Skip to Main content Skip to Navigation
Conference papers

A case study of automated dual-arm manipulation in industrial applications

Abstract : Nowadays, factories are required to increase production flexibility in order to manufacture small-lot variants, rapidly adapting to customer demands. Furthermore, manufacturing may involve complex manipulation tasks, usually performed by human workers. In such a context, traditional robotic systems are not competitive due to the huge costs of installation, maintenance and adaptation. A new generation of robots, equipped with multiple arms, is appearing as an attractive alternative because of their potential versatility and ability to execute intricate manipulation tasks. To facilitate the integration of these robots in a work-cell and a rapid adaptation to different tasks, easy-to-use programming interfaces and a high degree of autonomy are mandatory. Autonomous task and motion planning are particularly relevant in this context. In this paper, we present our recent progress in this direction. Hardware and software developments are explained in the context of a pilot dual-arm robot station that is being integrated in the production line of a big airplane manufacturer. First experimental results are also presented.
Document type :
Conference papers
Complete list of metadatas

Cited literature [30 references]  Display  Hide  Download

https://hal.laas.fr/hal-02327826
Contributor : Juan Cortés <>
Submitted on : Wednesday, October 23, 2019 - 7:49:44 AM
Last modification on : Monday, June 8, 2020 - 9:13:08 AM
Long-term archiving on: : Friday, January 24, 2020 - 2:36:41 PM

File

DAW_ETFA_2019.pdf
Files produced by the author(s)

Identifiers

Citation

Yoann Solana, Hector Herrero Cueva, Alvaro Rubio Garcia, Sergio Martinez Calvo, Urko Esnaola Campos, et al.. A case study of automated dual-arm manipulation in industrial applications. 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2019), Sep 2019, Zaragoza, Spain. pp.563-570, ⟨10.1109/ETFA.2019.8869209⟩. ⟨hal-02327826⟩

Share

Metrics

Record views

103

Files downloads

259