J. Schlimmer, J. Granger, and R. , Incremental learning from noisy data, Machine Learning, vol.1, issue.3, pp.317-354, 1986.

S. Rajakarunakaran, P. Venkumar, D. Devaraj, and K. S. Rao, Artificial neural network approach for fault detection in rotary system, Applied 765 Soft Computing, vol.8, issue.1, pp.740-748, 2008.

V. Rajesh and V. N. Namboothiri, Flank wear detection of cutting tool inserts in turning operation: application of nonlinear time series analysis, Soft Computing, vol.14, issue.9, pp.913-919, 2010.

B. Kilundu, P. Dehombreux, and X. Chiementin, Tool wear monitoring by machine learning techniques and singular spectrum analysis, Mechanical Systems and Signal Processing, vol.25, issue.1, pp.400-415, 2011.

C. Verde and J. Rojas, Iterative scheme for sequential leaks location, IFAC-PapersOnLine: Proceedings of the 9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, vol.48, pp.726-731, 2015.

N. A. Barbosa, L. Travé-massuyès, and V. H. Grisales, Trend-based dynamic classification for on-line diagnosis of time-varying dynamic systems, IFAC-PapersOnLine: Proceedings of the 9th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, vol.48, pp.1224-1231, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01205313

J. Gama, I. ?liobait?, A. Bifet, M. Pechenizkiy, and A. Bouchachia, A survey on concept drift adaptation, ACM Computing Surveys (CSUR), vol.46, issue.4, p.44, 2014.

J. Gao, W. Fan, and J. Han, On appropriate assumptions to mine data streams: Analysis and practice, in: Data Mining, Seventh IEEE International Conference on, pp.143-152, 2007.

B. Zadrozny, Learning and evaluating classifiers under sample selection bias, Proceedings of the twenty-first international conference on 780 Machine learning, p.114, 2004.

D. Cieslak and N. V. Chawla, Detecting fractures in classifier performance, Seventh IEEE International Conference on, pp.123-132, 2007.

A. Joentgen, L. Mikenina, R. Weber, and H. Zimmermann, Dynamic fuzzy data analysis based on similarity between functions, Fuzzy Sets and Systems, vol.105, issue.1, pp.81-90, 1999.

V. Venkatasubramanian, R. Rengaswamy, S. Kavuri, and K. Yin, A review of process fault detection and diagnosis. Part III: Process history based methods, Computers & Chemical Engineering, vol.27, issue.3, pp.327-346, 2003.

R. Sebastiao and J. Gama, A study on change detection methods, Progress in Artificial Intelligence, 14th Portuguese Conference on Artificial Intelligence, pp.12-15, 2009.

L. Angstenberger, Dynamic fuzzy pattern recognition with applications to finance and engineering

. Technische-hochschule-aachen, , 2001.

J. A. Guajardo, R. Weber, and J. Miranda, A model updating strategy for predicting time series with seasonal patterns, Applied Soft Computing, vol.10, issue.1, pp.276-283, 2010.

M. Markou and S. Singh, Novelty detection: a review-part 1: statistical approaches and part 2: neural network based approaches, Signal processing, vol.83, issue.12, pp.2481-2497, 2003.

P. Angelov and X. Zhou, Evolving fuzzy-rule-based classifiers from data streams, Fuzzy Systems, IEEE Transactions on, vol.16, issue.6, pp.1462-1475, 2008.

N. A. Barbosa, L. Travé-massuyès, and V. H. Grisales, A novel algorithm for dynamic clustering: Properties and performance, Machine Learning and Applications (ICMLA), pp.565-570, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02004417

K. Li, F. Yao, and R. Liu, An online clustering algorithm, Fuzzy Systems and Knowledge Discovery (FSKD), vol.2, pp.1104-1108, 2011.

Y. V. Bodyanskiy, O. K. Tyshchenko, and D. S. Kopaliani, An evolving connectionist system for data stream fuzzy clustering and its online learning, Neurocomputing, vol.262, pp.41-56, 2017.

P. Angelov, Fuzzily connected multimodel systems evolving autonomously from data streams, Systems, Man, and Cybernetics, Part B: Cybernetics, vol.41, pp.898-910, 2011.

M. Pratama, S. G. Anavatti, M. Joo, and E. D. Lughofer, pclass: an effective classifier for streaming examples, IEEE Transactions on Fuzzy Systems, vol.23, issue.2, pp.369-386, 2015.

T. Kempowsky, A. Subias, and J. Aguilar-martín, Process situation assessment: From a fuzzy partition to a finite state machine, Engineering Applications of Artificial Intelligence, vol.19, issue.5, pp.461-477, 2006.

A. Bouchachia, Fuzzy classification in dynamic environments, Soft Computing, vol.15, issue.5, pp.1009-1022, 2011.

Y. V. Bodyanskiy, O. K. Tyshchenko, and D. S. Kopaliani, Adaptive learning of an evolving cascade neo-fuzzy system in data stream mining tasks, Evolving Systems, vol.7, issue.2, pp.107-116, 2016.

A. Bouchachia and C. Vanaret, Incremental learning based on growing gaussian mixture models, Machine Learning and Applications and Workshops (ICMLA), vol.2, pp.47-52, 2011.

C. Hu, Y. Chen, L. Hu, and X. Peng, A novel random forests based class incremental learning method for activity recognition, Pattern Recognition, vol.815, pp.277-290, 2018.

S. R. Young, A. Davis, A. Mishtal, and I. , Hierarchical spatiotemporal feature extraction using recurrent online clustering, Pattern Recognition Letters, vol.37, pp.115-123, 2014.

L. Ulanova, N. Begum, M. Shokoohi-yekta, and E. Keogh, Clustering in the face of fast changing streams, Proceedings of the 2016 SIAM International Conference on Data Mining, pp.1-9, 2016.

A. Rodriguez and A. Laio, Clustering by fast search and find of density peaks, Science, vol.344, issue.6191, pp.1492-1496, 2014.

B. Fischer, T. Zller, and J. Buhmann, Path based pairwise data clustering with application to texture segmentation, Energy Minimization Methods in Computer Vision and Pattern Recognition, vol.2134, pp.235-250, 2001.

H. Chang and D. Yeung, Robust path-based spectral clustering, Pattern Recognition, vol.41, issue.1, pp.191-203, 2008.

U. and V. Luxburg, A tutorial on spectral clustering, Statistics and computing, vol.17, issue.4, pp.395-416, 2007.

P. Mitra, S. K. Pal, and M. A. Siddiqi, Non-convex clustering using expectation maximization algorithm with rough set initialization, Pattern Recognition Letters, vol.24, issue.6, pp.198-206, 2003.

A. Gionis, H. Mannila, and P. Tsaparas, Clustering aggregation, ACM Trans. Knowl. Discov. Data, vol.1, issue.1

R. Hyde, P. Angelov, and A. Mackenzie, Fully online clustering of evolving data streams into arbitrarily shaped clusters, Information Sciences, vol.830, pp.96-114, 2017.

C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, A framework for clustering evolving data streams, Proceedings of the 29th international conference on Very large data bases, vol.29, pp.81-92, 2003.

P. Kranen, I. Assent, C. Baldauf, and T. Seidl, The ClusTree: indexing micro-clusters for any stream mining, Knowledge and information systems, vol.29, issue.2, pp.249-272, 2011.

F. Cao, M. Ester, W. Qian, and A. Zhou, Density-based clustering over an evolving data stream with noise, SIAM International Conference on Data Mining, pp.328-339, 2006.

G. A. Carpenter and S. Grossberg, Encyclopedia of machine learning, Encyclopedia of Machine Learning, pp.22-35, 2010.

Y. Chen and L. Tu, Density-based clustering for real-time stream data, Proceedings of the 13th ACM SIGKDD International Conference on, p.840

, Knowledge Discovery and data mining, pp.133-142, 2007.

C. C. Aggarwal, A. Hinneburg, and D. A. Keim, On the surprising behavior of distance metrics in high dimensional space, Database Theory -ICDT 2001, vol.1973, pp.420-434, 2001.

Y. Rubner, J. Puzicha, C. Tomasi, and J. M. Buhmann, Empirical evaluation of dissimilarity measures for color and texture, Computer Vision and 845, Image Understanding, vol.84, issue.1, pp.25-43, 2001.

T. Zhang, R. Ramakrishnan, and M. Livny, Birch: A new data clustering algorithm and its applications, Data Mining and Knowledge Discovery, vol.1, issue.2, pp.141-182, 1997.

G. Gutin, A. Yeo, and A. Zverovich, Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the tsp, Discrete Applied Mathematics, vol.117, issue.1-3, pp.81-86, 2002.

K. M. Kumar and A. R. Reddy, A fast dbscan clustering algorithm by accelerating neighbor searching using groups method, Pattern Recognition, vol.58, pp.39-48, 2016.

Y. Fang, M. Friedman, G. Nair, M. Rys, and A. Schmid, Spatial indexing in microsoft sql server, Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD '08, pp.1207-1216, 2008.

N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, The r*-tree: An efficient and robust access method for points and rectangles, Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, SIGMOD '90, pp.322-331, 1990.

S. M. Omohundro, Five balltree construction algorithms, 1989.

J. L. Bentley, Multidimensional binary search trees used for associative searching, Communications of the ACM, vol.18, issue.9, pp.509-517, 1975.

N. Barbosa-roa, Comparison of spatial indexes, LAAS-CNRS, p.13, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01701560

M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, pp.226-231, 1996.

Z. Chen, Z. Fan, and M. Sun, A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data, European Journal of Operational Research, vol.223, issue.2, pp.461-472, 2012.

C. U. Pyon, J. Y. Woo, and S. C. Park, Service improvement by business process management using customer complaints in financial service industry, Expert Systems with Applications, vol.38, issue.4, pp.3267-3279, 2011.

J. Mazel, P. Casas, Y. Labit, and P. Owezarski, Sub-space clustering, inter-clustering results association & anomaly correlation for unsupervised network anomaly detection, Proceedings of the 7th International Conference on Network and Services Management, International 870 Federation for Information Processing, pp.73-80, 2011.

I. Koychev, Gradual forgetting for adaptation to concept drift, Proceedings of ECAI 2000 Workshop on Current Issues in Spatio-Temporal Reasoning, ECAI, pp.101-106, 2000.

D. Hawkins and M. Douglas, Identification of outliers, vol.11, 1980.

A. Zimek, E. Schubert, and H. Kriegel, A survey on unsupervised outlier detection in high-dimensional numerical data, Statistical Analysis 875 and Data Mining, vol.5, issue.5, pp.363-387, 2012.

E. M. Knorr, R. T. Ng, and V. Tucakov, Distance-based outliers: algorithms and applications, The VLDB Journal?, The International Journal on Very Large Data Bases, vol.8, issue.3-4, pp.237-253, 2000.

M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander, Lof: Identifying density-based local outliers, SIGMOD Rec, vol.29, issue.2, pp.93-104, 2000.

H. Kriegel, M. Hubert, and A. Zimek, Angle-based outlier detection in high-dimensional data, Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '08, pp.444-452, 2008.

M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan, Time bounds for selection, J. Comput. Syst. Sci, vol.7, issue.4, pp.448-461, 1973.

I. Wald and V. Havran, On building fast kd-trees for ray tracing, and on doing that in o (n log n), in: Interactive Ray Tracing, pp.61-69, 2006.

T. H. Cormen, Introduction to algorithms, 2009.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

A. Fahim, A. E. Salem, F. Torkey, M. Ramadan, and G. Saake, Scalable varied density clustering algorithm for large datasets, Journal of Software Engineering and Applications, vol.3, issue.06, p.593, 2010.

A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, MOA: massive online analysis, Journal of Machine Learning Research, vol.11, pp.1601-1604, 2010.

H. Zanghi, C. Ambroise, and V. Miele, Fast online graph clustering via erd?s-rényi mixture, Pattern recognition, vol.41, issue.12, pp.3592-3599, 2008.

C. J. Veenman, M. J. Reinders, and E. Backer, A maximum variance cluster algorithm, Pattern Analysis and Machine Intelligence, IEEE Trans-895 actions on, vol.24, issue.9, pp.1273-1280, 2002.

G. Karypis, E. Han, and V. Kumar, Chameleon: Hierarchical clustering using dynamic modeling, Computer, vol.32, issue.8, pp.68-75, 1999.

G. Karypis, E. Han, and V. Kumar, Chameleon: A hierarchical clustering algorithm using dynamic modeling, EECS Bldg, vol.55455, pp.4-192, 1999.

B. Borah and D. K. Bhattacharyya, A clustering technique using density difference, 2007 International Conference on Signal Processing, pp.585-588, 2007.

V. A. Tran, O. Hirose, T. Saethang, L. A. Nguyen, X. T. Dang et al., D-impact: A data preprocessing algorithm to improve the performance of clustering, Journal of Software Engineering and Applications, 2014.

V. V. Thang, D. V. Pantiukhin, and A. I. Galushkin, A hybrid clustering algorithm: The fastdbscan, 2015 International Conference on Engi-905 neering and Telecommunication (EnT), pp.69-74, 2015.

T. Kempowsky, A. Subias, and J. Aguilar-martin, Process situation assessment: From a fuzzy partition to a finite state machine, Engineering Applications of Artificial Intelligence, vol.19, issue.5, pp.461-477, 2006.

N. A. Barbosa, L. Travé-massuyès, and V. H. Grisales, Diagnosability improvement of dynamic clustering through automatic learning of discrete event models, IFAC-PapersOnLine: Proceedings of the 20th IFAC World Congress, vol.50, pp.1037-1042, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02004430

, Nathalie Barbosa Roa holds a position as Data Scientist and Engineer at Continental. She received the Electronic Engineering degree from Universidad Distrital Francisco José de Caldas in 2008, and the M.Sc. degree in Industrial Automation from the Universidad Nacional de Colombia in 2011. She receives her Ph.D. in Automation of Université Paul Sabatier, 2016.

, She received her Ph.D. in control from INSA in 1984, then an HDR from the University of Toulouse in 1998, France. Her research interests are in dynamic systems diagnosis and supervision with special focus on set-membership methods, hybrid systems, structural/qualitative/event based models and machine learning. Victor Hugo Grisales Palacio Professor in automatics at Universidad Nacional de Colombia, Dpt of Mechanical and Mechatronics Engineering. He received his Ph.D. in Automatic Control in 2007 from Université Paul Sabatier, Louise Travé-Massuyès holds a position of Research Director at CNRS, France, working as part of the Diagnosis and Supervisory Control (DISCO) research team of the LAAS-CNRS laboratory in