J. Zhang, M. Gecevi?ius, M. Beresna, and P. G. Kazansky, Seemingly Unlimited Lifetime Data Storage in Nanostructured Glass, Physical Review Letters, vol.112, p.33901, 2014.

M. Gu, X. Li, and Y. Cao, Optical storage arrays: A perspective for future big data storage, Light: Science & Applications, vol.3, p.177, 2014.

I. Satoh, S. Ohara, N. Akahira, and M. Takenaga, Key technology for high density rewritable DVD (DVD-RAM)

, IEEE Transactions on Magnetics, vol.34, pp.337-342, 1998.

H. J. Borg, Phase-Change Media for High-Numerical-Aperture and Blue-Wavelength Recording, Japanese Journal of Applied Physics, vol.40, p.1592, 2001.

B. J. Zeng, R. W. Ni, J. Z. Huang, Z. Li, and X. S. Miao, Polarization-based multiple-bit optical data storage, Journal of Optics, vol.16, p.125402, 2014.

J. Tominaga, T. Nakano, and N. Atoda, An approach for recording and readout beyond the diffraction limit with an Sb thin film, Applied Physics Letters, vol.73, pp.2078-2080, 1998.

M. D. Mottaghi and C. Dwyer, Thousand-Fold Increase in Optical Storage Density by Polychromatic Address Multiplexing on Self-Assembled DNA Nanostructures, Advanced Materials, vol.25, pp.3593-3598, 2013.

J. H. Strickler and W. W. Webb, Three-dimensional optical data storage in refractive media by two-photon point excitation, Optics Letters, vol.16, pp.1780-1782, 1991.

P. J. Van-heerden, Theory of Optical Information Storage in Solids, Applied Optics, vol.2, pp.393-400, 1963.

D. Psaltis and G. W. Burr, Holographic data storage, Computer, vol.31, pp.52-60, 1998.

C. Girard, Near fields in nanostructures, Reports on Progress in Physics, vol.68, pp.1883-1933, 2005.

L. Novotny and B. Hecht, Principles of Nano-Optics, 2006.

S. Maier, Plasmonics: Fundamentals and Applications, 2010.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk'yanchuk, Optically resonant dielectric nanostructures, Science, vol.354, 2016.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, Tuning the Color of Silicon Nanostructures, Nano Letters, vol.10, pp.2649-2654, 2010.

P. R. Wiecha, Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas, Nature Nanotechnology, vol.12, pp.163-169, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01850271

M. Mansuripur, Plasmonic nano-structures for optical data storage, Optics Express, vol.17, pp.14001-14014, 2009.

W. T. Chen, Manipulation of multidimensional plasmonic spectra for information storage, Applied Physics Letters, vol.98, p.171106, 2011.

Y. Cui, I. Y. Phang, R. S. Hegde, Y. H. Lee, and X. Y. Ling, Plasmonic Silver Nanowire Structures for Two-Dimensional Multiple-Digit Molecular Data Storage Application, ACS Photonics, vol.1, pp.631-637, 2014.

M. A. El-rabiaey, N. F. Areed, and S. S. Obayya, Novel Plasmonic Data Storage Based on Nematic Liquid Crystal Layers, Journal of Lightwave Technology, vol.34, pp.3726-3732, 2016.

P. Zijlstra, J. W. Chon, and M. Gu, Five-dimensional optical recording mediated by surface plasmons in gold nanorods, Nature, vol.459, pp.410-413, 2009.

A. B. Taylor, J. Kim, and J. W. Chon, Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout, Optics Express, vol.20, pp.5069-5081, 2012.

A. B. Taylor, P. Michaux, A. S. Mohsin, and J. W. Chon, Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage, Optics Express, vol.22, pp.13234-13243, 2014.

X. Li, Y. Cao, N. Tian, L. Fu, and M. Gu, Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate, Optica, vol.2, pp.567-570, 2015.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures, ACS Photonics, vol.5, pp.1365-1369, 2018.

P. Albella, Low-Loss Electric and Magnetic Field-Enhanced Spectroscopy with Subwavelength Silicon Dimers, The Journal of Physical Chemistry C, vol.117, pp.13573-13584, 2013.

M. A. Nielsen, Neural Networks and Deep Learning, 2015.

I. Goodfellow, Y. Bengio, A. Courville, and . Learning, , 2016.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, Inception-v4, Inception-ResNet and the Impact of, Residual Connections on Learning, 2016.

P. Mamoshina, A. Vieira, E. Putin, and A. Zhavoronkov, Applications of Deep Learning in Biomedicine, Molecular Pharmaceutics, vol.13, pp.1445-1454, 2016.

T. Shimobaba, Convolutional neural network-based data page classification for holographic memory, Applied Optics, vol.56, pp.7327-7330, 2017.

Y. Jo, Holographic deep learning for rapid optical screening of anthrax spores, Science Advances, vol.3, p.1700606, 2017.

I. Malkiel, Plasmonic nanostructure design and characterization via Deep Learning, Light: Science & Applications, vol.7, p.60, 2018.

J. Peurifoy, Nanophotonic particle simulation and inverse design using artificial neural networks, Science Advances, vol.4, p.4206, 2018.

L. Van-der-maaten and G. Hinton, Visualizing High-Dimensional Data Using t-SNE, Journal of Machine Learning Research, vol.9, pp.2579-2605, 2008.

, An "epoch" is a ML term, signifying one full training iteration. In each epoch, the full training dataset is randomly shuffled and used in its totality to optimize the network parameters

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, Evolutionary Optimization of Optical Antennas, Physical Review Letters, vol.109, p.127701, 2012.

Y. Rivenson, Deep Learning Enhanced Mobile-Phone Microscopy, ACS Photonics, 2018.

A. Orth, E. R. Wilson, J. G. Thompson, and B. C. Gibson, A dual-mode mobile phone microscope using the onboard camera flash and ambient light, Scientific Reports, vol.8, p.3298, 2018.

Q. Wei, Plasmonics Enhanced Smartphone Fluorescence Microscopy. Scientific Reports, vol.7, p.2124, 2017.

V. Flauraud, M. Reyes, R. Paniagua-domínguez, A. I. Kuznetsov, and J. Brugger, Silicon Nanostructures for Bright Field Full Color Prints, ACS Photonics, 2017.

A. K. González-alcalde, Optimization of alldielectric structures for color generation, Applied Optics, vol.57, pp.3959-3967, 2018.

X. Duan, S. Kamin, and N. Liu, Dynamic plasmonic colour display, Nature Communications, vol.8, p.14606, 2017.

Y. Guerfi, F. Carcenac, and G. Larrieu, High resolution HSQ nanopillar arrays with low energy electron beam lithography, Microelectronic Engineering, vol.110, pp.173-176, 2013.

Y. Guerfi, J. B. Doucet, and G. Larrieu, Thin-dielectriclayer engineering for 3D nanostructure integration using an innovative planarization approach, Nanotechnology, vol.26, p.425302, 2015.

O. J. Martin, C. Girard, and A. Dereux, Generalized Field Propagator for Electromagnetic Scattering and Light Confinement, Physical Review Letters, vol.74, pp.526-529, 1995.

P. R. Wiecha, pyGDM-A python toolkit for full-field electro-dynamical simulations and evolutionary optimization of nanostructures, Computer Physics Communications, vol.233, pp.167-192, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01835860

C. Girard, E. Dujardin, G. Baffou, and R. Quidant, Shaping and manipulation of light fields with bottom-up plasmonic structures, New Journal of Physics, vol.10, p.105016, 2008.

D. F. Edwards, Handbook of Optical Constants of Solids, pp.547-569, 1997.

B. T. Draine, The Discrete-Dipole Approximation and its Application to Interstellar Graphite Grains, Astrophysical Journal, vol.333, pp.848-872, 1988.

M. Abadi, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, 2015.

S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015.

D. P. Kingma, J. Ba, and . Adam, A Method for Stochastic Optimization, 2014.