Skip to Main content Skip to Navigation
Journal articles

Reset PID design for motion systems with Stribeck friction

Abstract : We present a reset control approach to achieve setpoint regulation of a motion system with a proportional-integral-derivative (PID) based controller, subject to Coulomb friction and a velocity-weakening (Stribeck) contribution. While classical PID control results in persistent oscillations (hunting), the proposed reset mechanism induces asymptotic stability of the setpoint, and significant overshoot reduction. Moreover, robustness to an unknown static friction level and an unknown Stribeck contribution is guaranteed. The closed-loop dynamics are formulated in a hybrid systems framework, using a novel hybrid description of the static friction element, and asymptotic stability of the setpoint is proven accordingly. The working principle of the controller is demonstrated experimentally on a motion stage of an electron microscope, showing superior performance over classical PID control.
Complete list of metadata
Contributor : Ruud Beerens Connect in order to contact the contributor
Submitted on : Monday, March 1, 2021 - 10:36:44 AM
Last modification on : Friday, January 7, 2022 - 3:56:43 AM


Files produced by the author(s)



Ruud Beerens, A. Bisoffi, Luca Zaccarian, H. Nijmeijer, W Heemels, et al.. Reset PID design for motion systems with Stribeck friction. IEEE Transactions on Control Systems Technology, Institute of Electrical and Electronics Engineers, 2022, 30 (1), pp.294 - 310. ⟨10.1109/TCST.2021.3063420⟩. ⟨hal-02454405v3⟩



Les métriques sont temporairement indisponibles