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Abstract

Motivated by stability analysis of large scale power systems, we de-
scribe how the Lasserre (moment - sums of squares, SOS) hierarchy can be
used to generate outer approximations of the region of attraction (ROA)
of sparse polynomial differential systems, at the price of solving linear
matrix inequalities (LMI) of increasing size. We identify specific sparsity
structures for which we can provide numerically certified outer approxi-
mations of the region of attraction in high dimension. For this purpose, we
combine previous results on non-sparse ROA approximations with sparse
semi-algebraic set volume computation.

Keywords: Stability analysis, Convex optimisation, Large-scale systems,
Electric power systems.

1 Introduction

This paper describes a computational technique for generating outer approxi-
mations of finite time regions of attraction (ROA) of sparse polynomial ordinary

*The research was partly funded by Réseaux de Transport d’Electricité (RTE).



differential equations (ODEs), with the purpose of assessing the stability of large
scale power systems. These outer approximations contain all initial conditions
for which the dynamical systems can operate safely. Indeed, power networks
are usually modeled by an interconnection of weakly coupled nodes, while the
dynamic behaviour of the system is mainly driven by generators, which are
modeled by (closed-loop controlled) ordinary differential equations.

Most of the technical literature on stability analysis for power networks fo-
cuses on the construction of Lyapunov functions computed by nonconvex opti-
mization, and more specifically a bilinear variant of polynomial sums of squares
(SOS) optimization, as in e.g. Anghel et al. (2013); Tacchi et al. (2018); Izumi
et al. (2018). An inner approximation of the infinite time ROA is then modeled
as a sublevel set of the Lyapunov function, and various heuristics are used to
enlarge this sublevel set as much as possible, see e.g. Chesi (2011) and references
therein. It can be enforced that the Lyapunov functions have the same sparsity
structure as the system to be analyzed, see e.g. Zheng (2019) and references
therein, but to our knowldge, it was never applied to ROA approximation. The
work of Kundu and Anghel (2015, 2017) is a first step towards the application
of Lyapunov techniques to ROA estimation for interconnected systems.

In Henrion and Korda (2014) the authors derive an infinite-dimensional lin-
ear programming approach to finite time ROA computation, with a primal prob-
lem on measures and a dual problem on continuous functions. Computationally
speaking, measures (resp. continuous functions) are discretized into moments
(resp. polynomial sums of squares, SOS) of increasing degrees, resulting in a hi-
erarchy of finite dimensional convex optimization problems, usually semidefinite
programming (SDP) problems or linear matrix inequalities (LMI). This is an
application of the so-called moment-SOS or Lasserre hierarchy, a mathematical
technology that can be used to solve a variety of problems in applied mathe-
matics and engineering, see Lasserre (2010); Henrion (2013); Lasserre (2015).
In the context of ROA approximation, the hierarchy generates a family of outer
approximations that become tighter as the degree increases. Non-sparse approx-
imations converge in volume to the ROA when the degree tends to infinity, see
(Henrion and Korda, 2014, Theorem 6). Inner approximations of the ROA can
be constructed as well, see Korda et al. (2013). The convergence proof relies on
previous work on the application of the moment-SOS hierarchy for computing
the volume of semi-algebraic sets, see Henrion et al. (2009).

The main contribution of the current paper is to identify a sparsity structure
that allows us to apply the moment-SOS hierarchy for sparse ROA approxima-
tion. We construct a hierarchy of outer approximations of increasing degree,
though the sparsity is introduced at the price of the convergence proof that no
longer holds. For this, we rely heavily on Tacchi et al. (2019) which focuses on
the approximation of the volume of a sparse semi-algebraic set.

In the context of power systems stability analysis, our paper can be seen an
extension to large-scale systems of results of Josz et al. (2019); Oustry et al.
(2019 a,b). It can be interpreted as well as a finite time dual approach to the
standard Lyapunov approach of Chesi (2011); Anghel et al. (2013); Kundu and
Anghel (2017); Tacchi et al. (2018); Zheng (2019). We prefer however to see the



Lyapunov approach as a dual to an infinite time occupation measure approach,
in the sense that Lyapunov functions are obtained as a (dual Lagrangian) certifi-
cate of a property (stability) of the system’s trajectories (modeled by occupation
measures in a primal problem). The advantage of considering finite time ROA
instead of standard Lyapunov ROA is the linearity of its characterization (which
leads to solving convex LMIs instead of nonconvex bilinear matrix inequalities
as in the Lyapunov framework), as well as the proof of convergence in volume
(in the non-sparse case).

Section 2 is dedicated to the problem statement, while in section 3 we intro-
duce the framework that we use for our computations. Section 4 presents our
main results, and our numerical experiments are gathered in section 5. Finally,
we give our conclusions and perspectives in section 6.

2 Problem Statement

Let N € N. We consider the following system of sparsely coupled polynomial
ODEs:

Ty = fn(TN_1,7N) zNn € XN
where X1, ..., Xy are finite dimensional compact semialgebraic sets and f1,..., fx

are polynomial maps. We define X := X1 X ... x Xy, f = (f1,..., fn) and
n := dim X. Note that X is also a compact semialgebraic set.

Given a finite time horizon T' > 0 and a compact semialgebraic target set
XT:= XTI x...x X%, we aim at computing outer approximations of the finite
time region of attraction (ROA), defined as
(2)

0
XO(T, X7) = {xo eme. o) € X e 0] }

(T)2°%) e XT

where z(t|z°) denotes the value at time ¢ of the unique solution to (1) with
initial condition 2°. In the following, the dependance of X in T" and X7 will
be implicit.

3 Framework

3.1 Infinite dimensional optimization

It is shown in Henrion and Korda (2014) that X° can be obtained as the support
of the measure p° solution to the infinite dimensional linear programming (LP)
problem
p* = max u’(X)
st A" —pbe M(X), (3)
Oepr + div(f ) + orp” = dop®

where the unknowns are measures p° € M(X)y, p € M([0,T] x X)4, pT €
M(XT), and M(X), denotes the cone of Borel measures on X, A" is the n



dimensional Lebesgue measure such that [ dA\™ = [¢(z) dx for any measur-
able ¢ : R” — R and d; denotes the Dirac measure in ¢ such that [ ¢ &, = ¢(¢)
for any continuous ¢ : [0,T] — R.

The last constraint is the so-called Liouville transport partial differential
equation (PDE) whose characteristics are exactly the trajectories associated to
solutions of the ODE (1). Henrion and Korda (2014) proved that the solution
of (3) is given by

WOA) = MANX)
I X A) = [0y Jx xala(tlz®)) w0 (da®) di (1)
WA = [ xae(T]) p0(da)

for any Borel sets A C X and I C [0,T], where x denotes the boolean indi-
cator function. These measures are respectively called the initial measure, the
occupation measure and the terminal measure.
Problem (3) has a dual formulation on functions that can be formulated as
follows:
d* := inf wa dA"
st w>0(0,)+1 (5)
8{1} + Vo - f <0
v(-,T) > 0on XT

where the unknowns are functions v € C1([0,T] x X), w € C°(X) and C*(X)
denotes the vector space of continuous and k times continuously differentiable
functions on X, and C*(X), := {¢p € CF(X) : Vo € X,9(z) > 0} is its cone of
nonnegative elements.

It was shown in Henrion and Korda (2014) that any v feasible for (5) is such
that X0 := {20 € X : v(0,2°) > 0} D X° using the fact that v decreases along
trajectories (similarly to Lyapunov functions). In addition to that, Henrion and
Korda also proved that p* = d* (this is the strong duality property), from which
one can deduce the existence of a sequence of feasible polynomials (vg, wg)ren
of increasing degrees such that X converges to X in volume, i.e.

A" (X9 \X°) = 0 when k — oc.

Such a sequence of polynomials is computed through convex optimization using
the Moment-SOS hierarchy.

3.2 The Moment-SOS hierarchy

The Moment-SOS hierarchy is a primal-dual hierarchy of convex programs that
grow in size and whose solutions give certified approximations to the solutions of
infinite dimensional LPs on measures and functions. For the sake of simplicity
and since we do not resort to the Moment side of the hierarchy, we will only
present the SOS part.

A polynomial o € R[z] is called a sum of squares (SOS) if it can be written
o =pi+...+pi for some k € N, p; € Rlz]. Sums of squares are related



to positive and nonnegative polynomials through Putinar’s Positivstellensatz
(P-satz):

Theorem 1 (Putinar (1993), Theorem 1.3). Given polynomials ¢1,...,gn €
R[z] such that gi(z) = R? — |x|? for some R > 0, let X := {z € R" : g1(z) >
0,....9n(x) > 0}, X(X) := {00 + 0101 + ... + oNgN, 00,01,...0n SOS},
P(X):={peR[z]:p>00on X} and P*(X):={peR[z] :p>00onX}. Then,
one has

P*(X) € B(X) € P(X). (6)

Thus, using the Stone-Weierstrass Theorem (stating that any continuous
function can be approximated with polynomials on a compact set) and Theorem
1, one can look for feasible plans to (5) by replacing all inequality constraints
with SOS constraints. This way, one obtains a hierarchy of SOS problems
indexed with the degree of the unknown polynomials. The infinite dimensional
LP problem is thus turned into a hierarchy of finite dimensional SDP problems
(i.e. convex optimization problems with LMI constraints), using a last result:

Theorem 2 (see e.g. Lasserre (2010), Proposition 2.1). The constraint that a
polynomial is SOS is a linear matriz inequality (LMI).

This work was extended to inner approximations of the ROA in Korda et al.
(2013), and to inner approximations of the maximum positively invariant set in
Oustry et al. (2019 b). It has the advantage to reduce the estimation of finite
time ROA to a hierarchy of convex optimization programs, while Lyapunov-
based methods for ROA estimation rely on nonconvex bilinear matrix inequali-
ties, see e.g. Izumi et al. (2018).

The issue that one often encounters is that the moment-SOS hierarchy re-
sorts to semidefinite programming (SDP) which does not scale well (Oustry et
al. (2019 a) pushed to dimension 5 state space). In order to tackle higher di-
mensional problems, one has to exploit additional properties such as sparsity or
symmetries.

4 Main Results

4.1 A sparse infinite dimensional program

With the application to electrical power systems in mind, we focus on exploiting
the network-like structure in our computations. A power network model has
the particularity that not all the variables directly interact in the equations.
Especially, nodes that are geographically far from each other are not connected
together in the dynamics of the system. This corresponds to a sparse structure,
which motivates this work.

Following the inspiration given by both Tacchi et al. (2019) and Zheng
(2019), we derive an LP problem that can be split into small dimensional sub-
problems, and thus is a lot more scalable than the dense formulation (5). To



that end, we introduce the number of cliques K := N — 1 as well as the com-

pact semialgebraic sets Y; := X; x X; 41, Y7 := XI' x XI| and n; := dimY;,
t=1,..., K. Then, one can write the following LP on functions:
&= inf / wr A+t / wic A" (7a)
Y1 YK
w; > v;1(0,-) +v;2(0,-) +1 (7b)
WK ZUK(O,~)+1 (7C)
v;1(T, ) +vj2(T,-) > 0on Y}" (7d)
v (T,-) > 0on Y (7e)
i+ Oz, V52 - fi41 <0 (7f)
Oyvj1 + Opvjo + Oz vj1 - fj Sy (72)
Oy + 6(%)1};{ . (;i) <0 (7h)

where the unknowns are functions w; € C(Y;)4, u; € C([0,T] x X;41), vj1 €
CH[0,T] x X;), vja € CH([0,T] x Xj41), vi € C1([0,T] x Yk ). Here the idea
is to split the decision variables v and w of problem (5) and distribute them
along the components of our sparse system. The decision variables u; are added
to take into account the interconnexion between the components. By doing so,
we end up with inequality constraints involving only the variables of one of the
considered subsystems at a time, which drastically reduces the dimension of the
decision space in the SOS hierarchy.

Our main result is the numerical certification that can be stated as follows:

Theorem 3. Let (wj, WK, Uy, Vj1, V52, vK)j:L,,,,K,l be a feasible plan for prob-
lem (7), and consider the set

o . n . (01(0,25) +v52(0,7541)); > 0
X0 ) = {x cR": o0, p o) = 0 . (8)

Then, one has X° C X(Ovj)]_.

Proof. Let 2° € X°. Then, by definition, z(T|z°) € XT, and according to
constraint (7d) one has

01 (T, z;(T|2°)) + vj2(T, 211 (T]2%)) > 0.



Moreover we know that
0 0 Td
o (T (7)) —op0) = [ Gl ta) @

= / 5}’031 t LL'J t‘ ))

Oy v (b (8a°)) - fi(2j (t|2°), 2541 (t|2°)) dt
(7g)

T
E [t -
0
oo (t, 41 (tz0)) dt.
The same reasoning on v;o yields

(7f)
sz(T,xj+1T|ﬂf ) = vj2(0,29,,) <

Jo Bvja(t, w541 (ta°)) = wj(t, 2541 (t[2)) dt.
Finally, adding both inequalities, one obtains

0 < (T, (T1a%) + vja(T, 201 (T]a%))

<
< 0;1(0,z; )+vJ2(0,mJ+1)
Since vg is nonnegative at time 7 in Y;F in virtue of (7e), and decreasing

along trajectories in virtue of (7h), the last required inequality is also satisfied.

Thus, 2° € X?Ui)j. O

With this formulation, we design a method to compute sparse outer approx-
imations of the ROA, using only convex semidefinite programming, while all
existing methods resort only to nonconvex optimization, namely bilinear ma-
trix inequalities. However, the constraint that the approximation should be
sparse is a significant restriction that prevents us from proving convergence to
the actual ROA. Indeed, with the following elementary exemple we show that
in the case of sparse dynamics and target set, the ROA has no reason to be
sparse.

4.2 1Is the ROA sparse ?

Consider the simple case where N = 3 and the dynamics are:

& = (22 +23-0.25)1 (9a)
iy = (23423 —0.25)7 (9b)
i3 = (23 + 22 —0.25)xs. (9c)

Here, it is clear that the bicylinder B := {z € R® : 23 + 23 < 0.25, 23+ 23 <
0.25} is contained in the infinite time ROA of the equilibrium point 0.



However, this ROA is strictly larger than our sparsely defined B, and it
intricates all variables, which means that it cannot be sparsely described.

To illustrate this fact, we plotted the evolution of xy(t|z°) with different
initial conditions x° outside the B (see Figures 4.2 and 2). In the three cases,
(23, 29) is in the disk of radius 0.5 such that x5 (¢|z°) and z3(¢/2°) go to 0 quickly.

Figure 1: x1(¢/2°) with 29 = 0.46, 2 = 29 = 0.25.

However, depending on both 29 and z9, the trajectory of z;(t|z°) is either
stable (with quick convergence to 0) or unstable (with finite time explosion).

This example highlights the non-sparsity of the infinite time ROA. The same
observation carries over for any finite time ROA (say for T = 100, X7 =
[—0.1,0.1]3) which is very close to the infinite time ROA.

From this we can deduce that exploiting sparsity prevents us to ensure the
convergence of our ROA estimations towards the actual ROA, the former being
sparsely defined while the latter is not. However, we can still obtain good outer
approximations of the ROA using this technique. The advantages that one gains
while giving up convergence are twofold :

e The computational time is drastically reduced for systems that were tractable
using the converging dense framework.

e This framework allows to handle systems that are intractable with the
standard dense framework, as shown experimentally below.

5 Numerics
We tested our formulation (7) on two numerical examples: the first one is the

example that we mentioned in section 4.2, and the second one is a dimension
20 chain constituted by 10 interconnected Van der Pol oscillators.
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Figure 2: z1(t|2°) with 2§ = 0.46, 2§ = 0.26, 2§ = 0.25 (left) and 29 = 0.46,

z9 = 0.25, 2§ = 0.3 (right).

5.1 Reducing computational time: a toy example

To check that our sparse method is relevant, we implemented it on system (9)
and compared its performances to those of the dense formulation of Henrion
and Korda (2014), with SOS polynomials of degrees 8 (Figure 3) and 10 (Figure
4), with state constraint set X = [—1,1]3, time horizon T = 100 and target set

X7 =[-0.1,0.13.

On these figures we also plot the bicylinder (that should be inside the infi-
nite time ROA and the finite time ROA X° for T large enough and X* small

enough).
We gathered the computational times in Table 1.

degree | dense | sparse
4 4 4
6 24 10
8 334 83
10 5542 440
12 - 1865

Table 1: Computation times (in seconds) for the dense and sparse formulations.

The first thing one can note is the important gain in computational time:
our sparse formulation is by far less costly than the standard dense formulation,
and the gap increases with the degree (at degree 10 the sparse formulation is

more than 10 times faster).

Second, one can see that while at degree 8 the sparse approximation is less
tight than the dense one, at degree 10 the dense approximation outperforms the



Figure 3: Degree 8 sparse (red) and dense (green) ROA approximations and the
bicylinder (brown).

sparse one around & = 0 (blue-green spot on the side of the surface), and more
generally both approximations are close one to another.

5.2 High dimension: a chain of Van der Pol oscillators

To test our method on large scale systems, we take the same example as in
Kundu and Anghel (2015), but adapted to our first sparsity pattern: we consider
a chain of Van der Pol oscillators linked with random couplings. The general
framework is as follows:

?L’j = 083/3 + 10(122y]2 — 021)ZJ + €525 41Y; (10b)
s = 0.8yx +10(1.2%y3 — 0.21)zx (10c)

withi=1,...,Kand j=1,..., K —1. This corresponds to our sparse polyno-
mial ODE (1) with n; =2 and a; = (y;,2;) fori=1,...,K—1, ng =ng41 =1
and g = yx and zxy1 = zx (thus n = 2K). One can notice that the
sparse structure is even more specific than stated in our general framework
since fj(ﬁl?j,l‘j_H) = (h;(?fJZLQ) for j = 1, .. .,K —1.

Here €; is a random variable that follows the uniform law on [—0.5,0.5],
modelling a weak interaction between the oscillators. For reporting our results,

10



Figure 4: Degree 10 sparse (red) and dense (green) ROA approximations and
the bicylinder (brown).

we let K =10, X = [-1,1]*°, T = 30 and X = [-0.1,0.1]*° and we use a
particular sample e. We report on degree 12 certificates, which takes approx-
imately 23’, among which 11°35” for declaring the decision variables with the
YALMIP interface, 10°46” for solving the SDP problem with MOSEK and 41”
for plotting the results with Matlab.

For j =1,..., K — 1 we plot the sets

X7 = {x; € X; : v;1(0,2;) + v;2(0,0) > 0}

which correspond to T' = 30, X7 = [~0.1,0.1]? for the j-th Van der Pol oscillator
with perturbation €;z;1y; where z;,1 is a trajectory from the (j + 1)-th Van
der Pol oscillator, starting in 0 at ¢ = 0, see Figure 5.

We also plot the set

X% = {mK € Xk : UK(0,37K737K+1) 2> 0}

which corresponds to T = 30, XT = [~0.1,0.1]? for the K-th (non perturbed)
Van der Pol oscillator, see Figure 6.

As expected considering the low magnitude of the interactions, on Figure 5
one can identify shapes similar to the ROA of a standard Van der Pol oscillator.
However, the shapes are perturbed: their respective sizes differ slightly. The
standard framework of Henrion and Korda (2014) cannot be used here, due to
the high dimension of the state space. It is also important to note that an

11
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Figure 6: X9, corresponds to a regular Van der Pol oscillator.
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important part of the computational time was spent for modelling the SDP
problem, while the SDP solver was quite fast, once the decision variables were
properly declared. We believe that these results are quite encouraging for future
works on sparse ROA approximation.

6 Conclusion

This work is a first step towards convex computation of large scale stability
regions for sparse systems. Like Lyapunov-based methods, this framework gives
no convergence guarantee for the polynomial approximations when the degree
tends to infinity, due to the strong sparsity constraints imposed to the SOS
certificates. However, we have been able to reduce the problem of assessing
stability of a large scale sparse system into a tractable convex problem. In our
opinion this is a complete novelty, since previous works resulted into nonconvex
bilinear problems.

This framework is valid for any chain of coupled ODEs, and it can readily
be extended to other sparsity patterns, as highlighted in Tacchi et al. (2019).
The presentation of the results is however more complicated, which is the reason
why we only presented chained ODEs in this paper.

For now, we applied it only for outer approximations of the finite time ROA,
while inner approximations of the infinite time ROA and maximal positively
invariant sets remain to be studied. Future work will also include the transient
stability assessment of a meshed multi-machine system as in Anghel et al. (2013);
Tacchi et al. (2018), and the stability analysis of different converter grid-forming
controls as in Arghir et al. (2018); Tayyebi et al. (2019).
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