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Reactive Path Deformation for Nonholonomic
Mobile Robots

F. Lamiraux, D. Bonnafous, and O. Lefebvre
LAAS-CNRS, Toulouse, France
{florent,dbonnafo,olefebvr}@Ilaas.fr

Abstract—This paper presents a novel and generic approach of path op-
timization for nonholonomic systems. The approach is applied to the prob-
lem of reactive navigation for nonholonomic mobile robots in highly clut-
tered environments. A collision-free initial path being given for a robot,
obstacles detected while following this path can make it in collision. The
current path is iteratively deformed in order to ge away from obtacles and
satisfy the nonholonomic constraints. The core idea of the approach is to
perturb the input functions of the system along the current path in order to
modify this path, making an optimization criterion decrease.
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Fig. 2. Deformation of the path of mobile robot Hilare 2 towing a trailer. Each
path along the deformation process is represented by a curve of absitisha
configuration space, while represents time. In this example, the robot is on

the left and obstacles (not represented on the picture) detected by a laser scanner
make the initial path# = 0) in collision.

Fig. 1. Hilare 2 towing a trailer: a nonholonomic system of dimension 4 with .
nonholonomic constraints. I%and [16], [26], [27], [14], [17], [4], [5], [18] and motion con-

trol on the other hand [23], [19], [9], [25]. Few of these works
have addressed both aspects together.

For long range motions, the above two step approach raises
Most wheeled vehicles are subject to constraints of rollirthree issues: localization uncertainty, imprecision of the map
without slipping and thus belong to the large class of nonholof the environment and unexpected obstacles that are not in the
nomic systems. Buses, trailer-truck systems, and cars are a feap. These three issues have a common consequence: a path
examples. Research efforts have been made in the past toinitially planned to be collision-free may become in collision at
derstand and control the motion of these systems. These wdt&execution step. To overcome these difficulties, [21] proposed
were first initiated in robotics when researchers discovered tlamethod that enables him to deform on line the path to be fol-
wheeled mobile robots are nonholonomic. Today, car manufd@wed by the robot in order to get away from obstacles detected
turers are very interested in motion control of wheeled vehicleslong the motion. This approach has been extended to the case
Most of them plan to equip their vehicles in a near future witbf a unicycle-like mobile robot in [10] and then to the case of
computer aided motion capabilities like parallel parking or a@ holonomic mobile manipulator in [3]. In both papers, the ge-
tomatic stop-and-go mode in traffic jams. Thus, better und@metry of the robot is approximated by a set of balls and no or
standing and controlling the motions of nonholonomic systemsaly one very simple nonholonomic constraint is treated. None
will open a large field of industrial applications in the domain aff these methods is applicable to more complex nonholonomic

transportation. systems like car-like robots.

Producing automatic motions for nonholonomic mobile To plan and execute motions in dynamic environments, [8]
robots soon revealed a difficult task. For this reason, the prateveloped the concept of velocity obstacles, defining the set of
lem has been decomposed into two steps. The first step csbidden velocities given the velocity of the obstacles. This
sists in computing a collision-free motion using a map of theoncept is used in [15] to perform local goal oriented obstacle
environment. The second step consists in executing the nageidance. This technique is particularly efficient in environ-
tion. As a consequence, past research on nonholonomic systemaats where a lot of obstacles are moving since the velocity
has mainly focused on two aspects: path planning on the astehe obstacles is taken into account in the avoidance strategy.

A shorter version of this paper has been published in the International COer(_)WGVE'I‘, itis based on very S|m_ple moqels. of the ro.bOt and. of
ence on Robotics and Automation the obstacles: they all are spherical. This simplification forbids

Corresponding author. applications for multi-body mobile robots moving in very clut-
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tered environments where the robot needs to pass very close to
the obstacles.

In this paper, we propose a novel and generic approach of
path modification applicable to any nonholonomic system. We
assume that a first collision-free path has been computed for the
robot in the global frame. In our experiments, this path is com-
puted by the motion planndfove3D[24] based on a map of the
environment. When the robot follows this path, on-board sen-
sors, for instance laser scanners, detect surrounding obstacles 1=0
and map them in the global frame. If an obstacle not present in ) - ) )
the map is detected, it can be in collision with the initial pat gh3 Current patky(s) (in bold) and direction of deformation(s) along this
If the localization of the robot is inaccurate, or if the map is in-
exact, obstacles of the map might be seen in collision with the
initial path by the sensors. The method we propose in this pager Admissible paths
enables the robot to deform the initial path in order to move it A honnholonomic system of dimensionis characterized by
away from sensed obstacles and make the current path collisigsey of;. < 1 vector fieldsX; (q),...Xx (q), whereq € C —
free (Figure 6 shows an example of path deformed and followgg: ig the configuration of the system. For each configuration

by mobile robot Hilare 2 towing a trailer). The current path thug the admissible velocities of the system is the set of linear
changes along time. As a_path is a mapping from an interval Qfy\pinations of th&X, (q)’s. A pathq(s) is a smooth curve in
real numbers into the configuration space of the robot, we nafjjs configuration space defined over an intef9af)]. A path is

rally model a path deformation process as a mapping of two realy 1o peadmissiblef and only if there exists &-dimensional
variabless andr into the configuration space.can be consid- ¢,q0th vector valued mapping = (u1, ..., us) defined over
ered as time (or more generally as an increasing functiar),of S] and such that: T

while s is the abscissa along each path. Figure 2 illustrates this

idea. k
Our contribution consists of a theoretical framework in which Vs € [0, 5] q'(s) = Z u;(8)X;(q(s)) (1)
a path deformation process is modeled as a dynamic control sys- i=1

tem, of an algorithm controlling the deformation process and ofh , I
S o . ere from now on’, denotes the derivative w.r4.
the validation of our approach by applications to two different

kinematic systems. B. Admissible path deformation

This path deformation method can be applied to obstacle

avoidance for nonholonomic systems, as well as any other o%i-we call path deformatiora mapping from a subsg, 5] x

mization problem. , +00) of R? to the configuration space of the system:
The paper is organized as follows. In Section I, we propose
a model of path deformation as a infinite-dimensional dynamic
control system the state of which is a path. In Section Ill, weor each value of, s — q(s, 7) is a path.s — q(s, 0) is called
present an iterative algorithm controlling the deformation preseinitial path. A path deformation process can be compared to
cess to make an optimization criterion decrease. At each stegafibrating string of abscissawherer is the time. The shape
the algorithm, a deformation is computed in a finite-dimensionaf the string varies with time- and is given by the curve —
linear-subspace (Ill-A). Boundary conditions can be added ¢@s,7) € R2. In order to keep notation light and intuitive, we
constrain the initial and final configurations of the path to keese the same notati@nto denote configurations, paths and path
unchanged after deformation (111-B). Using configuration spacformations.
potential fields, the optimization criterion can be related to ob- We are interested in deformationgs, 7) composed of only
stacles and make the deformation process avoid them (lll-@@imissible paths. Such deformations satisfy the following con-
Discretization of the deformation process implies however dewtraint: there exists A-dimensional vector valued smooth map-
ation of the nonholonomic constraints that are not satisfied apying u = (u, ..., u) defined over0, S| x [0, +00), such that
more. A correction of this undesirable effect is proposed (IlI-DY(s, 7) € [0, 5] x [0, +o0)
Finally, in Section IV, the approach is applied to different kine-
matic systems.

(s,7) = als,7)

k
oq
g(w) = ZUi(s,T)Xi(q(s,T)) 2
II. NONHOLONOMIC PATH DEFORMATION AS A DYNAMIC i=1

CONTROL SYSTEM For each value ofr, s — wu(s,7) is the input function of

A path for a robotic system is usually represented by a mgmaths — q(s, 7). The above equation simply expresses con-
ping from an interval ofR into the configuration space of thestraint (1) for each path of the deformation. As well as a path is
system. In this section, we introduce the notion of path defarniquely defined by its initial configuration and the input func-
mation as a mapping from an intervalBfinto the set of paths. tion, a path deformation is uniquely defined by the initial con-
Equivalently a path deformation is a mapping from two intervafiggurationq(0, 7) of each of its paths and by the input functions
into the configuration space as explained later in this section.u,(s, 7).



conditionny = n(0,7) we can integrate Equation (3) w.r.t.

o0 k to get the corresponding direction of deformatiofs, 7). A
v e C*([0,5],R") . ;
S path deformation process for nonholonomic systems can thus
q € C*([0,S],R™) be considered as a dynamic control system where
current path o 7is the time,
no € R e s — q(s, 7) is the state and
« the inputis a paifng, s — v(s, 7)).

as described in Figure 4. In Section I, paths will be computed
for discretized values aof only.

<——

path def C. Potential field and inner product

algorithm Obstacles The path deformation method needs to compute at each time
-< 7 a vectorn, and a functions — v(s,7) over[0,S] in such

a way that the deformation process achieves a specified goal.

This goal is expressed in terms of a potential value to minimize
Fig. 4. A path deformation process can be modelled as a dynamic conf€r the set of feasible paths. The potential value of a path is
system of timer. At each time, the state is a feasible paghthe input is a defined by integration along the path of a potential fiéldver

pair (no, v) that uniquely defines the time derivative of the state. The pafphe configuration space. We denotelbyr) the potential value
deformation algorithm we build in this paper can be considered as a closed-lo

controller that computes the input of the dynamic control system with respectq%opaths —q(s,7):
the current path and a task to achieve, for instance avoiding obstacles. s
Vir) 2 / Ula(s, 7))ds
0

Lﬁ the goal to achieve is to avoid obstacles, as in [22], [11], [1],
the configuration space potential field is defined in such a way
that its value is high for configurations close to obstacles and

By differentiating (2), we get a relation between the inp

variation 2% and the infinitesimal path deformatidif! when

the deformation parameterincreases:

9%q L low for configuration far from obstacles. Thus paths going close
- (57) = ( “(s,7)Xi(a(s, 7)) to obstacles have a high potential value and paths staying far
Os0r = \07 from obstacles have a low potential value.
X dq The path potential variation w.r.is related ta)(s, 7) by the
+ui(s, T) 9q (‘1(377»37(577)) following expression:
We call respectivelynput perturbationsanddirection of defor- av ) = ° @(q(s NTn(s, 7)ds
mationthe following vector valued functions: dr o Oq 7 ’
ou The principle of the path deformation method consists in choos-
v(s,7) = a—(s,r) ing (no, v(s, 7)) in such a way tha%(r) is negative. Let us
8T notice that the space of vector-valued functions defined over in-
n(s,7) = —q(s,f) terval [0, S] is an Euclidean space, the inner product of which is
or defined by: )
7 is represented in Figure 3. With this notation, the above equa- 1g) L 2 / T a(s)ds 4
by (o) = | 16)7g(s) (4)

With this definition, the variation of the path potential value

/ _
W(s,7) = Als,7)n(s,7) + B(s,)v(s, ) (3) along a direction of deformation can be rewritten
wherer/ = % andA(s, 1) is the followingn x n matrix: A oU
) d*(T) = (8 S Q|77>
k 0X i 5 v
A(s,T) = Z u; (s, r)a—l(q(s, 7)) whereo denotes the composition of mappings. Let us notice that
i=1 q integration is performed over variableonly. According to this
expressiony = —(g—g o q) is at equivalenf.?-norm the direc-

and B(s, 7) is then x k matrix the columns of which are the

control vector fields: tion of deformation that minimize§“ (7). Unfortunately, this

value of functionn is not an admissible direction of deforma-
B(s,T) = ( Xi(q(s, 7)) - Xp(a(s, 7)) ) tion (i.e. a solution of system (3)). A solution could be obtained
by orthogonally projecting-( g—U o q) over the linear-subspace
According to (3), the derivative w.r.t: of the paths — q(s,7) of admissible directions of deqformation. However, the projec-
is related to the input perturbatien— v (s, 7) through a linear tion of a vector over an infinite-dimensional subspace does not
dynamic system. This system is in fact the linearized systamcessarily exist.
of (1) abouts — q(s,7). For a given pathy(s, ) of input To overcome this problem, we will restrict the input perturba-

u(s,7) and for any input perturbation(s, ), and any initial tion to a finite-dimensional subspace in the following section.



1. NONHOLONOMIC PATH DEFORMATION ALGORITHM wherel = (Aq,...,\,) € R? is a vector, as (3) is linear, the

Based on the theoretical framework established in the pre\ollf[ectlon of deformation corresponding te is the same linear

ous section, we build in this section the path deformation alg%c_)mbmatlon of solutiong;

rithm for nonholonomic systems. Starting from an initial admis- P
sible pathq(s, 0), the algorithm iteratively computes a sequence (s, m) =Y AiBi(s, ) (10)
of admissible paths — q(s, ;) for discretized values; of 7 i=1

wherej is an integer. At each iteration of the algorithm, a di-, . . - . - .
. . . Using this restriction, the input perturbatienis uniquely de-
rection of deformatiom(s, 7;) is generated based on the con;

figuration space potential field and a new patly(s, 7;1) is fined by vector.

computed as follows: B. Boundary conditions
a(s, 7j41) a(s,7;) + At (s, ;) (5 We wish the deformation process not to modify the initial and
_ A 6 goal configurations of the path. We thus impose the following
Tl =TT AT ) poundary conditions:
whereA; is the discretization step. Let us notice that the above Vi > 0, q(0,7;) = q(0,0)
formula is a first-order approximation in In the rest of this g — a(S.0
section, we describe the different steps of the algorithm. In Sec- a(S,7;) = a(5,0)

tion Ill-A, we computer)(s, 7;) by restricting the input pertur- + .ca constraints are equivalent to:
bation to a finite-dimensional subspace of functions. This re- '

striction enables us in Section 111-B to take into account bound- vj >0, n(0,7;) = 0 (11)
ary conditions that force the initial and final configuration of o

o X . n(S,7;) = 0 12)
the deformation interval to remain unchanged. In Section IlI-

C we explain how to compute the direction of deformation thalgyation (8) and Expression (10) ensure us that the first con-
minimizes the variation of the path potential under const&nt straint (11) is satisfied. The second constraint (12) together with

norm. The first order approximation (5) induces deviations gfpression (10) becomes a linear constraint over vector
the nonholonomic constraints. Section IlI-D addresses this is-

sue and proposes a correction of this deviation. LA=0 (13)

A. Finite-dimensional subspace of input perturbations where L is an x p - matrix the columns of which are the
As explained in section I, the control variables of a path dgi(s’ 7i)'s:

formation process are the input perturbatierand the initial I - ( E((S,7;) - E,(S,7) )

conditionny. s — v(s, ;) belongs to the infinite-dimensional
space of smooth vector-valued functions defined ¢¥e%]. To Let us notice that in general, the dimension of the subspace of
simplify the control of the path deformation, we choose to r&olutions of the above linear system is equal to n and there-
strict v over a finite-dimensional subspace of functions. Thfgre p must be bigger than. The problem is now to choose a
restriction will make the boundary conditions introduced latefector )\ satisfying the above linear constraint and generating a
in section I1I-B easier to deal with. Let be a positive inte- direction of deformation that makes the current path move away
ger. We defineey, ..., ep, a set of smooth linearly independanfrom obstacles. We address this issue in the following section.
vector-valued functions of dimensidn defined overf0, S]:

C. Direction of deformation that makes the path potential de-

e :[0,5] — RF crease
As explained in 1I-C, a potential field is defined over the

Various choices are possible for this (€.g. truncated Fourier ., nfiguration space. This potential field defines a potential func-
series, polynomials,...) [20], [7], [6]. For each of these fung;,, V' over the space of paths by integration.

tions, we definetl; (s, 7;) as the solution of system (3) with ini- - Gjyen 4 vectorr € R, the variation of the path potential
tial conditionz, = 0 and withe;(s) as input: induced by direction of deformatiopdefined by Equation (10)
is given by the following expression:

Bi(s,75) = A(s,m)Bilsm)+Bls,m)els) () 0 ) IeP

E;(0,75) = 0 (8) dv S oU

E(Tj) = ; a—q(q(s, ) n(s,7;)ds (14)
where matrices! andB are defined in section II-B. Let us recall P S oy
that these matrices depend on the current péth;) of input Z i ~—(q(s, 7)) Ei(s, 7;)ds (15)
u(s, 7;) and therefore, unlike;, E; depends on;. ~ " Jo 9q

If we restrictv(s, 7;) in the set of functions spanned by the , , .
e's, that is: Let us define the following coefficients

P s
v(s, 1) = Z Aiei(s) 9 i = g—U(q(SJj))TEi(s,Tj)ds
=1 0 q



These coefficients represent the variation of the path potenfidlis value of vecton is very difficult to determine sincg.|| oo
induced by each direction of deformati#h. With these coeffi- is not an Euclidean norm. Instead, we compute

cients, Expression (15) can be rewritten as follows:
p

p min ,ui)\i
%m - 2_; Nitti (16) 1225 Aelill 2 =1 ;
. which is a better approximation than (17).
Thus, if we set The idea of the computation is to expressin a L2-
Ai = —H (17)  orthonormal basis in such a way that the above sum becomes

we get a deformatiom(s,7;) that keeps the kinematic con-the inner product between two vectors. Let us build from
straints satisfied and that makes the path potential decrease (J- - Ep) an orthonormal basigF, ..., F;,) using Gramm

deed, Schmidt orthonormalization procedure. Lé&t be the cor-
dv P ) responding change of coordinatpsx p - matrix (the j-th

E(Tj) = _Z“i <0 column of P is the vector of coordinates of; expressed

i=1 in (Eq,...,Ep)). If we expressy in (Fy,...,F,) instead of

We denote by\° this value of vecton. Nothing ensures us that(E1, -, E), Equation (10) becomes:

A0 satisfies the boundary conditions (13). »

— L . .
C.1 Projection over the boundary condition subspace n(s, 75) = Z A Fi(s,7)
=1
Equation (13) states that the set of vectarsatisfying the _
boundary conditions is a linear subspaceRd#f. To get such a and Equation (16) becomes

vector that we denot&, we project\’ over this subspace :

av ¢ 1 1 1
A= (I, — LtL))\° E(Tj):ZAi pi = (n |77)Lz (18)
=1
whereL" is the pseudo-inverse df. As L L™ L = L, X sat-
isfies LA = 0. We may naturally wonder whether the direction S oU
i iection = S . L E. sti L2 el NEFi(s, 7;)d
of deformation after projection = >°7_, \;E; still makes the i q (a(s,75))" Fi(s, 7;)ds
path potential decrease. The following proposition answers this 0
question. andput = P  uiF,. The second equality in (18) holds
Proposition 1: for any . € R? and anyn x p - matrix L, if ~ since(Fy, ...,F,) is L?-orthonormal. At equivalent.?-norm,
A0 = —pand) = (I, — LT L)\, then n = —pt (i.e. \} = —puih)is the direction of deformation that
. minimizes4¥ (7).
peA<0 In fact we do not evaluate functiog’s, but only matrixP.
Proof: The expression af in basis(E, ..., E,) is given by vector
WX = —)Tu+ "Lt Ly A= P)\t=ppT)° (19)

As LL*L = L, (L*L)> = L*L. L*L s thus the matrix of jging expression of in the orthonormal basiéF, .., F,), the
a prqjectllon qperator. As such," L is a positive semi-definite expression in(Ey, ..., E,) of the orthogonal projection of the
mTatrlx with eligenvalue:,'rs_o and 1. Therefore, for any Vegior ahove, over the sub-space of vectors satisfying the boundary
pt LT Ly < ptpandpt A < 0. _ _ conditions (12) becomes
Proposition 1 ensures us thats, 7;) = Y7_, ME;(s, 7;) is an
admissible direction of deformation that satisfies the boundary A= (I, - p(Lp)+L)ppT)\0
conditionsn(0, 7;) = n(S, 7;) = 0.
o i We have noticed during the development of our method,

C.2 A better direction of deformation that choosing the optimal direction of deformation makes the

Let us recall that Equation (5) is a first order approximz{nethod behave much better. It can be explained by the fact that
tion w.rt. 7. For this reasonA7;||n|l With 7] £ this choice makes the path potential decrease faster and thus is
max,c(os) ||17(s, 7;)|| needs to be smallA7; is thus chosen in more efficient to get away from obstacles.
such a way that\r;||n||« is upper bounded by a positive given ) ) -
value ... The way the,'s are chosen in (17) is not opti- D- Nonholonomic constraint deviation
mal in this respect. Indeed, the goal we aim at at each iteratiompproximation (5) induces a side effect: after a few iterations,
is to make the path potenti®f decrease at most for constanthe nonholonomic constraints are not satisfied anymore and the
IInlls- Therefore the optimal value of realizes the following path becomes non admissible. We call this effectrtbeholo-
minimum: nomic constraint deviatianThe goal of this section is to correct
this deviation. If a path is not admissible, the velocity along this
path is not contained in the linear subspace spanned by the
control vector fields and condition (1) does not hold.

AV . -
min —(7;) = min Z i
Inllee=1 dT 120 Al =1 4=



D.1 Extended dynamic system D.3 Deformation due to obstacles

To take into account this issue, we add for each COﬂﬁgUfatiOI"IFonowing the procedure described in sections lll-A and III-C,
q, n—k vector fieldsX ;1 (q), ..., X, (q) to thek control vector e restrict input functiongvy, ..., v;) to the finite dimensional
fields of the system in such a way th¥t (q), ..., X»»(q) span subspace of functions spanned (e, ..., e,) and we compute
R™. We define theextended systeas the system controlled by ) — (A1, ..., Ap) according to Equation (19). We denote hy

all these vector fields: the direction of deformation corresponding to these coefficients:
/
q =) uXi(q) (20) o
izzl (s, m) = Y AiBi(s, 7))
=1

System (20) is not subject to any kinematic constraint. A path
q(s) of system (20) is admissible for system (1) if and only ifvhere now theg;’s are solutions of system (21):
foranyj € {k+1,...,n} and anys € [0, S], u;(s) = 0.

In Section 1l, we deformed a given path, admissible for (1) E/(s,7;) = A(s,7j)Ei(s,7;) + B(s,7j)ei(s) (26)
by perturbing the input functions, (s, 7), ..., ux(s, 7) of this E(0,7;) = 0 (27)
path in order to avoid obstacles. In this section, we consider s
an initial path not necessarily admissible and we compute inpyt -
perturbations that make;1 (s, 7), ..., uy (s, 7) uniformly tend B Boundary conditions
toward O ag- grows. As system (23) is linear, the deformation obtained by suming
From now on, we denote by(s, 7) = (u1(s, ), ...,un(s,7)) input perturbations andv+ is the sum ofj; andr,. Again we
the input function of system (20) and by(s,7) = want this direction of deformation not to modify the initial and
(v1(s,7), ..., un(s, 7)) the perturbation of these input functionsfinal configurations. Conditions (11) and (12) become:
) Ou;
Vie{l,...,n}, wvi(s,T)=—=(s,7) n(0,7;) +m2(0,7;) = 0
or
, , ~ , m(S, 1) +n2(S,75) =
The relation between the input perturbatiofs, 7) and the di-
rection of deformatiom(s, 7) is similar as in Section II: The first condition is always satisfied. The second one can
W(s,7) = Als, (s, 7)+ B(s,7)v(s,7)  (21) t())(\al rewr/{tt;e.n as an affine system of equations over parameters
sy Ap)t
but now, A(s, 7) and B(s, ) are bothn x n matrices:
m2(8, 75) = LA = =i (S, 7;) (28)

wherelL is the matrix defined in Section IlI-B. As in Section IlI-
B, the vector) obtained by Equation (19) does not satisfy (28).
whereB' = (X;,1(q)...X,,(q)) is the matrix the columns of We orthogonally project this vector over the affine space of so-
which are the additional vector fields. With this notation, (21ytions of system (28) and we get

can be rewritten as follows:

L = 09X _
A= 7q (q) and B = (B B*) (22)
=1

B A= —P(LP)"'n(S,7) + (I, — P(LP)TL)A
7' (5,7) = A(s,7)n(s,7) + B(s, 7)v(s,7) + B(s, 7w (5,7) 1 ’
(23)  The direction of deformation:
WherEVL(s,T) = (Vg+1(8, 7)oy U (8, 7)).

p
D.2 Correction of nonholonomic deviation n(s,75) =Y MEils, ) +m(s,7;)
i=1

vg+1(8,7), ..., v, (s, 7) represent the derivative of the input
functionsuy1(s,7), ..., un (s, 7) W.r.t. 7. We want these input

. satisfies the boundary conditions (11-12) and makes the compo-
functions to converge toward 0 agyrows, we thus set:

nentsvgy1, ..., v, Of the velocity along additional vector fields
Vie{k+1,..n), vi(s1)=—aus,7) decrease. Moreover, if_these components are sufficiently close
to 0, the above expressiongpinakes the potential due to obsta-
whereq is a positive constant number. This implies thatrascles decrease.
grows,
Vs € [0, 5], u;i(s,7) = e “Tu;(s,0) E. Deformation algorithm: summary

and therefore the input variables along the additional vectortaple | summarizes the path deformation algorithm for non-
fields converge toward O exponentially. \We denotenpythe  holonomic systems. The input of the algorithm is an initial path
corresponding direction of deformation for= 7;: q(s,0), with input functionu(s,0). At each stepr = 7;, a
direction of deformatiom(s, 7,) is computed along the current
. . 1 . 1 . s 1y
(5, 75)m (s, 73) + B~ (5, 7;)v™ (5, 7,)(24) path. This direction of deformation is applied to the path and
(25) s updated.

(s, 75)
771(0’ Tj) =

Sl N



Algorithm : Path deformation for nonholonomic systems

[* current path = initial path */
j=0,7,=0

while q(s, ;) in collision {

computeA(s, ;) andB(s, ;) for s € [0, S|

[* correction of nonholonomic deviation */
foriin{k+1,...,n}{

computeu; (s, 7;)

computev; (s, 7;) = —aw; (s, ;) for s € [0, S]
computen; (s, 7;) using (24)

/* potential gradient in configuration space */
forzin {1,...,p} {
computeE; (s, ;) by integrating (26)
}
computeSZ (a(s, 7;)) for s € [0, 5]
forzin {1,...,p} {

computeX? = — oS %(q(s,Tj))T E;(s,7;) ds
}
[*orthonormalization of (Eq,...,Ep) */

compute matrixP using Gramm Schmidt procedure

[*projection of X over boundary conditions */
computeX = —P(LP)*n1(S, ;) + (I, — P(LP)TL)PPT )0

/* compute and apply deformation */
computen(s, 7;) = n1(s, ;) + > F_; MiEqi(s, ;) for s € [0, 5]
if |nllcc > NMmae then
AT; = Nmaz/ |0l
else
ATj = 1
Tj+1 < Tj + ATy
a(s, 7j41) — a(s, ;) + A7 n(s, ;) for s € [0, 5]
Jj—Jj+1

the current configuration of the robot is chosen. The deforma-
tion algorithm is then applied to this interval until the collision
has disappeared. If necessary, the robot stops before reaching
the interval of deformation. Of course, the interval of deforma-
tion changes when the robot moves ahead and discovers new
collisions. [2] describes with more precision how the path de-
formation and the path following tasks operate simultaneously.
Figure 6 gives an example of path simultaneously deformed and
followed by the robot.

In the following paragraphs, we give expressions of the lin-
earized system, of the input perturbation functief’s and we
give more details about the potential field generated by obsta-
cles. We provide also a few experimental results. We invite the
reader to see more experimental results on the web-page of the
demo [28].

A.l Linearized system

A configuration of our system is represented by a vegter
(z,y,0,¢) where(z,y) andd are respectively the position and
orientation of Hilare 2 ang is the angle between the robot and
the trailer. The control vector fields of this system are

cosf 0

sin 0

X, = 0 Xy = 1
—%singp e lﬁcosgo

wherel,. (resp.l;) is the distance between the center of the robot
(resp. the trailer) and the trailer connection. The input functions
of the system are;; andu, the linear and angular velocities
of the robot. To get a basis ®* at each configuration, we

define two additional vector fields:

TABLE |
PATH DEFORMATION ALGORITHM FOR NONHOLONOMIC SYSTEMS - Slnoﬁ — smé& + )
cos cos
X, — X, = (0 +¢)
0 —l; — I, cosgp
0 —l;

IV. APPLICATION TO DIFFERENT KINEMATIC SYSTEMS . . .
Let us be given a current path, not necessarily admissible,

We have applied the path deformation method for nonholgfs) = (z(s),y(s),0(s),(s)) defined by input functions
nomic systems described in the former sections to two different(s), us(s), us(s), us(s):
systems. In both cases, the application is a navigation task for
two differents types of nonholonomic mobile robots : a mobile
robot towing a trailer and a car-like mobile robot in a cluttered
and partially known environment. - -
The method has also been applied in a path optimization prdter this path, matriced (s) andB(s) defining System (21) have
lem. This latter application is described in [12], [13]. The prolihe following expressions:
lem raised was to validate the itinerary of trucks carrying huge

4
d'(s) = Z u;i(s)Xi(q(s))

components of an airplane through villages in the southwest of 00 —unsh —uzch —uacy —uacy
France. B 0 0 ujctd — uzsh — uygsy — Uy SY
A(s) =
A. Reactive obstacle avoidance for a mobile robot towing a 00 0 ualrsp
trailer 0 0 0 —ulcap?—qursap
In this application, the robot is the unicycle Hilare 2 towing
; . ; ; ct 0 —s6 -5
a trailer, as shown on Figure 1. During motion, a laser scan-
ner detects obstacles in front of the robot (behind if the robot B(s) = 509 (1) COH ; C¢l
moves backward) and maps these obstacles in the global frame 1 . T ey
of the environment. If a collision is detected between the cur- s —l-gee 0 —lt

rent path and obstacles, an interval of deformation centeredwinere to make notation shortef] = cosf, sf = sinf, cp =
the first configuration in collision of the path and not containingps p, s¢ = sin ¢, ¢ty = cos(0 + ¢), s = sin(0 + ¢).
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Fig. 5. Configuration space potential field generated by an obstacle/goint

A.2 Subspace of input perturbations

The input space is of dimension 2. We have chosen func-
tionse;’s in such a way that they span the sub-space of truncated
Fourier series:

ei(s) = (1,07 ex(s) = (0,1)T
e3(s) = (cos( 2% )70) eq(s) = (0,cos(%52))"
es(s) = (sin(3§),0)" es(s) = (0,sin(2g2))"

é4q_1(s):(cos(2q7Tf),0)T é4q(s) (0, cos(24=))"
Cagri(s) = (sin(*G2),0)7  esqials) = (0,sin(242))”

whereg is the maximal order of the truncated Fourier series and
p = 4¢q+2. The main advantage of this basis is that a small value
of ¢ produces smooth path deformation suitable for avoiding a
big obstacle in the way of the robot, whereas a bigger valye of
is more efficient in highly cluttered environment like corridors.

A.3 Obstacle potential field

During motion, obstacles are detected by the laser scanners.

Each sensor scans an horizontal plane and returns at most I§6QS A backward path computed and executed by the mobile robot Hilare 2

pomts towing a trailer. Red dots are obstacles detected by a laser scanners (in blue)
If P; is an obstacle point, we denote by 1) the potential mounted on the trailer. An unexpected box lies on the path planned by the robot.

field in th lan nerat . where M i intin th The robot deforms the path while moving and reaches the goal. Let us notice

Ie d dj'p 6;] edge era ebd by, N 3 . sapo € that the interval of deformation changes each time a new collision is detected.
plane and! is the distance betweel and F;: For instance between snapshot 2 and 3, the first configuration in collision has
changed, so has the interval of deformation.

if 0<d<d,

1 d
T d+do + (d1+do)?
L if d>dy

= T+do T @di+do)? The configuration space potential field is defined as the sum

. fth ial fiel lati h I int:
do < dy are constant distances. L&tM) = —Vu;(M) be the of the potential fields relative to each obstacle point

force in the plane deriving from this potential. The norm of this U(q) = Z Uy(
force field w.r.t. the distance tB; is: ’

l£:(M)|| = (dﬁi 7~ @ +1d E if 0<d<d; The gradient of the potential field is obtained by differentiat-
I£,(M)|| = 0 ’ T ds (29)  ing (30) w.r.t. the configuration variablés, y, 6, ).
oU; OR oT
, i _ (@ = Vui(R@)y (@) + Vui(T(@) 5 (@)
distancel; in the plane. LeR(q) andT(q) be the closest points 9 g9 g9
to P; on the robot and on the trailer. The configuration space _ —fi(R)a—R _ f‘(T)aiT
potential field implied byP; is defined by evaluating the plane dq dq
potential field atR(q) andT(q) (Figure 5): A4 Experimental Results
Ui(q) = vi(R(q)) +v(T(q)) (30) Figure 6 gives a typical example of application of the path de-

formation method to Hilare 2 towing a trailer. In this example,
If P; is inside the robot or inside the trailer the correspondiragpath is computed by a motion planner given a map of the en-
terminU; is set to O. vironment. An obstacle not represented in this map lies on the



following:

pieces of 0
f i (o))

sin 0
X, = tan @ Xy =

]
0

= O OO

and the additional vector fields are:

—sin@
cos
X3 = 0 X, =

g r'-ﬂ'b ; 0

\ ¥
\

O = OO

We do not give expressions of matricdsand B they can be
easily deduced from the above vector fields.

The obstacle potential field computation is also similar, ex-
cept that we now consider the steering angle bounds as a possi-
ble obstacle from which the robot must move away. A force is
thus computed as a function of the steering angle, in a similar
way as Equation (29). The value of the force increases when the
angle gets closer to the bounds and prevents the steering angle
to go beyond these bounds.

« am B.1 Experimental results

Fig. 7. Due to renovation, pieces of furniture were placed in the corridors of Figure 9 presents an example of initial path in collision and

LAAS-CNRS (top). We planned a path without taking into account these nqypyatively modified by our algorithm until collisions have disap-
obstacles (bottom left) and we ran our path deformation method on the mob?l% y y 9 P

robot Hilare 2 towing a trailer. The method was successful and produced®g@red. Figure 10 displays the input functions corresponding to
collision free path (bottom right). each iteration of the deformation process displayed in Figure 9.

V. CONCLUSION AND FUTURE WORK

path computed by the planner. This obstacle is detected and thin this paper, we have described a novel and generic approach
robot deforms the path while following the collision-free parto path deformation for nonholonomic systems. This approach
of it. Let us notice that due to localization errors, the obstacleas been applied to the problem of mobile robot navigation but
detected by the sensor are slightly different from the obstaciessuitable for other path optimization problems related to non-
in the map. The path deformation method enables the robothimonomic systems.
achieve the navigation task even with poor localization. In a future work, we are going to work on the extension of
During summer 2003, the robotics building of LAAS-CNRghis method to systems with drift. This natural extension of the
was renovated. During this period, pieces of furniture wefgethod will enable us to take into account bounds on the veloc-
placed in the corridors. We took advantage of these real cdiy-Of the system by including the velocities in the state-space of
ditions to test our path deformation method. We planned a p&f¢ acceleration-controlled corresponding system.
without taking into account the new obstacles and we asked oufAcknowledgment: This work has been partially supported

robot to adapt and follow this path. Figure 7 displays the resY the European Project MOVIE (IST-2001-39250) and by the
of this experiment. CNRS interdisciplinary program ROBEA.
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Fig. 9. Two obstacles lie on the path planned by the robot Dala (top). The path
is iteratively deformed (intermediate) until the path is collision-free (bottom).
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Fig. 10. Input functionau;(s) corresponding respectively to the initial path
and to several steps of the deformation processandus are perturbated in
order to avoid the obstacles. We notice that input functiepandu4 along the
additional vector fields remain very close to 0.
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