T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, DC Microgrids-Part II: A Review of Power Architectures, Applications, and Standardization Issues, IEEE Transactions on Power Electronics, vol.31, pp.3528-3549, 2016.

M. Sechilariu, B. Wang, and F. Locment, Building-integrated microgrid: Advanced local energy management for forthcoming smart power grid communication, Energy and Buildings, vol.59, pp.236-243, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01955031

F. Mattera, D. Benchetrite, D. Desmettre, J. Martin, and E. Potteau, Irreversible sulphation in photovoltaic batteries, Journal of Power Sources, vol.116, pp.248-256, 2003.

J. Büngeler, E. Cattaneo, B. Riegel, and D. U. Sauer, Advantages in energy efficiency of flooded lead-acid batteries when using partial state of charge operation, Journal of Power Sources, vol.375, pp.53-58, 2018.

M. Cugnet and B. Y. Liaw, Effect of discharge rate on charging a lead-acid battery simulated by mathematical model, Journal of Power Sources, vol.196, pp.3414-3419, 2011.

&. Laas-cnrs and . Adream,

M. Cheikh, B. Jarboui, T. Loukil, and P. Siarry, A Method for Selecting Pareto Optimal Solutions in Multiobjective Optimization, Journal of Informatics and mathematical sciences, vol.2, issue.1, pp.51-62, 2010.

T. Terlouw, T. Alskaif, C. Bauer, and W. Van-sark, Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies, Applied Energy, vol.239, pp.356-372, 2019.

O. Palizban and K. Kauhaniemi, Energy storage systems in modern grids-Matrix of technologies and applications, Journal of Energy Storage, vol.6, pp.248-259, 2016.

A. Gallo, J. Simões-moreira, H. Costa, M. Santos, E. Moutinho et al., Energy storage in the energy transition context: A technology review, Renewable and Sustainable Energy Reviews, vol.65, pp.800-822, 2016.

G. J. May, A. Davidson, and B. Monahov, Lead batteries for utility energy storage: A review, Journal of Energy Storage, vol.15, pp.145-157, 2018.

D. J. Spiers and A. D. Rasinkoski, Predicting the service lifetime of lead acid bat in photovoltaic systems, Journal of Power Sources, vol.53, pp.245-253, 1995.

V. Svoboda, H. Wenzl, R. Kaiser, A. Jossen, I. Baring-gould et al., Operating conditions of batteries in off-grid renewable energy systems, Solar Energy, vol.81, pp.1409-1425, 2007.

P. Ruetschi, Aging mechanisms and service life of lead-acid batteries, Journal of Power Sources, vol.127, pp.33-44, 2004.

A. Jossen, J. Garche, and D. U. Sauer, Operation conditions of batteries in PV applications, Solar Energy, vol.76, issue.6, pp.759-769, 2004.

E. Ebner, M. Gelbke, E. Zena, M. Wieger, and A. Börger, Temperature-dependent formation of vertical concentration gradients in lead-acidbatteries under pSoC operation -Part 2: Sulfate analysis, Electrochimica Acta, vol.262, pp.144-152, 2018.

E. Ebner, A. Börger, M. Gelbke, E. Zena, and M. Wieger, Temperature-dependent formation of vertical concentration gradients in lead-acid batteries under PSoC operation -Part 1: Acid stratification, Electrochimica Acta, vol.90, pp.219-225, 2013.

G. Lodi, J. Mcdowall, and S. Rosellini, VRLA battery aging characteristics, Proceedings of Intelec'96 -International Telecommunications Energy Conference, pp.52-58, 1996.

J. Dulout, C. Alonso, L. Séguier, and B. Jammes, Development of a photovoltaic low voltage DC microgrid for buildings with energy storage systems, ELECTRIMACS 2017, vol.2017, p.6, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01526247