Magnetic-Field-Resilient Superconducting Coplanar-Waveguide Resonators for Hybrid Circuit Quantum Electrodynamics Experiments - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes Accéder directement au contenu
Article Dans Une Revue Physical Review Applied Année : 2019

Magnetic-Field-Resilient Superconducting Coplanar-Waveguide Resonators for Hybrid Circuit Quantum Electrodynamics Experiments

Résumé

Superconducting coplanar-waveguide resonators that can operate in strong magnetic fields are important tools for a variety of high-frequency superconducting devices. Magnetic fields degrade resonator performance by creating Abrikosov vortices that cause resistive losses and frequency fluctuations or suppress the superconductivity entirely. To mitigate these effects, we investigate lithographically defined artificial defects in resonators fabricated from Nb-TiN superconducting films. We show that by controlling the vor-tex dynamics, the quality factor of resonators in perpendicular magnetic fields can be greatly enhanced. Coupled with the restriction of the device geometry to enhance the superconductors critical field, we demonstrate stable resonances that retain quality factors 10 5 at the single-photon power level in perpendicular magnetic fields up to B ⊥ 20 mT and parallel magnetic fields up to B 6 T. We demonstrate the effectiveness of this technique for hybrid systems by integrating an In-Sb nanowire into a field-resilient superconducting resonator and use it to perform fast charge readout of a gate-defined double quantum dot at B = 1 T.
Fichier principal
Vignette du fichier
[056].pdf (1.51 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02332254 , version 1 (24-10-2019)

Identifiants

Citer

J G Kroll, F Borsoi, K L van Der Enden, W Uilhoorn, D de Jong, et al.. Magnetic-Field-Resilient Superconducting Coplanar-Waveguide Resonators for Hybrid Circuit Quantum Electrodynamics Experiments. Physical Review Applied, 2019, 11, ⟨10.1103/PhysRevApplied.11.064053⟩. ⟨hal-02332254⟩
28 Consultations
81 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More