a heterogeneous shock tube, Combust Flame, vol.159, pp.793-801, 2012.

E. L. Dreizin, Experimental study of stages in aluminum particle combustion in air, Combust Flame, vol.105, pp.541-556, 1996.