M. A. Castellanos-beltran and K. W. Lehnert, Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator, Appl. Phys. Lett, vol.91, p.83509, 2007.

E. A. Tholén, A. Ergül, E. M. Doherty, F. M. Weber, F. Grégis et al., Nonlinearities and parametric amplification in superconducting coplanar waveguide resonators, Appl. Phys. Lett, vol.90, p.253509, 2007.

B. A. Mazin, P. K. Day, H. G. Leduc, A. Vayonakis, and J. Zmuidzinas, Superconducting Kinetic Inductance Photon Detectors (The Society Of Photo-optical Instrumentation Engineers, p.283, 2002.

P. K. Day, H. G. Leduc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, A broadband superconducting detector suitable for use in large arrays, Nature, vol.425, p.817, 2003.

G. Vardulakis, S. Withington, D. J. Goldie, and D. M. Glowacka, Superconducting kinetic inductance detectors for astrophysics, Meas. Sci. Technol, vol.19, p.15509, 2008.

H. Hattermann, D. Bothner, L. Y. Ley, B. Ferdinand, D. Wiedmaier et al., Coupling ultracold atoms to a superconducting coplanar waveguide resonator, Nat. Commun, vol.8, p.2254, 2017.

Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques et al., Strong Coupling of a Spin Ensemble to a Superconducting Resonator, Phys. Rev. Lett, vol.105, p.140502, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00710240

R. Amsüss, C. Koller, T. Nöbauer, S. Putz, S. Rotter et al., Cavity QED with Magnetically Coupled Collective Spin States, Phys. Rev. Lett, vol.107, p.60502, 2011.

V. Ranjan, G. De-lange, R. Schutjens, T. Debelhoir, J. P. Groen et al., Probing Dynamics of an Electron-Spin Ensemble via a Superconducting Resonator, Phys. Rev. Lett, vol.110, p.67004, 2013.

C. A. Regal, J. D. Teufel, and K. W. Lehnert, Measuring nanomechanical motion with a microwave cavity interferometer, Nat. Phys, vol.4, p.555, 2008.

J. D. Teufel, C. A. Regal, and K. W. Lehnert, Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator, New J. Phys, vol.10, p.95002, 2008.

G. Burkard and A. Imamoglu, Ultra-long-distance interaction between spin qubits, Phys. Rev. B, vol.74, p.41307, 2006.

K. D. Petersson, L. W. Mcfaul, M. D. Schroer, M. Jung, J. M. Taylor et al., Circuit quantum electrodynamics with a spin qubit, Nature, vol.490, p.380, 2012.

J. J. Viennot, M. C. Dartiailh, A. Cottet, and T. Kontos, Coherent coupling of a single spin to microwave cavity photons, Science, vol.349, p.408, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01310665

Y. Liu, J. Stehlik, C. Eichler, M. J. Gullans, J. M. Taylor et al., Semiconductor double quantum dot micromaser, vol.347, p.285, 2015.

G. De-lange, B. Van-heck, A. Bruno, D. J. Van-woerkom, A. Geresdi et al., Realization of Microwave Quantum Circuits Using Hybrid Superconducting-Semiconducting Nanowire Josephson Elements, vol.115, p.127002, 2015.

T. W. Larsen, K. D. Petersson, F. Kuemmeth, T. S. Jespersen, P. Krogstrup et al., Semiconductor-Nanowire-Based Superconducting Qubit, Phys. Rev. Lett, vol.115, p.127001, 2015.

J. G. Kroll, W. Uilhoorn, K. L. Van-der-enden, D. Jong, K. Watanabe et al., Magnetic field compatible circuit quantum electrodynamics with graphene Josephson junctions, Nat. Commun, vol.9, p.4615, 2018.

A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A, vol.69, p.62320, 2004.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang et al., Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature, vol.431, p.162, 2004.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer et al., Approaching Unit Visibility for Control of a Superconducting Qubit with Dispersive Readout, Phys. Rev. Lett, vol.95, p.60501, 2005.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson et al., Coupling superconducting qubits via a cavity bus, Nature, vol.449, p.443, 2007.

A. Stockklauser, P. Scarlino, J. V. Koski, S. Gasparinetti, C. K. Andersen et al., Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator, Phys. Rev. X, vol.7, p.11030, 2017.

A. J. Landig, J. V. Koski, P. Scarlino, U. C. Mendes, A. Blais et al., Coherent spin-qubit photon coupling, Nature, vol.560, p.179, 2017.

X. Mi, M. Benito, S. Putz, D. M. Zajac, J. M. Taylor et al., A coherent spin-photon interface in silicon, Nature, vol.555, p.599, 2018.

N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak et al.,

K. Vandersypen, Strong spin-photon coupling in silicon, Science, vol.359, p.1123, 2018.

T. Hyart, B. Van-heck, I. C. Fulga, M. Burrello, A. R. Akhmerov et al., Flux-controlled quantum computation with Majorana fermions, Phys. Rev. B, vol.88, p.35121, 2013.

S. Plugge, A. Rasmussen, R. Egger, and K. Flensberg, Majorana box qubits, New J. Phys, vol.19, p.12001, 2017.

J. Koch, T. Yu, J. Gambetta, A. A. Houck, D. I. Schuster et al., Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A, vol.76, p.42319, 2007.

S. P. Harvey, C. G. Bøttcher, L. A. Orona, S. D. Bartlett, A. C. Doherty et al., Coupling two spin qubits with a high-impedance resonator, Phys. Rev. B, vol.97, p.235409, 2018.

J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas et al., Experimental evidence for a surface distribution of twolevel systems in superconducting lithographed microwave resonators, Appl. Phys. Lett, vol.92, p.152505, 2008.

R. Barends, J. Wenner, M. Lenander, Y. Chen, R. C. Bialczak et al., Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits, Appl. Phys. Lett, vol.99, p.113507, 2011.

C. Song, , 2011.

A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen et al., Planar superconducting resonators with internal quality factors above one million, Appl. Phys. Lett, vol.100, p.113510, 2012.

A. Bruno, G. De-lange, S. Asaad, K. L. Van-der-enden, N. K. Langford et al., Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates, Appl. Phys. Lett, vol.106, p.182601, 2015.

V. E. Calado, S. Goswami, G. Nanda, M. Diez, A. R. Akhmerov et al., Nat. Nanotechnol, vol.10, p.761, 2015.

D. J. Van-woerkom, A. Geresdi, and L. P. Kouwenhoven, One minute parity lifetime of a NbTiN Cooper-pair transistor: Supplementary information, Nat. Phys, vol.11, p.547, 2015.

M. R. Vissers, J. Gao, D. S. Wisbey, D. A. Hite, C. C. Tsuei et al., Low loss superconducting titanium nitride coplanar waveguide resonators, Appl. Phys. Lett, vol.97, p.232509, 2010.

V. Singh, B. H. Schneider, S. J. Bosman, E. P. Merkx, and G. A. Steele, Molybdenum-rhenium alloy based high-Q superconducting microwave resonators, Appl. Phys. Lett, vol.105, p.222601, 2014.

S. Kwon, A. Roudsari, O. W. Benningshof, Y. Tang, H. R. Mohebbi et al., Magnetic field dependent microwave losses in superconducting niobium microstrip resonators, J. Appl. Phys, vol.124, p.33903, 2018.

A. Ghirri, C. Bonizzoni, D. Gerace, S. Sanna, A. Cassinese et al., YBa 2 Cu 3 O 7 microwave resonators for strong collective coupling with spin ensembles, Appl. Phys. Lett, vol.106, p.184101, 2015.

D. Bothner, T. Gaber, M. Kemmler, D. Koelle, and R. Kleiner, Improving the performance of superconducting microwave resonators in magnetic fields, Appl. Phys. Lett, vol.98, p.102504, 2011.

G. Stan, S. B. Field, and J. M. Martinis, Critical Field for Complete Vortex Expulsion from Narrow Superconducting Strips, Phys. Rev. Lett, vol.92, p.97003, 2004.

K. H. Kuit, J. R. Kirtley, W. Van-der-veur, C. G. Molenaar, F. J. Roesthuis et al., Vortex trapping and expulsion in thin-film YBa 2 Cu 3 O 7 strips, Phys. Rev. B, vol.77, p.134504, 2008.

S. E. De-graaf, A. V. Danilov, A. Adamyan, and S. E. Kubatkin, A near-field scanning microwave microscope based on a superconducting resonator for low power measurements, Rev. Sci. Instrum, vol.84, p.23706, 2013.

S. E. De-graaf, A. V. Danilov, A. Adamyan, T. Bauch, and S. E. Kubatkin, Magnetic field resilient superconducting fractal resonators for coupling to free spins, J. Appl. Phys, vol.112, p.123905, 2012.

N. Samkharadze, A. Bruno, P. Scarlino, G. Zheng, D. P. Divincenzo et al., High-Kinetic-Inductance Superconducting Nanowire Resonators for Circuit QED in a Magnetic Field, Phys. Rev. Appl, vol.5, p.44004, 2016.

M. S. Khalil, M. J. Stoutimore, F. C. Wellstood, and K. D. Osborn, An analysis method for asymmetric resonator transmission applied to superconducting devices, J. Appl. Phys, vol.111, p.54510, 2012.

, for the device parameters, the fitting procedure, the magnetic field alignment, the thickness dependence in a magnetic field, calculation of the threshold field, and the full data set of resonators in a parallel magnetic field

D. J. Thoen, B. G. Bos, E. A. Haalebos, T. M. Klapwijk, J. J. Baselmans et al., Superconducting NbTiN Thin Films With Highly Uniform Properties over a 100 mm Wafer, IEEE Trans. Appl. Supercond, vol.27, p.1, 2017.

R. Barends, , 2009.

I. Nsanzineza and B. L. Plourde, Trapping a Single Vortex and Reducing Quasiparticles in a Superconducting Resonator, Phys. Rev. Lett, vol.113, p.117002, 2014.

C. Lee, B. Jankó, I. Derényi, and A. Barabási, Reducing vortex density in superconductors using the ratchet effect, Nature, vol.400, p.337, 1999.

D. Bothner, T. Gaber, M. Kemmler, D. Koelle, R. Kleiner et al., Magnetic hysteresis effects in superconducting coplanar microwave resonators, Phys. Rev. B, vol.86, p.14517, 2012.

W. Woods, G. Calusine, A. Melville, A. Sevi, E. Golden et al.,

. Oliver, Determining interface dielectric losses in superconducting coplanar waveguide resonators, 2018.

M. L. Latimer, G. R. Berdiyorov, Z. L. Xiao, W. K. Kwok, and F. M. Peeters, Vortex interaction enhanced saturation number and caging effect in a superconducting film with a honeycomb array of nanoscale holes, Phys. Rev. B, vol.85, p.12505, 2012.

M. Velez, D. Jaque, J. I. Martín, M. I. Montero, I. K. Schuller et al., Vortex lattice channeling effects in Nb films induced by anisotropic arrays of mesoscopic pinning centers, Phys. Rev. B, vol.65, p.104511, 2002.

V. V. Moshchalkov, M. Baert, V. V. Metlushko, E. Rosseel, M. J. Van-bael et al., Pinning by an antidot lattice: The problem of the optimum antidot size, Phys. Rev. B, vol.57, p.3615, 1998.

I. Nsanzineza and B. Plourde, Trapping a Single Vortex and Reducing Quasiparticles in a Superconducting Resonator, Phys. Rev. Lett, vol.113, p.117002, 2014.

T. Frey, P. J. Leek, M. Beck, A. Blais, T. Ihn et al., Dipole Coupling of a Double Quantum Dot to a Microwave Resonator, Phys. Rev. Lett, vol.108, p.46807, 2012.

V. Ranjan, G. Puebla-hellmann, M. Jung, T. Hasler, A. Nunnenkamp et al., Clean carbon nanotubes coupled to superconducting impedance-matching circuits, Nat. Commun, vol.6, p.7165, 2015.

R. Wang, R. S. Deacon, D. Car, E. P. Bakkers, and K. Ishibashi, InSb nanowire double quantum dots coupled to a superconducting microwave cavity, Appl. Phys. Lett, vol.108, p.203502, 2016.

K. Flöhr, M. Liebmann, K. Sladek, H. Y. Günel, R. Frielinghaus et al., Manipulating InAs nanowires with submicrometer precision, Rev. Sci. Instrum, vol.82, p.113705, 2011.

Ö. Gül, H. Zhang, F. K. De-vries, J. Van-veen, K. Zuo et al., Hard superconducting gap in InSb nanowires, Nano Lett, vol.17, p.2690, 2017.