, Stakeholder Forum -Fuel Cell and Hydrogen Technology: Europe's Journey to a Greener World, Publications Office of the European Union, 2017.

S. Dutta, A review on production, storage of hydrogen and its utilization as an energy resource, J. Ind. Eng. Chem, vol.20, issue.4, pp.1148-1156, 2014.

, ADEME, the Role of Hydrogen in the Energy Transition, pp.1-15, 2018.

B. A. Pinaud, J. D. Benck, L. C. Seitz, A. J. Forman, Z. Chen et al., Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry, Energy Environ. Sci, vol.6, issue.7, pp.1983-2002, 2013.

F. F. Abdi, L. Han, A. H. Smets, M. Zeman, B. Dam et al., Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode, Nat. Commun, vol.4, p.2195, 2013.

J. Luo, D. A. Vermaas, D. Bi, A. Hagfeldt, W. A. Smith et al., Bipolar membrane-assisted solar water splitting in optimal pH, Adv. Energy Mater, vol.6, issue.13, p.1600100, 2016.

J. W. Ager, M. Shaner, K. Walczak, I. D. Sharp, and S. Ardo, Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting, Energy Environ. Sci, vol.8, issue.10, pp.2811-2824, 2015.

M. S. Prevot, N. Guijarro, and K. Sivula, Enhancing the Performance of a Robust Sol-Gel-Processed p-Type Delafossite CuFeO2 Photocathode for Solar Water Reduction, ChemSusChem, vol.8, issue.8, pp.1359-1367, 2015.

A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, vol.238, issue.5358, pp.37-45, 1972.

T. Hisatomi, J. Kubota, and K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev, vol.43, issue.17, pp.7520-7535, 2014.

Z. Wang, C. Li, and K. Domen, Recent developments in heterogeneous photocatalysts for solar-driven overall water-splitting, Chem. Soc. Rev, vol.48, issue.7, pp.2109-2125, 2018.

K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito et al., Photocatalyst releasing hydrogen from water, Nature, vol.440, issue.7082, p.295, 2006.

A. A. Melvin, K. Illath, T. Das, T. Raja, S. Bhattacharyya et al., M-Au/TiO2 (M = Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: role of interfaces, vol.7, pp.13477-13488, 2015.

X. Wang, S. Jin, H. An, X. Wang, Z. Feng et al., Relation between the photocatalytic and photoelectrocatalytic performance for the particulate semiconductor-based photoconversion systems with surface phase junction structure, J. Phys. Chem. C, vol.119, issue.39, pp.22460-22464, 2015.

Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama et al., A Particulate Photocatalyst Water-Splitting panel for Large-Scale Solar Hydrogen Generation, Joule, vol.2, issue.3, pp.509-520, 2018.

A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev, vol.38, issue.1, pp.253-278, 2009.

F. E. Osterloh, Inorganic Materials as Catalysts for Photochemical Splitting of Water, Chem. Mater, vol.20, issue.1, pp.35-54, 2008.

X. B. Chen, S. H. Shen, L. J. Guo, and S. S. Mao, Semiconductor-based Photocatalytic Hydrogen Generation, Chem Rev, vol.110, issue.11, pp.6503-6570, 2010.

Y. Tian and T. Tatsuma, Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles, J Am Chem Soc, vol.127, issue.20, pp.7632-7637, 2005.

A. Takai, P. V. Kamat, . Capture, and D. Store, Shuttling Photogenerated Electrons across TiO2-Silver Interface, Acs Nano, vol.5, issue.9, pp.7369-7376, 2011.

S. U. Khan, M. Al-shahry, and W. B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO2 2, Science, vol.297, issue.5590, pp.2243-2245, 2002.

J. B. Varley, A. Janotti, and C. G. Van-de-walle, Mechanism of Visible-Light Photocatalysis in NitrogenDoped TiO2, Adv Mater, vol.23, issue.20, p.2343, 2011.

H. C. Rojas, S. Bellani, E. A. Sarduy, F. Fumagalli, M. T. Mayer et al., All Solution-Processed, Hybrid Organic-Inorganic Photocathode for Hydrogen Evolution, ACS Omega, vol.2, issue.7, pp.3424-3431, 2017.

E. Reisner, D. J. Powell, C. Cavazza, J. C. Fontecilla-camps, and F. A. Armstrong, Visible Light-Driven H2 Production by Hydrogenases Atteched to Dye-Sensitized TiO2 Nanoparticles, J. Am. Chem. Soc, vol.131, issue.51, pp.18457-18466, 2009.

M. Watanabe, S. Sun, T. Ishihara, T. Kamimura, M. Nishimura et al., Visible Light-Driven DyeSensitized Photocatalytic Hydrogen Production by Porphyrin and its Cyclic Dimer and Trimer: Effect of Multi-Pyridyl-Anchoring groups on Photocatalytic Activity and Stability, ACS Appl. Energy Mater, 2018.

X. Zhang, Y. Sun, X. Cui, and Z. Jiang, A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution, Int. J. Hydrogen Energy, vol.37, issue.1, pp.811-815, 2012.

Q. Huang, S. Tian, D. Zeng, X. Wang, W. Song et al., enhanced Photocatalytic Activity of Chemically Bonded TiO2/Graphene Composites Based on the Effective Interfacial Charge Transfer through the C-Ti Bond, ACS Catal, vol.3, issue.7, pp.1477-1485, 2013.

L. K. Putri, L. L. Tan, W. J. Ong, W. S. Chang, and S. P. Chai, Graphene oxide: Exploiting its unique properties toward visible-light-driven photocatalysis, Appl Mater Today, vol.4, pp.9-16, 2016.

S. Min and G. Lu, Dye-cosensitized graphene/Pt photocatalyst for high efficient visible light hydrogen evolution, Int. J. Hydrogen Energ, vol.37, issue.14, pp.10564-10574, 2012.

E. Z. Liu, L. M. Kang, Y. H. Yang, T. Sun, X. Y. Hu et al., Plasmonic Ag deposited TiO2 nano-sheet film for enhanced photocatalytic hydrogen production by water splitting, Nanotechnol, vol.25, issue.16, p.165401, 2014.

Y. C. Yin, E. Z. Liu, H. Li, J. Wan, J. Fan et al.,

. Au, TiO2 nanotube arrays with enhanced photoelectrocatalytic activities, Ceram. Int, vol.42, issue.8, pp.9387-9395, 2016.

Y. Liu, S. Yang, S. Zhang, H. Wang, H. Yu et al., Design of cocatalyst loading position for photocatalytic water splitting into hydrogen in electrolyte solutions, Int. J. Hydrogen Energy, vol.43, issue.11, pp.5551-5560, 2018.

S. Bai, L. Yang, C. Wang, Y. Lin, J. Lu et al., Boosting Photocatalytic water Splitting: Interfacial Charge Polarization in Atomically Controlled Core-Shell Cocatalysts, Angew. Chem. Int. Ed, vol.54, pp.14810-14814, 2015.

J. Liu, G. Liu, M. Li, W. Shen, Z. Liu et al., Enhancement of photochemical hydrogen evolution over Pt-loaded hierarchical titania photonic crystal, Energy Environ. Sci, vol.3, issue.10, pp.1503-1506, 2010.

B. D. Fraters, R. Amrollahi, and G. Mul, How Pt nanoparticles affect TiO2-induced gas-phase photocatalytic oxidation reactions, J. Catal, vol.324, pp.119-126, 2015.

Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang, and P. Wang, Plasmonic Gold Nanocrystals Coupled with Photonic Crystal Seamlessly on TiO2 Nanotube Photoelectrodes for Efficient Visible Light Photoelectrochemical Water Splitting, Nano Lett, vol.13, issue.1, pp.14-20, 2013.

Y. Pu, G. Wang, K. Chang, Y. Ling, Y. Lin et al., Au Nanostructure-Decorated TiO2 nanowires Exhibiting Photoactivity Across Entire UVvisible Region for Photoelectrochemical Water Splitting, Nano Lett, vol.13, issue.8, pp.3817-3823, 2013.

H. Gao, P. Zhang, J. Zhao, Y. Zhang, J. Hu et al., Plasmon enhancement on photocatalytic hydrogen production over the Z-scheme photosynthetic heterojunction system, Appl. Catal. B, vol.210, pp.297-305, 2017.

M. Ge, C. Cao, S. Li, Y. Tang, L. Wang et al., In situ plasmonic Ag nanoparticle anchored TiO2 nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting, Nanoscale, vol.8, issue.9, pp.5226-5234, 2016.

A. Sreedhar, T. V. Sreekanth, J. H. Kwon, J. Yi, Y. Sohn et al., Ag nanoparticles decorated ionbeam-assisted TiO2 thin films for tuning the water splitting activity from UV to visible light harvesting, Ceramics International, vol.43, issue.15, pp.12814-12821, 2017.

P. Chaudhary and P. P. Ingole, Multifunctional plasmonic Ag-hematite nano-dendrite electrocatalysts for methanol assisted water splitting: Synergism between silver nanoparticles and hematite dendrites, Int. J. Hydrogen Energ, vol.43, issue.3, pp.1344-1354, 2018.

P. Arunachalam, M. S. Amer, M. A. Ghanem, A. M. Al-mayouf, and D. Zhao, Activation effect of silver nanoparticles on the photoelectrochemical performance of mesoporous TiO2 nanospheres photoanodes for water oxidation reaction, Int. J. Hydrogen Energ, vol.42, issue.16, pp.11346-11355, 2017.

M. A. Amin, S. A. Fadlallah, and G. S. Alosaimi, In situ aqueous synthesis of silver nanoparticles supported on titanium as active electrocatalyst for the hydrogen evolution reaction, Int. J. Hydrogen Energ, vol.39, issue.34, pp.19519-19540, 2014.

M. A. Amin, S. A. Fadlallah, G. S. Alosaimi, F. Kandemirli, M. Saracoglu et al., Cathodic activation of titanium-supported gold nanoparticles: an efficient and stable electrocatalyst for the hydrogen evolution reaction, vol.41, pp.6326-6341, 2016.

L. Zhou, D. F. Swearer, C. Zhang, H. Robatjazi, H. Zhao et al., Quantifying hot carrier and thermal contributions in plasmonic photocatalysis, Science, vol.362, issue.6410, pp.69-72, 2018.

J. X. Wang, J. Huang, H. L. Xie, and A. L. Qu, Synthesis of g-C3N4/TiO2 with enhanced photocatalytic activity for H-2 evolution by a simple method, Int J Hydrogen Energ, vol.39, issue.12, pp.6354-6363, 2014.

W. Ong, L. Tan, Y. H. Ng, S. Yong, and S. Chai, Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a step Closer To Achieving Sustainability?, Chem. Rev, vol.116, issue.12, pp.7159-7329, 2016.

B. Chai, T. Peng, J. Mao, K. Li, and L. Zan, graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation, Phys. Chem. Chem. Phys, vol.14, issue.48, pp.16745-16752, 2012.

H. J. Yan and H. X. Yang, TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation, J. Alloy Compd, vol.509, issue.4, pp.26-29, 2011.

Q. Luo, L. Zhang, X. F. Chen, O. K. Tan, and K. C. Leong, Mechanochemically synthesized m-BiVO4 nanoparticles for visible light photocatalysis, RSC Adv, vol.6, pp.15796-15802, 2016.

L. Zhang, Q. Luo, X. Chen, M. S. Tse, O. K. Tan et al., Mechanochemically synthesized CuO/m-BiVO4 composite with enhanced photoelectrochemical and photocatalytic properties, RSC Adv, vol.6, pp.65038-65046, 2016.

C. Marchal, T. Cottineau, M. G. Mendez-medrano, C. Colbeau-justin, V. Caps et al., Au/TiO2-gC3N4 Nanocomposites for Enhanced Photocatalytic H2 Production from Water under Visible Light Irradiation with Very Low Quantities of Sacrificial Agents, Adv. Energ. Mater, vol.8, issue.14, p.1702142, 2018.

B. Turan, J. P. Becker, F. Urbain, F. Finger, U. Rau et al., Upscalling of integrated photoelectrochemical water-splitting devices to large areas, Nat. Commun, vol.7, p.12681, 2016.

M. Schröder, K. Kailasam, J. Borgmeyer, M. Neumann, A. Thomas et al., Hydrogen Evolution Reaction in a Large-Scale Reactor using a Carbon Nitride Photocatalyst under Natural Sunlight Irradiation, Energ. Technol, vol.3, issue.10, pp.1014-1017, 2015.

K. Cocq, C. Lepetit, V. Maraval, and R. Chauvin, Carbo-aromaticity and novel carbo-aromatic compounds, Chem. Soc. Rev, vol.44, issue.18, pp.6535-6559, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01915505

K. Cocq, C. Barthes, A. Rives, V. Maraval, and R. Chauvin, Synthesis of Functional Carbo-benzenes with Functional Properties: The C2 Tether Key, vol.30, pp.30-43, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02132780

Z. Li, E. Borguet, M. Smeu, M. A. Ratner, A. Rives et al., Towards graphyne molecular electronics, Nat. Commun, vol.6, p.6321, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01916648

N. Alenzi, W. Liao, P. S. Cremer, V. Sanchez-torres, T. K. Wood et al., Photoelectrochemical hydrogen production from water/methanol decomposition using Ag/TiO2 nanocomposite thin films, Int. J. Hydrogen Energy, vol.35, issue.21, pp.11768-11775, 2010.

I. Baglai, M. De-anda-villa, R. M. Barba-barba, C. Poidevin, G. Ramos-ortiz et al., Difluorenyl-carbo-benzenes, hydrocarbon quadrupolar chromophores: synthesis, electronic structure, and two-photon absorption properties, Chem. Eur. J, vol.21, pp.14186-14195, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01915508

D. Listunov, C. Duhayon, A. Poater, S. Mazères, A. Saquet et al., Steric/n-electronic insulation of the carbo-benzene ring: dramatic effect of tert-butyl vs phenyl crowns on geometric, chromophoric, redox and magnetic properties, Chem. Eur. J, vol.24, pp.10699-10710, 2018.

A. Rives, I. Baglai, V. Malytskyi, V. Maraval, N. Saffron-merceron et al., Highly ?-electron-rich macro-aromatics: bis(p-aminophenyl)-carbo-benzenes and their DBA acyclic references, Chem. Commun, vol.48, pp.8763-8765, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01965636

I. Baglai, V. Maraval, Z. Voitenko, Y. Volovenko, and R. Chauvin, Towards fluorescent indolyl-carbobenzenes, Fr.-Ukr, J. Chem, vol.1, pp.48-53, 2013.

C. Barthes, C. Zhu, R. Khodzhaieva, V. Maraval, R. Chauvin et al., Spectral properties of Expanded ?-systems: light absorption and emission of a tertaphenyl-carbo-benzene, Book of the 10th international Chemistry Conference Toulouse-kiev (ICTK-10), 2019.

P. Alphonse, A. Varghese, and C. Tendero, Stable hydrosols for TiO2 coatings, J. Sol-Gel Sci. Technol, vol.56, pp.250-263, 2010.

J. Cure, H. Assi, K. Cocq, L. Marin, K. Fajerwerg et al., Controlled Growth and Grafting of High-Density Au Nanoparticles on Zinc Oxide Thin Films by PhotoDeposition, Langmuir, vol.34, issue.5, pp.1932-1940, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01690677

L. Leroyer, C. Zou, V. Maraval, and R. Chauvin, Synthesis and stereochemical resolution of a [6]pericyclynedione: Versatile access to pericyclynediol precursors of carbo-benzenes, Comptes Rendus Chimie, vol.12, issue.3-4, pp.412-429, 2009.

J. Cure, Y. Coppel, T. Dammak, P. F. Fazzini, A. Mlayah et al., Monitoring the Coordination of Amine Ligands on Silver Nanoparticles Using NMR and SERS, vol.31, pp.1362-1367, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01764991

M. Horn, C. F. Schwerdtfeger, and E. P. Meagher, Zeitschrift für Kristallographie, vol.136, pp.273-281, 1972.

S. Agarwala and G. W. Ho, Synthesis and tuning of ordering and cristallinity of mesoporous titanium dioxide film, Mater. Lett, vol.63, pp.1624-1627, 2009.

L. Laffont, M. Monthioux, and V. Serin, Plasmon as tool for in situ evaluation of physical properties for carbon materials, Carbon, vol.40, issue.5, pp.767-780, 2002.

P. Longo, R. D. Twesten, and J. Olivier, Probing the Chemical Structure in Diamond-Based Materials Using Combined Low-Loss and Core-Loss electron Energy-Loss Spectroscopy, Microsc. Microanal, vol.20, issue.3, pp.779-783, 2014.

B. Reznik, M. Fotouhi, and D. Gerthsen, Structural analysis of pyrolytic carbon deposits on a planar cordierite substrate, Carbon, vol.42, issue.7, pp.1311-1313, 2004.

B. N. Persson, On the theory of surface-enhanced Raman scattering, Chem. Phys. Lett, vol.82, issue.3, pp.561-565, 1981.

I. Romero, J. Aizpurua, W. B. Garnett, and F. J. Garcia-de-abajo, Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers, Opt. Express, vol.14, issue.21, pp.9988-9999, 2006.

T. De-freitas-paulo, V. Bernardes-génisson, V. Maraval, and R. Chauvin, , 2019.

Z. W. Seh, S. Liu, M. Low, S. Zhang, Z. Liu et al., Janus Au-TiO2 Photocatalysts with Strong Localization of Plasmonic Near-Fields for Efficient Visible-Light Hydrogen Generation, Adv. Mater, vol.24, issue.17, pp.2310-2314, 2012.

L. Leroyer, C. Lepetit, A. Rives, V. Maraval, N. Saffon-merceron et al., From hexaoxy-[6]pericyclines to carbo-cyclohexadienes, carbo-benzenes, and dihydro-carbobenzenes: synthesis, structure, chromophoric and redox properties, Chem. Eur. J, vol.18, pp.3226-3240, 2012.

C. Zhu, A. Poater, C. Duhayon, B. Kauffmann, A. Saquet et al., Carbo-biphenyls and Carbo-terphenyls: Oligo(phenylene ethynylene) Ring Carbo-mer, Angew. Chem. Int. Ed, vol.57, pp.5640-5644, 2018.

M. V. Roldan, N. S. Pellegri, and O. A. De-sanctis, Optical response of silver nanoparticles stabilized by amines to LSPR based sensors, Procedia Materials Science I, pp.594-600, 2012.

T. Takata and K. Domen, Particulate Photocatalysts for Water Splitting: Recent Advances and Future Prospects, ACS Energ. Lett, vol.4, issue.2, pp.542-549, 2019.

C. Das, B. Ananthoju, A. K. Dhara, M. Aslam, S. K. Sarkar et al., Electron-selective TiO2 / CVD-Graphene Layers for Photocorrosion Inhibition in Cu2O Photocathodes, Adv. Mater. Interfaces, vol.4, issue.17, 2017.

Y. Tang, X. Hu, and C. Liu, Perfect Inhibition of CdS photocorrosion by graphene sheltering engineering on TiO2 nanotube array for highly stable photocatalytic activity, Phys. Chem. Chem. Phys, vol.16, issue.46, pp.25321-25329, 2014.

C. Andrei, E. Lestini, S. Crosbie, C. De-frein, T. O'reilly et al., Plasmonic enhancement of dye sensitized solar cells via a tailored size-distribution of chemically functionalized gold nanoparticles, PLoS One, vol.9, issue.10, 2014.

Z. Yang, P. Zhang, Y. Ding, Y. Jiang, Z. Long et al., Facile synthesis of Ag/ZnO heterostructures assisted by UV irradiation: Highly photocatalytic property and anhanced photostability, Mater. Res. Bull, vol.46, issue.10, pp.1625-1631, 2011.

S. K. Cushing, J. Li, J. Bright, B. T. Yost, P. Zheng et al., Controlling Plasmon-Induced Resonance Energy Transfer and Hot Electron Injection Processes in Metal@TiO2 Core-Shell Nanoparticles, J. Phys. Chem. C, vol.119, issue.28, pp.16239-16244, 2015.

M. Wang, J. Han, H. Xiong, and R. Guo, Yolk@Shell Nanoarchitecture of Au@r-GO/TiO2 Hybrids as Powerful Visible Light Photocatalysts, Langmuir, vol.31, issue.22, pp.6220-6228, 2015.

F. Sheu and C. Cho, Investigation of the appropriate content of graphene in Ag-TiO2-graphene ternary nanocomposites applied as photocatalysts, Int. J. Hydrogen Energy, vol.42, issue.27, pp.17020-17029, 2017.

Z. Wang, Z. Low, X. Zeng, B. Su, Y. Yin et al., Verticallyheterostructured TiO2-Ag-rGO ternary nanocomposite constructed with {001} facetted TiO2 nanosheets for enhanced Pt-free hydrogen production, Int. J. Hydrogen Energ, vol.43, issue.3, pp.1508-1515, 2017.

T. J. Wong, F. J. Lim, M. M. Gao, G. H. Lee, and G. W. Ho, Photocatalytic H2 production of composite onedimensional TiO2 nanostructures of different morphological structures and crystal phases with graphene, Catal. Sci. Technol, vol.3, issue.4, pp.1086-1093, 2013.