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Abstract— In this paper we present the integration of a
manipulation motion planner involving multiple contacts with
an automated generator of controllers to execute the ma-
nipulation tasks. The novelty of the method is not only to
produce a configuration space trajectory but also automatically
formulate the controllers that perform the tasks while keeping
balance on a humanoid robot. We demonstrate this approach
fully integrated on a real Talos humanoid robot while using
controllers formulated as a sequence of hierarchical Stack-of-
Tasks.

I. INTRODUCTION

Manipulation planning is an important topic in humanoid
robotics to achieve real world applications [1]. It is challeng-
ing since it involves constraints on the configurations of the
robot and the objects: when an object is grasped, possibly by
several grippers, its configuration depends on the configura-
tion of the robot. When an object is not grasped, it should
lie still in a stable equilibrium configuration. In addition,
in humanoid robotics, constraints such as balance must also
be taken into account. This problem is therefore hybrid, a
discrete part on the constrainsts to activate, and a continuous
part over the configuration space of the robot and the objects.
Finding the constraints to activate is a difficult problem
because several possibilities exist. For instance manipulation
may involve walking steps with the robot [2]. Evaluating
each possibility implies solving constraints from a candidate
configuration where the constraints are not fullfilled, but
where the distance to the target is shorter. Then, we project
this configuration on the manifold of the constraints of the
planning state the robot is currently in. This approach is for
instance used in [3]. It demonstrates a HRP-3 humanoid robot
picking up boxes from the ground and stacking them on a
table. In order to speed up this step, convergence towards the
submanifold may be done from a set of predefined stable
poses instead of from a random configuration, such as in
[4]. It is used to plan motions with articulated objects. It is
also possible to add information by using a graph structure
to mitigate with this hybrid approach. For instance in [5] a
multi modal graph is used to switch between three states:
reaching, walking and pushing. This approach is used to
make Asimo manipulate a box from an initial configuration
to a goal configuration using visual feedback.

In works such as [6, 7], the authors formulate a non linear
optimisation problem over a short horizon using the whole
dynamical model of the robot and the models of its contacts.
This problem is then solved using Differential Dynamic Pro-

Fig. 1. Example of a manipulation tasks: Talos humanoid robot is requested
to turn a box upside-down on a table.

gramming. This solution is currently very computationnally
intensive and is therefore not suitable for a discovery phase
or over a large time horizon. It might be however interesting
during a refinement phase after having fulfilled the geometric
constraints.

Finally a recent extension of MoveIt has been proposed to
plan motions using tasks [8]. However this approach seems
to focus more on planning of the symbolic parts rather than
on the interaction between the various constraints. It shows
however that this is a difficult problem as it is only a recent
extension despite the impressive demonstrations achieved
with MoveIt.

A. Contributions

In this paper, we propose a new framework to plan
and execute manipulation tasks on a real humanoid robot
with poor kinematic calibration. Figure 2 depicts the over-
all architecture. The pipeline is composed of three main
steps. The first step (Section III) consists in estimating the
configuration of the system (position of the table, position
of the object). The second step (Section IV) consists in
planning a manipulation path from an initial configuration to
a goal configuration of the system. The third step (Section V)
consists in mapping a reference manipulation path into a
sequence of task-based hierarchical controllers. All these
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Fig. 2. ROS Architecture: the 3 main nodes are estimation, planning and
control. They are described in this paper. Supervisor handles synchronisation
between the different nodes. Vision detects and publishes the pose of
AprilTags.
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Fig. 3. Part of the constraint graph. Circular states are defined by sets of
grasps. The hexagonal boxes correspond to waypoint states called pregrasps
which goal is to ease the grasp of objects. Transitions connect reachable
states between each other and contain contraints related to the connection
paths. Figure 1 shows a configuration in state g2, h4 → g1, h3|pg, or, in
layman’s terms, the state in which the robot is grasping the box by its fourth
handle using its second gripper, i.e., its right hand, while being in position
to grab the third handle of the box using its first gripper, i.e., the left one.

steps use a common representation of the constraints the
system is subject to, described in Section II.

An example of manipulation problem that our method is
able to tackle is depicted in Fig. 1.

II. PROBLEM STATEMENT

Although our work is general and applies on instances
of manipulation problems with several robots and several
objects, we illustrate our framework on a simpler example
where a Talos robot is requested to grab a wooden box lying
on a table, turn it upside-down, then put it back on the table.
The configuration space of the whole system is then:

C = Crob × Ctable × Cbox (1)

With Crob = SE(3) × R32 is the configuration space
of the robot, Ctable = Cbox = SE(3) are respectively the
configuration space of the table and of the box1. Note that
although the table is static, its position needs to be estimated
using computer vision before planning and executing any
motion.

A. Constraint graph

In this section, we use the same concepts and notations as
in [9].

1SE(3) is the group of rigid-body transformations.

a) Gripper, handle, and grasp: the robot is equipped
with 2 grippers represented by frames attached to each end
effector. To each object, we associate one or several frames
called handles that specify how the object can be grasped: a
grasp corresponds to a gripper frame being superposed with
a handle frame. In example of Figure 1, 4 handles denoted
by (h1, h2, h3, h4) are attached to the object ; two handles
on the top, rotated 180◦ from each other, to allow grasping
from the front and from behind ; two handles on the bottom
of the object, to allow grasping even if the box is placed
bottom-up.

b) State: a state is defined by specifying which han-
dle is grasped by each gripper. It is therefore repre-
sented by a pair of pairs ((g1, H1), (g2, H2)) where g1
and g2 are the robot grippers, and H1, H2 take values
in (h1, h2, h3, h4,None). Hi = None, i = 1, 2 means
that gripper i does not grasp anything. Thus the maximum
number of states is 25. However we only consider a smaller
number of states, since some combinations of grasps are
always in collision. At the current time, those combinations
are detected by a human operator, but this detection might be
done automatically quite easily. After this pruning operation,
the graph contains 17 states. Figure 3 displays a part of the
constraint graph corresponding to Talos robot manipulating
a box.

c) Transition: states are connected by edges
called transitions. Transitions may contain additional
constraints. For instance the loop transition of state
((g1,None), (g2,None)) onto itself contains a constraint
that locks the degrees of freedom of the box. Setting that
the box lies in a stable equilibrium is indeed not equivalent
to the box not moving on the table.

d) Waypoint states: grasp configurations are by def-
inition very close to collision. To improve efficiency of
manipulation planning, we define waypoint states. Those
states belong to transitions and force the path to go through
intermediate states that help avoiding collisions. Figure 1
displays a configuration in a waypoint state that makes the
left gripper less likely to be in collision while grasping.

III. STATE ESTIMATION

Before planning a manipulation motion, we need to know
the initial configuration of the sytem. The robot and table
are assumed to stand on a flat ground. The position of the
object with respect to the robot camera is computed using
AprilTags [10] stuck on the object. Due to calibration and
measure errors, the measured position of the object is never
in contact with the surface of the table. It is always a few
millimeters above or under the expected plane. The config-
uration of the system therefore does not belong to any state
and the manipulation planning algorithm is unable to plan a
path. To overcome this issue, we project the configuration as
measured by sensors (AprilTag and joint encoders) onto state
((g1,None), (g2,None)) using Newton-Raphson method as
described in [11] Section II.B.

Due to calibration errors, the projected configuration of
the whole system is sometimes rather far away from the



gCoM (Crob) Maintaining the robot CoM in the support polygon
gRF (Crob) Right Foot position
gLF (Crob) Left Foot position

gRH/hi
(Crob) Right Hand position

gLH/hi (Crob) Left Hand position
gτr (Crob) Right gripper torque
gτl (Crob) Left gripper torque

gBoxHi(CBox) The box must be in contact using the i-th handle
with i∈ {1, · · · , 4}

gposture Robot configuration

TABLE I
SET OF CONSTRAINTS HANDLED IN THE CONTROL PROCESS

measured configuration. As a result the robot fails to grasp
the object. To solve this problem, we decided to add the
position of the table in the configuration vector and to stick
some AprilTags on the table. The position of the table is
now also measured using computer vision and modified by
the projection on the initial state.

IV. MANIPULATION PLANNING

Once the initial configuration is estimated and projected
onto the initial state of the constraint graph, we define the
goal configuration by flipping the object upside down and
by keeping the same configuration for the robot. To solve
the manipulation planning problem, we run a variant of
Manipulation-RRT defined in [9] Section III. Manipulation-
RRT is a manipulation planning version of RRT that explores
the states of the constraint graph as follows:

1) Draw a random configuration qrand,
2) Find the closest node qnear in the current roadmap,
3) Find the state of this node in the constraint graph,
4) Sample a transition getting out of this state,
5) Extend qnear along the transition up to qnew,
6) Try to connect qnew to other connected components

of the roadmap.
The result is then optimised using the random shortcut
method. The output of manipulation planning is a sequence
of paths linking the initial and goal configurations. Each
segment of the sequence lies in a transition of the constraint
graph where it is subject to the constraints attached to this
transition. In the following section, we build a controller for
each segment in order to control the motion of the robot.

V. MAPPING A MANIPULATION PATH TO A SEQUENCE OF
CONTROLLERS

In this section, we explain how the manipulation path
planned in the previous section is mapped to a sequence of
task-based hierarchical controllers. The robot is controlled
by a software called Stack-of-Tasks [12] or SoT. The same
approach can be applied to other control architecture such as
OpenSoT [13].

A. Stack-of-Tasks

Like several other current control implementations, the
SoT is solving a hierarchy of Quadratic Programs to generate
an instantaneous whole body control. Different versions are

available, including an effort control version, but in the
current paper, a kinematic controller is used. Tasks are very
similar to the constraints described in Table.I and therefore
share a large portion of code with the planning software.
Although planning provides trajectories avoiding joint limits
and self collision, it might happen that such limits are
quite close to the planned path. Then, if some perturbations
occur during control it becomes necessary to ensure that the
boundaries are respected. For this reason, the SoT enforces
priority levels. In a nutshell, the SoT solves iteratively this
set of equations: q̇i+1 = q̇i + (Ji+1Pi)

+(Ṫi+1 − Ji+1q̇i +
δTi+1

δt
)

Pi+1 = Pi − (Ji+1Pi)
+(Ji+1Pi)

(2a)

(2b)

with i ∈ {1, · · · , n}, q ∈ Crob the configuration vector of
the robot, q̇ the related velocity, Ti the i-th task, Ji = δTi

δq

its Jacobian, Ṫi = −λiTi, q̇o = 0, P0 = I .
a) Computation cost: the most time-consuming part in

the evaluation of eq. (2a) and eq. (2b) is the computation
of the pseudo-inverse. It is more efficient [14] to work in a
basis of the previous control task null space. Therefore at
iteration i+ 1 the null space of the previous control task is
given by a basis Ki such that JiKi = 0 and KT

i Ki = I ,
then using a SVD decomposition:

Ji+1Ki = [Ui+1 Vi+1]

[
Si+1 0
0 0

] [
Y Ti+1

ZTi+1

]
= Ui+1Si+1Y

T
i+1

(3)
Then the null space of Ji+1Ki is given by ZTi+1. Therefore
any new control ui+1 is such that:

q̇i+1 = q̇i +Kiui+1 (4)

to not perturbate q̇i. Therefore we slightly rewrite the control
eq. (2a) and the update eq. (2b) as: q̇i+1 = q̇i + (Ji+1Ki)

+(Ṫi+1 − Ji+1q̇i +
δTi+1

δt
)

Ki+1 = KiZi+1

(5a)

(5b)

Updating Ki+1 is simpler than computing Pi+1 and the
number of columns of Ki decreases after each iteration. This
allows us to have this decomposition working at 1 kHz in
Talos robot.

B. Generation of the controllers

We again use the notion of constraint graph. We define
a Stack-of-Tasks for each transition in the constraint graph.
This set of tasks defines the desired control to apply for all
trajectories of this transition. For instance, when an object is
grasped, one task will control the gripper force around some
value so that the object does not slip.

Algorithm 1 in [9] automatically generates a graph of
constraints, for manipulation planning. For all the controllers,
we set as the highest priority task a task ensuring the robot
balance. The lowest priority task is always a tracking of
the configuration along the reference trajectory given by the
planner. To automatically generate the intermediate tasks, we
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Fig. 4. Sequence of controllers. Portion of path where the robot holds
the object with the left hand and grasps it with both hands, passing by a
pregrasp state.

change the function MAKETRANSITIONS. MAKETRANSI-
TIONS builds controllers as follows. It takes as input two
states S0 and S1. S1 corresponds to the state S0 with exactly
one additional grasp (i.e. association between a gripper and
a handle). As in planning, grasping is divided into two steps:

1) From S0, i.e. only existing grasps, to a pregrasp
waypoint: no special control should be done for this
grasp. One should only maintain the grasps which are
already in S0.

2) From the pregrasp waypoint to S1: at this moment,
only a contact detection task, using torque sensors of
the robot, is added. In the future, we also want to add
a visual servoing task to improve our system success
rate.

Eventually, when there is a contact break, two additional
steps are added. One for the contact break, until some
preplacement pose and another for the motions far from
placement. A specific task for contact break is added in the
former step, to register the object position relative to the hand
of the robot at the time of the separation.

For instance, Figure 4 represents a portion of path passing
through several states and the associated controllers. Con-
trollers SoT5 and SoT6 are respectively composed of the
following hierarchy of tasks:

• SoT5 : gCoM , gRF , gLF � gτl � gposture,
• SoT6 : gCoM , gRF , gLF � gRH/h4

� gτl � gposture,
where � means “has a higher priority than”, and the g
functions are defined in Table I. Each task defines a vector-
valued error to be regulated to zero. The reference is provided
by the planned path. The full path is displayed in Figure 6.
The Stack-of-Tasks provides a framework that computes a
robot input velocity in order to make errors converge toward
zero while respecting the priority levels.

C. ros control
We briefly describe a system extension allowing to use the

overall architecture on robot supporting the ros control [15]
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Fig. 5. Interaction between SoT and HPP. ROS is used for its easily
accessible data exchange system and future addition of video to perform
visual servoing

architecture. From a system integration point of view, we de-
veloped a software extension turning the Stack-of-Tasks into
a controller in the ros control architecture. The ros control
library is providing a common API for controllers and robot
hardware. The same controller can be used over several
hardwares, and several controllers can be tested on the same
hardware.

This has several advantages because it is possible to use
either the balance controller provided by the robot manu-
facturer PAL-robotics or our own balance control software.
The second advantage is provided by the Gazebo simulator
support of ros control. Thus the same control software can
be used either in simulation or on the real robot. Using
ros control simplifies the software maintenance as basic
blocks such as the dynamics (Pinocchio Dynamics in Fig.5),
the solver, and the tasks can be reused in other robots as
well.

The current limitation of ros control is its lack of compos-
ability with respect to actuators which have a non classical
set of sensors (i.e. encoders). For instance the Talos robot
is equipped with temperature and torque sensor on each
actuator. For this reason a modified version of the API must
be used on the robot.

VI. EXPERIMENTS

A. Description of the robot

The experiments are done on a Talos robot [16]. This
robot has a height of 1.75 m, two torso joints, and two
7 DOFs arms. Grippers and the kinematics were designed
to maximise manipulability in front of the robot. The vision
system is an RBG-D Orbbec Astra camera. The robot has
two computers: two i7 2.7 Ghz, one for control and one
for vision and planning. The control computer is running a
Linux kernel patched with the RT PREEMPT extension. The
Manipulation-RRT algorithm is run on the second PC of the
robot as well as the vision system based on ViSP [17]. The
second PC runs a normal linux kernel on a 16.04 Ubuntu.

B. Inputs of the problem

The problem is the one described in II: a Talos robot
has to turn a box lying on a table upside-down using its
two grippers. The inputs given to the algorithms are the
kinematic models of the robot (and its grippers), the box (and
its handles’ positions) and the environment (i.e. the table),
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Fig. 6. Stack-of-Tasks sequence found by the Agimus system (simplified view)

and also a goal configuration, which is here to have the box
upside-down in relation to its initial pose. Finally, the robot
computes the initial state of the world (its configuration and
the position of both the table and the box) and the sequence
of movements needed to perform the task.

C. Flow of computation

a) Initialisation: In planning, control and estimation, a
Python script generates the constraint graph for the grippers
and handles. To each transition in planning corresponds
one controller in control. Each state in estimation has its
equivalent in planning. The intermediate waypoint gives an
overall structure to the motion and makes it easier to tackle
the motion planning problem and the control problem. The
graph includes CoM constraint to maintain balance and a
visibility constraint on the box.

b) Runtime: The estimation node first estimates the
robot configuration, the poses of the table and the box and
the current state in the constraint graph, from various inputs
(AprilTags, encoders).

This estimation is sent to the planning node, in order
to find a trajectory from the current world state to the
goal configuration, using the constraint graph. The output
trajectory is a sequence of elementary paths. An elementary
path is a path that belongs to a single transition of the
constraint graph. During the estimation and planning phase,
the robot is standing still.

This sequence of elementary paths is then used as ref-
erence by the control node. This node switches between
controllers according to the transition each elementary path
belongs to.

Both the planning and estimation nodes are implemented
using the Humanoid Path Planner library[18], or HPP. The
control node is implemented using Stack-of-Tasks.

D. Typical solution

As the motion planner is based on RRT there is no
guarantee that the robot will find the same solution from
one instance of problem to another. The constraints and the
intermediate waypoints however provide a way to structure
the solution found by the robot. A typical solution is provided
in Figure.6. In this solution the robot finds the sequence of
contacts to perform in order to swap the box. This sequence
of contacts is implemented through a sequence of constraints.
Each set of constraints corresponds to a specific set of tasks.
The reference to be given to the SoT are computed from the
trajectory found by the motion planner. The corresponding
Stack-of-Tasks are created through automatically generated
python code interpreted by the second onboard computer of
the Talos robot. The reference posture trajectories, and the
reference end effectors poses are also sent to the SoT by the
planner.

E. Discussion

In its current form the system does not track failures.
For instance it happens that in some configurations the box
slides from the robot gripper. This has been partly fixed
by adding rubber to the grippers to increase the friction
coefficient while holding the object. Detecting failure with
vision would allow the robot to detect that the plan could
not be fullfilled. However, recovery from failure may lead
to complex solutions which are not feasible. For example
if the box fall on the floor, the situation involves a more
complex motion such as kneeling down. Finding this would
involve too computationally intensive searches for the current
system. In this case, it might be easier to avoid such failures
or ask for the help of an operator. To help with this, we can
add waypoints in the plan where the robot has to check if



everything is where the plan tells it should be (i.e. box in
hand or box on the table).

We first tried to run the path planned in Section IV in
open loop. This attempt failed due to an error of the relative
position between the gripper and the object of up to 2
centimeters. This error is probably due to

1) a poor calibration of the kinematic chain,
2) the high number of joints in the actuation chain: 9

between the camera and the end effector, 10 between
the ground and the end effector.

Although we could spend time better calibrating the robot,
we aim at achieving tasks with an accuracy that cannot be
obtained only by calibration.

To reach this goal, we are currently attaching and calibrat-
ing the poses of AprilTags stuck to the robot end-effectors.
In planning, we already constrain the object to be at the
center of the image. This is conservative, but it increases the
likelyhood that

• the object is visible even in case of localisation errors,
• the gripper is visible when in pregrasp state.

Thus, in pregrasp state, we will be able to compute the
relative pose of the gripper with respect to the object, using
the camera. Then, by adding a visual servoing task during
the pregrasp phases of the trajectory, we should be able to
achieve our desired accuracy to grab the box.

VII. CONCLUSION

In this paper we have demonstrated the deployment of a
solution integrating vision, planning and control on a full
size humanoid robot. Based on high level information such
as handles and constraints of the robot, the system is able to
generate a sequence of controllers as well as their reference
trajectories. The plan is then executed on the robot using the
controllers.
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E. Fernández Perdomo. ros control: A generic and
simple control framework for ros. The Journal of Open
Source Software, 2017.

[16] O. Stasse, T. Flayols, R. Budhiraja, K. Giraud-Esclasse,
J. Carpentier, et al. Talos: A new humanoid re-
search platform targeted for industrial applications. In
IEEE/RAS Int. Conf. on Humanoid Robotics (ICHR),
2017.

[17] E. Marchand, F. Spindler and F. Chaumette. Visp for
visual servoing: a generic software platform with a
wide class of robot control skills. IEEE Robotics and
Automation Magazine, 2005.

[18] J. Mirabel, S. Tonneau, P. Fernbach, A. Seppälä, M.
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