A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Usp, vol.44, p.131, 2001.

L. Fu and C. L. Kane, Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator, Phys. Rev. Lett, vol.100, p.96407, 2008.

C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys, vol.80, p.1083, 2008.

R. M. Lutchyn, J. D. Sau, and S. Sarma, Majorana Fermions and a Topological Phase Transition in Semiconductor-Superconductor Heterostructures, Phys. Rev. Lett, vol.105, p.77001, 2010.

Y. Oreg, G. Refael, and F. Von-oppen, Helical Liquids and Majorana Bound States in Quantum Wires, Phys. Rev. Lett, vol.105, p.177002, 2010.

B. Nijholt and A. R. Akhmerov, Orbital effect of magnetic field on the Majorana phase diagram, Phys. Rev. B, vol.93, p.235434, 2016.

V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. Bakkers et al., Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science, vol.336, p.1003, 2012.

S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth, T. S. Jespersen et al., Exponential protection of zero modes in Majorana islands, Nature, vol.531, p.206, 2016.

M. T. Deng, S. Vaitiek?nas, E. B. Hansen, J. Danon, M. Leijnse et al., Majorana bound state in a coupled quantum-dot hybrid-nanowire system, Science, vol.354, p.1557, 2016.

Ö. Gül, H. Zhang, J. D. Bommer, M. W. De-moor, D. Car et al., Ballistic Majorana nanowire devices, Nat. Nanotechnol, vol.13, p.192, 2018.

H. Zhang, Quantized Majorana conductance, Nature, vol.556, p.74, 2018.

R. M. Lutchyn, E. P. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus et al., Majorana zero modes in superconductor-semiconductor heterostructures, Nat. Rev. Mater, vol.3, p.52, 2018.

R. Aguado, Majorana quasiparticles in condensed matter, Riv. Nuovo Cimento, vol.40, p.523, 2017.

A. Vuik, D. Eeltink, A. R. Akhmerov, and M. Wimmer, Effects of the electrostatic environment on the Majorana nanowire devices, New J. Phys, vol.18, p.33013, 2016.

A. E. Antipov, A. Bargerbos, G. W. Winkler, B. Bauer, E. Rossi et al., Effects of Gate-Induced Electric Fields on Semiconductor Majorana Nanowires, Phys. Rev. X, vol.8, p.31041, 2018.

B. D. Woods, T. D. Stanescu, and S. Sarma, Effective theory approach to the Schrödinger-Poisson problem in semiconductor Majorana devices, Phys. Rev. B, vol.98, p.35428, 2018.

A. E. Mikkelsen, P. Kotetes, P. Krogstrup, and K. Flensberg, Hybridization at Superconductor-Semiconductor Interfaces, Phys. Rev. X, vol.8, p.31040, 2018.

C. Fasth, A. Fuhrer, L. Samuelson, V. N. Golovach, and D. Loss, Direct Measurement of the Spin-Orbit Interaction in a Two-Electron InAs Nanowire Quantum Dot, Phys. Rev. Lett, vol.98, p.266801, 2007.

S. Nadj-perge, V. S. Pribiag, J. W. Van-den, K. Berg, S. R. Zuo et al., Spectroscopy of Spin-Orbit Quantum Bits in Indium Antimonide Nanowires, Phys. Rev. Lett, vol.108, p.166801, 2012.

M. W. De-moor, J. D. Bommer, D. Xu, G. W. Winkler, A. E. Antipov et al., Electric field tunable superconductor-semiconductor coupling in Majorana nanowires, New J. Phys, vol.20, p.103049, 2018.

A. E. Hansen, M. T. Björk, I. C. Fasth, C. Thelander, and L. Samuelson, Spin relaxation in InAs nanowires studied by tunable weak antilocalization, Phys. Rev. B, vol.71, p.205328, 2005.

I. Van-weperen, B. Tarasinski, D. Eeltink, V. S. Pribiag, S. R. Plissard et al., Spin-orbit interaction in InSb nanowires, Phys. Rev. B, vol.91, p.201413, 2015.

J. Kammhuber, M. C. Cassidy, F. Pei, M. P. Nowak, A. Vuik et al., Conductance through a helical state in an Indium antimonide nanowire, vol.8, p.478, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01712995

J. Osca, D. Ruiz, and L. Serra, Effects of tilting the magnetic field in one-dimensional Majorana nanowires, Phys. Rev. B, vol.89, p.245405, 2014.

S. Rex and A. Sudbø, Tilting of the magnetic field in Majorana nanowires: Critical angle and zero-energy differential conductance, Phys. Rev. B, vol.90, p.115429, 2014.

, for experimental details, theoretical details, and additional experimental data, which includes Refs

D. Car, J. Wang, M. A. Verheijen, E. P. Bakkers, and S. R. Plissard, Rationally designed single-crystalline nanowire networks, Adv. Mater, vol.26, p.4875, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01080109

K. Flöhr, M. Liebmann, K. Sladek, H. Y. Günel, R. Frielinghaus et al., Manipulating InAs nanowires with submicrometer precision, Rev. Sci. Instrum, vol.82, p.113705, 2011.

D. B. Suyatin, C. Thelander, M. T. Björk, I. Maximov, and L. Samuelson, Sulfur passivation for ohmic contact formation to InAs nanowires, Nanotechnology, vol.18, p.105307, 2007.

O. Gül, H. Zhang, F. K. De-vries, J. Van-veen, K. Zuo et al., Hard superconducting gap in InSb nanowires, vol.17, p.2690, 2017.

C. Liu, J. D. Sau, and S. Sarma, Role of dissipation in realistic Majorana nanowires, Phys. Rev. B, vol.95, p.54502, 2017.

J. Danon, E. B. Hansen, and K. Flensberg, Conductance spectroscopy on Majorana wires and the inverse proximity effect, Phys. Rev. B, vol.96, p.125420, 2017.

D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B, vol.14, p.2239, 1976.

W. D. Gropp, H. G. Kaper, G. K. Leaf, D. M. Levine, M. Palumbo et al., Numerical simulation of vortex dynamics in type-II superconductors, J. Comput. Phys, vol.123, p.254, 1996.

Q. Du and X. Wu, Numerical solution of the three-dimensional Ginzburg-Landau models using artificial boundary, SIAM J. Numer. Anal, vol.36, p.1482, 1999.

E. Prada, P. San-jose, and R. Aguado, Transport spectroscopy of NS nanowire junctions with Majorana fermions, Phys. Rev. B, vol.86, p.180503, 2012.

F. Pientka, G. Kells, A. Romito, P. W. Brouwer, and F. Von-oppen, Enhanced Zero-Bias Majorana Peak in the Differential Tunneling Conductance of Disordered Multisubband Quantum-Wire/Superconductor Junctions, Phys. Rev. Lett, vol.109, p.227006, 2012.

T. D. Stanescu, S. Tewari, J. D. Sau, and S. Sarma, To Close or Not to Close: The Fate of the Superconducting Gap Across the Topological Quantum Phase Transition in Majorana-Carrying Semiconductor Nanowires, Phys. Rev. Lett, vol.109, p.266402, 2012.

D. J. Van-woerkom, A. Geresdi, and L. P. Kouwenhoven, One minute parity lifetime of a NbTiN Cooper-pair transistor, Nat. Phys, vol.11, p.547, 2015.

W. Chang, S. M. Albrecht, T. S. Jespersen, F. Kuemmeth, P. Krogstrup et al., Hard gap in epitaxial semiconductor-superconductor nanowires, Nat. Nanotechnol, vol.10, p.232, 2015.

S. Gazibegovic, Epitaxy of advanced nanowire quantum devices, Nature, vol.548, p.434, 2017.

S. Takei, B. M. Fregoso, H. Hui, A. M. Lobos, and S. Sarma, Soft Superconducting Gap in Semiconductor Majorana Nanowires, Phys. Rev. Lett, vol.110, p.186803, 2013.

C. E. Pryor and M. E. Flatté, Landé g Factors and Orbital Momentum Quenching in Semiconductor Quantum Dots, Phys. Rev. Lett, vol.96, p.26804, 2006.

F. Qu, J. Van-veen, F. K. De-vries, A. J. Beukman, M. Wimmer et al., Quantized conductance and large g-factor anisotropy in InSb quantum point contacts, Nano Lett, vol.16, p.7509, 2016.

C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal, Kwant: a software package for quantum transport, New J. Phys, vol.16, p.63065, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02007856

C. Liu, J. D. Sau, T. D. Stanescu, and S. Sarma, Conductance smearing and anisotropic suppression of induced superconductivity in a Majorana nanowire, Phys. Rev. B, vol.99, p.24510, 2019.

B. Van-heck, J. I. Väyrynen, and L. I. Glazman, Zeeman and spin-orbit effects in the Andreev spectra of nanowire junctions, Phys. Rev. B, vol.96, p.75404, 2017.

H. Pan, J. D. Sau, T. D. Stanescu, and S. Sarma, Curvature of gap closing features and the extraction of Majorana nanowire parameters, Phys. Rev. B, vol.99, p.54507, 2019.

T. D. Stanescu, R. M. Lutchyn, and S. Sarma, Dimensional crossover in spin-orbit-coupled semiconductor nanowires with induced superconducting pairing, Phys. Rev. B, vol.87, p.94518, 2013.

T. D. Stanescu, R. M. Lutchyn, and S. Sarma, Majorana fermions in semiconductor nanowires, Phys. Rev. B, vol.84, p.144522, 2011.

W. S. Cole, S. D. Sarma, and T. D. Stanescu, Effects of large induced superconducting gap on semiconductor Majorana nanowires, Phys. Rev. B, vol.92, p.174511, 2015.

C. Reeg, D. Loss, and J. Klinovaja, Metallization of a Rashba wire by a superconducting layer in the strongproximity regime, Phys. Rev. B, vol.97, p.165425, 2018.

H. Zhang, Ballistic superconductivity in semiconductor nanowires, Nat. Commun, vol.8, p.16025, 2017.