29GHz-bandwidth monolithically integrated EAM-VCSEL

Ludovic Marigo-Lombart, Christophe Viallon, Alexandre Rumeau, Alexandre Arnoult, Stéphane Calvez, Antoine Monmayrant, Olivier Gauthier-Lafaye, Hugo Thienpont, Krassimir Panajotov, Guilhem Almuneau

To cite this version:

Ludovic Marigo-Lombart, Christophe Viallon, Alexandre Rumeau, Alexandre Arnoult, Stéphane Calvez, et al.. 29GHz-bandwidth monolithically integrated EAM-VCSEL. The European Conference on Lasers and Electro-Optics (CLEO Europe) 2019, Jun 2019, Munich, Germany. 2019. hal-02391681

HAL Id: hal-02391681
https://hal.laas.fr/hal-02391681
Submitted on 9 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
High speed VCSEL applications:
- Short-reach optical links in Datacenters
- Smartphones (3D imaging)
- Optical cables (USB, video)

High performance computing
- Free space optical links
- System on Chip (SoC)

State-of-the-art
71Gb/s VCSEL by Chalmers, IBM, 2015 (Kuchta et al., PTL, 2015)
Others approaches to increase VCSEL bandwidth:
- T-VCSEL (KTH, Amin et al., OE, 2014)
- Coupled-Cavity VCSEL (Dair et al., AOE, 2015)
- 6-VCSELs arrays (6x40 Gb/s = 240 Gb/s) (Westbergh et al., PTL, 2015)
- Dual-cavity VCSEL (Van Eidsen et al., PTL, 2008)

Our approach = Vertically Integrated Electro-Absorption Modulator on a VCSEL

⇒ Splitting up Emission / Modulation
⇒ High bandwidth
⇒ Electro-absorption modulator: high bandwidth
⇒ High devices density, small footprint
⇒ Not limited by carriers/laser dynamics

High-speed modulation with VCSELs

Original technological bricks developments:
- Molecular beam epitaxy:
 - Double microcavity stack,
 - Digital alloyed QWs (EAM),
 - Monitoring: reflectometry, optical flux monitoring (OFM), water curvature
- Self-aligned lithographic process flow:
 - etching / passivation / metallization
- BCB planarization:
 - mechanical patterning step (nanoimprint) / ICP etching
- RF design of the contact pads:
 - Microstrip geometry

Fabrication technology

EAM-VCSEL characterizations

Static electro-optical characterizations

- Wavelength detuning:
 - Reflectivity / gain & absorber
- Bias field / temperature effect on contrast ratio:
 - measurements vs modelling

Influences of biased field / temperature

Efficient modulation on EAM-VCSEL device

High frequency performance

EAM frequency bandwidth

EAM-modulated VCSEL

Modulation bandwidth demonstrated on EAM and EAM-VCSEL at 29-30 GHz

Achievements

- Vertically integrated VCSEL / Electro-absorber modulator (EAM): Original and efficient approach for overpass the limits of directly-modulated VCSELs
- Technological bricks for the fabrication of complex three-electrodes EAM-VCSEL device: MBE growth, simplified self-aligned process flow, BCB planarization
- Design/modelling and characterization of static electro-optical behavior of the EAM modulator
- Design/modelling and characterization of RF access up to 110 GHz: BCB, microstrip geometry
- High frequency (up to 40GHz) characterization of the vertical asymmetric Fabry-Perot modulator: 29-30 GHz bandwidth demonstrated

First demonstration of EAM-modulated VCSEL up to 29 GHz (Current record on directly-modulated VCSEL: 35GHz (TU Berlin))