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aLAAS-CNRS, Université de Toulouse, CNRS, UPS, 7 avenue du Colonel Roche, 31031
Toulouse, France

Abstract

In this paper, we propose a robust hybrid control for a boost inverter. This

control presents the particularity of considering the real nature of the dynam-

ics, which means, the continuous-time dynamics, voltages and currents, and

the discrete-time dynamics, the switching of the transistors. Likewise, due to

implementation issues a minimum dwell time is introduced in the control loop

scheme. Uniform global asymptotic stability is guaranteed, ensuring that the

tracking error of the system output enters into a small neighbourhood of zero.

Moreover, robustness guarantee with respect to parameter variations, in terms

of an error tracking output regulation, are also provided here. The effectiveness

of the proposed hybrid control scheme is illustrated in simulation.

Keywords: Hybrid control application, boot inverter, dwell time guarantees,

robust control.

1. Introduction

In many electronic applications, it is necessary to convert a DC signal, into

an AC one. Moreover, it also can be required to boost this signal, as can be

found in AC microgrids, for instance. Often, it is made this transformation in

two steps. Hence, in a first step, it is used an elevator DC-DC converter, and5

in a second one, a DC-AC converter [1, 2].

The boost inverter proposed by [3] is a particular power converter, that

can generate a larger AC signal from a given DC one just in one step, with a
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simple architecture. Nevertheless, to design control laws for this converter is

a challenge, because it is composed by two DC-DC boost converters, being a10

nonlinear non-minimum phase of fourth order [4]. Furthermore, the control goal

of this boost inverter is to track a sinusoidal signal.

Some control strategies have been proposed by controlling separately each

DC-DC boost converter [3, 5], in such a way to generate a sinusoidal output

voltage and lager than the input one. The used control techniques are PI con-15

trollers [6], sliding mode controllers [7, 8]. However, stability properties of the

system in a whole is not proven.

There have been several attempts to control this inverter, considering the

complete system and with the advantage of using only one output voltage ref-

erence. Hence, the authors, in [9], design a single sliding mode controller to20

generate the required sinusoidal voltage on the load. Moreover, they do not

guarantee an error tracking output regulation in the sense of parameter varia-

tions. In [10] a control law is proposed by using energy-shaping methodology.

Moreover, an adaptive controller is added to guarantee the tracking error with

respect to parameter variations. However, this method is focussed on an ap-25

proximated average model in continuous-time and the control law presents a

relative computational cost. In [11] a cascade control focussed on sliding-mode

methodology is presented. The internal control loop is based on a switching

surface, generated from the difference between the inductor currents, whereas

the external control loop consists of a PI compensator in order to reduce the30

tracking error of the inverter output voltage. Nevertheless, the authors do not

consider a minimum dwell time in the control updates, which is required in

implementation issues.

In this paper, a novel control law based on the hybrid dynamical system

paradigm given in [12], is proposed for the considered inverter. The main ad-35

vantage of this approach is to take into account the real nature of the dynamics,

meaning the continuous-time dynamics, which are voltages and currents, and

the discrete-time ones, which are switching signals. The control law is based

on a Lyapunov matrix-based min-projection control, as used in [13, 14, 15].
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One of the challenge here is to know the entire reference state corresponding40

to the tracking signal, which is not a simple task. To deal with this objective,

we assume that the variation of the desired reference with respect to time is

sufficiently slow, in order to obtain a small enough tracking error. Moreover,

we consider a minimum dwell time in the hybrid control scheme, by introduc-

ing a time regulation [16]. Stability properties of the tracking error in a small45

neighbourhood of zero are guaranteed, applying the theory for hybrid system

presented in [12]. In a second time, we propose a robust hybrid control, whit

respect to parameter variations, in such a way, the system output rejects any

perturbation. Some validations are performed in simulation.

This paper is organized as follows. Section 2 is devoted to the problem50

formulation. Some assumptions and properties are stated in Section 3. Section 4

presents the main result about the proposed hybrid control and an extension to

a robust hybrid control is given in Section 5. Some simulations are performed

in Section 6. Finally, the paper is closed with a conclusion section.

Notation: Through out the paper N denotes the set of the natural numbers55

and R the set of real numbers, Rn the n-dimensional euclidean space and Rn×m

the set of all real n×mmatrices. The set of non-negative real numbers is denoted

by R≥0. M � 0 (resp. M ≺ 0) represents that M is a symmetric positive (resp.

negative) definite matrix. 0n×m is a zero matrix of n ×m-dimension. λm(M)

and λM (M) represent the minimum and maximum eigenvalues of M . ‖ · ‖60

represents the norm euclidean.

Conflict of interest - none declared.

2. Boost inverter

The boost inverter depicted in Fig 1, is a device that can generate, in a single

stage, a sinusoidal voltage with a larger amplitude than its input DC voltage,65

Vin. This converter is composed by a load R0 differentially connected to two

DC-DC converters.

The inductance currents flowing through the inductors L1, L2 are i1 and i2.
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Figure 1: Boost inverter circuit.

Likewise, the capacitor voltages applied to the capacitors C1, C2 are v1 and v2.

The switches are Si ∈ {0, 1}, with i = {1, 2, 3, 4}, and they take the value 1, if70

they are switched ON, and the value 0, if they are switched OFF, respectively.

Finally, R1 and R2 are parasitic resistances.

2.1. A Nonlinear model

The boost inverter can be represented by the following nonlinear model:
ż =


−R1

L1
− u
L1

0 0

u
C1
− 1
R0C1

0 1
R0C1

0 0 −R2

L2
− 1−u

L2

0 1
R0C2

1−u
C2
− 1
R0C2

 z +


Vin
L1

0

Vin
L2

0


w = [0 1 0 − 1]z,

(1)

where z = [i1 v1 i2 v2]> ∈ R4 is the state vector, w = v1− v2 is the controlled

output and u ∈ {0, 1} is the control input. z, is composed of continuous-time75

variables, whereas, u is a switching signal, thus, a discrete-time variable.

Assumption 1. Let us consider

• R=R1=R2,

• C0=C1=C2

• L=L1=L2 and80

• the state values of the switches given in Table 1.
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u S1 S2 S3 S4

1 1 0 1 0

0 0 1 0 1

Table 1: Boost inverter switching logic.

From Assumption 1 and the following variable changes v := 2u− 1 and x=

[x1 x2 x3 x4]> = [i1+i2 v1+v2 i1−i2 v2−v1]>, the model (1) can be rewritten

as: 

ẋ =

Av︷ ︸︸ ︷
−RL −

1
2L 0 v

2L

1
2C0

0 − v
2C0

0

0 v
2L −RL − 1

2L

− v
2C0

0 1
2C0

− 2
R0C0

x+

B︷ ︸︸ ︷
2
L

0

0

0

Vin

y =

C︷ ︸︸ ︷
[0 0 0 1]x,

(2)

where v ∈ {−1, 1} is the control variable.

The objective of this inverter is to guarantee that the output signal y(t),

corresponding to v2(t)− v1(t), follows a sinusoidal reference defined by

Vr(t) = Vmax sin(ωt), (3)

where Vmax and ω are the amplitude and the angular frequency of the desired

sinusoidal signal. Moreover, it is defined w = 2π
Te

with Te ∈ R≥0 the time period

of the desired signal. In order to impose a such behaviour to system (2), let us

to introduce its averaged model, which is
ẋa(t)=

Aλ(t)︷ ︸︸ ︷
−RL − 1

2L 0 2λ(t)−1
2L

1
2C0

0 − 2λ(t)−1
2C0

0

0 2λ(t)−1
2L −RL − 1

2L

− 2λ(t)−1
2C0

0 1
2C0

− 2
R0C

xa(t)+

B︷ ︸︸ ︷
2
L

0

0

0

Vin,
ya(t) = [0 0 0 1]xa(t),

(4)
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where xa(t) represents the averaged signal of x and parameter λ(t) ∈ [0, 1] is

the duty cycle of v. This averaged model allows to define the desired complete

reference of state x associated with Vr(t), i.e., the ideal reference associated with85

infinity switching.

One can see, the time-varying reference of (2) is given considering the desired

output reference (3) for ya(t) of system (4) and its associated variable 0 ≤

λe(t) ≤ 1, such that,

xae(t) = −(λe(t)A1 + (1− λe(t))A−1)−1B (5)

yae(t) = Vr(t) (6)

is the equilibrium of (4). This desired reference obtained satisfying (5)–(6) is

perceived as relaxed solutions in the generalized sense of Filippov. Nevertheless,

to obtain an explicit expression of xae(t) is not a trivial task.

From the introduced boost inverter model (2) and its reference (5)–(6), we90

are in condition of stating the problem.

Problem 1. The first goal in this work is to find a tracking reference of (2),

xe(t), such that, ‖xe(t) − xae(t)‖ is bounded and ‖ye(xe(t)) − Vr(t)‖ is small

enough. A second goal deals with designing a hybrid control law for system (2),

such that, for any initial condition x(0) ∈ R4, the following holds:95

• ‖x(t)− xae(t)‖ is bounded,

• lim
t→∞

y(t)− Vr(t) presents an error small enough,

• the output is robust with respect to parameter variations and modelled

errors.

3. Preliminaries100

The following property is a standard property found in the literature [13,

17, 15], that characterizes the equilibrium in switched affine systems.
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Property 1. Given matrices A1 and A−1 in model (2), a matrix Q � 0 ∈ R4,

there exists λ ∈ Λ and a matrix P � 0 ∈ R4 satisfying

A>i P + PAi + 2Q ≺ 0, for i = {−1, 1}. (7)

Note that Property 1 is direct if A−1 and A1 are Hurwitz.

This property allows introducing the next definition. The averaged model

of (2) is given by105

3.1. Operation point definition

Let us consider the particular case, corresponding to a constant Vr, i.e.,

ω = 0. Then, the desired state reference generated by (5) is

ẋae(t) = 04×1, yae = Vr. (8)

In this particular case, we can formulate the following assumption for the desired

operating point of (2).

Assumption 2. Consider the desired output reference (8) and a parameter 0 ≤

λe ≤ 1, such that,

xe = −(λeA1 + (1− λe)A−1)−1B

is the equilibrium point of (4).

This equilibrium is also the equilibrium of system (2) related to arbitrarily fast110

switching. It is worth noting, if Assumption 2 is satisfied and from Property 1,

it is easy to see that (1− λe)(A−1xe + B) + λe(A1xe + B) = 0.

Proposition 1. Consider that R is negligible (i.e. R � R0), Assumption 1

and Assumption 2 are satisfied, then

i) the equilibrium point can be expressed as

xe(λe) =



(2λe−1)2

λ2
eR0(λe−1)2

−1
λe(λe−1)

(2λe−1)
λ2
eR0(λe−1)2

−(2λe−1)
λe(λe−1)

Vin, 0 < λe < 1. (9)
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ii) The reference of the constant output voltage, Vr, provides (given also in

[3])
Vr
Vin

= − 2λe − 1

λe(λe − 1)
.

Vrλ
2
e + (2Vin − Vr)λe − Vin = 0,

and their roots are

λe(Vr) =


1
2 −

Vin
Vr

+
√

1
4 +

V 2
in

V 2
r

if Vr ≥ 0

1
2 if Vr = 0

1
2 −

Vin
Vr
−
√

1
4 +

V 2
in

V 2
r

if Vr ≤ 0.

(10)

Therefore, for a given value of Vr, it is possible, from the previous for-115

mulation, to determine the corresponding value of λe(Vr), inducing the

equilibrium point xe of (2).

3.2. Property of the sinusoidal reference signal

Now, we consider the sinusoidal reference (3) that generates the reference

dynamic described in (5)–(6), with ω different to zero.120

The next Lemma will be devoted to prove that λe(Vr(t)) given in (10) is a

periodic function, with the same time period than the reference signal Vr(t).

Lemma 1. We have the following properties:

i) The function t 7→ λe(Vr(t)) is a continuous and differentiable function

from R to ]0, 1[.125

ii) If the function Vr(t) is a periodic function of period Te, then the function

t 7→ λe(Vr(t)) is a periodic function of period Te, with a mean value equal

to 1/2.

Proof. From the function given in (10), we have

lim
Vr→∞

λe(Vr) = 1 and lim
Vr→−∞

λe(Vr) = 0.

8



The continuity and differentiability is obvious for all Vr ∈ R. We have from (10)

lim
Vr→0

λe(Vr) = lim
Vr→0

(
1

2
− Vin

Vr
±
∣∣∣∣VinVr

∣∣∣∣) .
Then, we can deduce

lim
Vr→0+

λe(Vr) = lim
Vr→0−

λe(Vr) =
1

2

and, therefore λe(Vr) is continuous at Vr = 0. A simple calculation leads also

to

dλe
dVr

=


Vin
V 2
r
− V 2

in

V 3
r

√
1
4 +

V 2
in
V 2
r

if Vr > 0

Vin
V 2
r

+
V 2
in

V 3
r

√
1
4 +

V 2
in
V 2
r

if Vr < 0.

Moreover,

lim
Vr→0

dλe
dVr

= lim
Vr→0

(
Vin
V 2
r

± |Vr|
Vin
V 3
r

)
,

then,

lim
Vr→0+

dλe
dVr

= lim
Vr→0−

dλe
dVr

= 0.

Thus, λe(Vr) is differentiable at Vr = 0. Simple calculations show that λe(Vr)

presents an inflection point at Vr = 0, noting

dλe
dVr

> 0 if Vr > 0 and
dλe
dVr

> 0 if Vr < 0.

The proof of i) is complete. Then, the periodicity of λe(Vr(t)) follows by

continuity arguments and the fact that

dλe(Vr(t))

dt
=



Vin
V 2
r
− V 2

in

V 3
r

√
1
4 +

V 2
in
V 2
r

 dVr
dt if Vr > 0Vin

V 2
r

+
V 2
in

V 3
r

√
1
4 +

V 2
in
V 2
r

 dVr
dt if Vr < 0.

(11)

Furthermore, note that the mean of Vr(t) is 0, hence the mean of λe(Vr(t)) = 1
2 ,

concluding the proof of item ii). �130

Remark 1. It is worth noting Lemma 1 allows to obtain an approximative

expression of the periodic equilibrium of xae(t), such that, xe(λe(Vr(t))) →

xae(t), as dxae(t)
dt̄ → 0. y

9



4. An hybrid control Scheme

The inverter model presented in (2) covers two different types of dynamics.135

In one hand, the continuous-time variables which are the differences and the

sums of the inductor currents and the capacitor voltages. In other hand, the

control input, v, is a discrete-time variable. Consequently, the framework given

in [12] about hybrid dynamical system is well suited.

140

The main idea of dealing with Problem 1 is to use Proposition 1 to generate

a time-periodic reference for x(t), from Vr(t) given in (3), as noted in Remark 1.

Moreover, if the variation of xe(λe) with respect to time is sufficiently slow, we

can expect that the output y(t) = x4(t) will be closed to the desired reference

Vr(t) given in (3).145

This basic idea is illustrated by the bloc scheme represented in Fig. 2.

CONTROL SYSTEMλe(Vr)
Vr

xe(λe(Vr)) v x(t)

Figure 2: Block diagram of the control mechanism.

It is easy to see that the generated output of this control process, y(t), will

present an error in steady state from the desired reference, Vr(t). Indeed, for

one side, there is an error between the output generated from the averaged

model yae = Vr(t) and the one generated from the computed reference ye :=150

[0 0 0 1]xe(λe), given in Proposition 1. For another side, due to implementation

issues, it must have a minimum dwell time in the control updates, inducing an

error in steady state between x(t) and the provided reference xe(λe).

4.1. Hybrid scheme

As proposed in [15], a new state variable τ is added to ensure a minimum155

positive dwell time, T . Then, the closed loop system is proposed in the hybrid

formulation H given below.
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4.1.1. Hybrid model

H :





˙̃x

v̇

τ̇

ẋae

λ̇e

ẋe


=



Avx̃+Bv

0

1− dz( τT )

Aλexae + B

f1(Vr)

f2(λe)


, ζ ∈ C



x̃+

v+

τ+

x+
ae

λ+
e

x+
e


∈



x

argmin
i∈{−1,1}

x̃>P (Aix̃+Bv)

0

xae

λe

xe


, ζ ∈ D,

ỹ = C(x̃+ xe − xae)

(12)

where x̃ := x− xe, ζ := [x̃ v τ xae λe xe]
> ∈ H, such that,

H := {x̃ ∈ R4, v ∈ {−1, 1}, τ ∈ [0, T ], xae ∈ R4, λe ∈ [ν, 1− ν], xe ∈ R4},

with a parameter ν > 0 small enough. Likewise, Bv := Avxe + B, f1(Vr) :=

dλe(Vr(t))
dt given in (11) and f2(λe) is the derivative of (9) with respect to time.160

dz defines a dead-zone function, for all s ≥ 0, dz(s) := max{0, s− 1}.

Inspired by [15], we select the so-called flow and jump sets

C := {ζ : x̃>P (Avx̃+B) ≤ −x̃>Qx̃, τ ∈ [0, T ]} (13)

D := {ζ : x̃>P (Avx̃+B) ≥ −x̃>Qx̃, τ = T}, (14)

ensuring that all maximal solutions are complete. Note that, τ introduces a

minimum dwell time, T , i.e., the solutions are forced to flow at least T ordinary

time after each jump. Then, the following condition must hold:

T � Te. (15)

11



Proposition 2. The hybrid dynamical system (12)–(14) satisfies the basic hy-

brid conditions [12, Assumption 6.5], then it is well-posed.

Proof. The hybrid dynamical system (12)–(14) satisfies the basic hybrid condi-

tions because165

• sets C and D are closed.

• f is a continuous function, thus it is outer semicontinuous and convex.

Moreover, it is locally bounded.

• G is closed, then it also is outer semicontinuous [12, Lemma 5.1] and, it

is locally bounded.170

Finally, following [12, Theorem 6.30], we conclude that the hybrid dynamical

system is well posed. �

In order to achieve the objectives stated in Problem 7, we will provide a

hybrid control scheme establishing stability properties for x = xe, considering

xe constant and a minimum dwell time in the implementation. Then, we will175

assume the time varying of xe(t), finding a bound of ‖ye(t) − yae(t)‖. Finally,

stability properties of y(t) = yae(t), will be ensured.

4.2. Stability properties for Vr constant

The objective here is to regulate the state vector, x, to a neighbourhood of

a constant point xe(λe(Vr)), providing suited stability properties by using the

paradigm presented in [12]. Then, for any parameter X > 0 and a given T > 0

the goal is to ensure UGAS of the compact attractor

A := {ζ ∈ H : ‖x− xe‖ ≤ X, τ ∈ [0, T ]}.

To this end, we invoke the next lemma.

Lemma 2. [16] Consider that Property 1 is satisfied, then the eigenvalues of180

matrix P−1Q are positive and ‖eAvt‖ ≤ λ
1/2
M

λ
1/2
m

e−αt, whit α = λm(P−1Q).

Moreover, we need to provide a practical minimum dwell-time property for

H due to implementation issues. Then, next property is established.

12



Property 2. There exists a positive scalar T ∗, such that, for any chosen T ∈

[0, T ∗], the solutions to hybrid system H flow for, at least, T ordinary time after185

the jump, before reaching set D.

Proof. From the proof given in [16] and without loss of generality, we consider

that the first jump occurs in t = t0, defining t̃ := t− t0. Then, the trajectories

of the error dynamics of (2), given by x̃ = x− xe flowing in C, as follows,

x̃(t̃) = eAv t̃(x̃0 +A−1
v Bv)−A−1

v Bv.

From Lemma 2, we have

‖x̃(t̃)−A−1
v B‖ ≤

λ
1/2
M (P )

λ
1/2
m (P )

eαt̃‖x̃0 +A−1
v Bv‖.

Then, for all 0 ≤ t̃ ≤ T , we get

0 ≤ t̃ ≤ 1

α
Ln

(
λ

1/2
M (P )‖x̃0 +A−1

v B‖
λ

1/2
m (P )‖x̃(t̃)−A−1

v B‖

)
.

It is worth noting that in the instant time t̃ = T the solution to H jumps, i.e.,

the solution is in D. Thus, it is possible to define a dwell-time upper bound,

T ∗ ≥ T ≥ 0, as follows,

T ∗ = max
i∈{−1,1}

1

α
Ln

(
λ

1/2
M (P )‖x̃0 +A−1

i Bi‖
λ

1/2
m (P )‖x̃(T ∗)−A−1

i Bi‖

)
.

�

Note that for a maximum possible chattering given by x̃0 and x̃(T ∗), we get

the upper bound T ∗.

The next Lemma is a fundamental step to prove stability results. Then,190

we evoke [14, Lemma 1], which is necessary to provide stability properties of

(12)–(14).

Lemma 3. Consider matrices P,Q ∈ S4 satisfying Property 1, for each point

xe ∈ R4 satisfying Assumption 2, then,

min
i∈{−1,1}

x̃>P (Aix̃+B) ≤ −x̃>Qx̃, (16)

with x̃ = x− xe.

13



Now, we are able to introduce the asymptotic stability result for the regula-

tion problem, i.e., for a constant reference xe.195

Theorem 1. Consider an operating point xe ∈ R4×1 that satisfies Assump-

tion 2. Moreover, consider that matrices P ∈ R4 � 0 and Q ∈ R4 � 0 satisfy

Property 1. Then, for any X > 0 and a given scalar T ∈ [0, T ∗] the following

holds:

1. set A is compact,200

2. set A is UGAS for hybrid system (12)–(14),

3. the system output is bounded by ‖y − Vr‖ < X,

4. set A0 := {ζ : x̃ = 0, u ∈ {0, 1}, τ ∈ [0, T ]} is globally practically asymp-

totically stable for system (12)–(14). As long as, T is small enough, set

A can be arbitrarly close to A0.205

Proof. First, we will prove the compactness of attractor A.

Proof of item 1) Hybrid system (12)–(14) satisfies Property 2, then we can

define an upper bound of x̃ in C

‖x̃(t)‖ ≤ max
i∈{−1,1}

(
λ

1/2
M (P )

λ
1/2
m (P )

eαt̃‖x̃(t0) +A−1
i Bi‖+ ‖A−1

i Bi‖

)
:= X,

such that, t0 is any time instant where occurs a jump in the steady state. Then,

we ensure that A is compact.

Now, from Proposition 2, it is possible apply useful well-posed hybrid results.

Proof of item 2) Let us consider the following Lyapunov function,

V1(x̃) :=
1

2
x̃>P̄ x̃, (17)

with x̃ = x− xe. Then, from Lemma 3, it is easy to see that during flows, the

solutions are in C, i.e., in (13), therefore, the following holds

〈∇V1(x̃), f(ζ)〉= x̃>P (Avx+Bv) ≤ −x̃>Q̄x̃.

14



When a jump occurs, we get

V1(x̃+)− V1(x̃) = 0, (18)

since x̃+ = [x+ − xe] = x̃.210

Then, UGAS of A is shown from the proof given in [14, 15, Theorem 1].

Proof of item 3) The proof is direct from item 2).

Proof of item 4) From Property 2 is easy to see that as T goes to zero, the

minimum dwell time, T goes also to zero. Then, from a sufficiently small T , set

A shrinks to A0. �215

4.3. Stability properties for Vr(t) = Vmax sin(ωt)

For λe(Vr) fixed, the proposed hybrid control allows to globally stabilize the

sampled equilibrium (9), as seen above. Now, we assume a time-varying non-

sampled reference, Vr(t), in particular take λe = λe(Vmax sin(ωt)). From the

property of this function given in Proposition 1 and by continuity of (9) with220

respect to λe, we can deduce that xe(λe) is also a periodic continuous function

of time. Intuitively, if the variation of xe with respect to time is sufficiently

slow, we can expect that the output ye(xe) be close to yae = Vmax sin(ωt).

Stability properties of the tracking problem of system 2 are established in

next lemma.225

Lemma 4. Consider the averaged model (4) and xe = xe(Vmax sin(ωt)), being

xe(λe) given by (9), such that, we have

Aλe(Vmax sin(ωt))xe(t) + B = 0. (19)

Assume that there exist parameters ρ > 0 and ε > 0, such that, Q = C>C + εI

and a positive definite symmetric matrix P � R4 satisfying

min
P,ρ

ρ

s.t. ρ > 0

P > 0

15



A>v P + PAv + 2Q −P

−P −ρI

 ≤ 0, v = −1, 1 (20)

then, for each solution to  dxae
dt =Aλe(t)xae + B

yae =Cxae,
(21)

with xae(0) = xe(0) and λe(t) = λe(Vmax sin (wt)). When t → ∞, it holds, for

γ2 = ρ, that∫ t+Te

t

|ye(t̄)− Vmax sin(ωt̄)|2dt̄ ≤ γ2

∫ t+Te

t

∥∥∥∥dxae(t̄)dt̄

∥∥∥∥2

dt̄,

where ye(t) := Cxe(λe).

Proof. The proof is inspired by the proof of [18, Theorem 3.1]. It is important

to note that if Property (1) is satisfied, then the system

dxae
dt

= Aλe(t)xae

is an asymptotically stable Te-periodic system. Moreover, it results from [19,

Theorem 4.7] or [20, Theorem 1], that there exists a unique steady state periodic

solution xss(t) to (4). It means that

lim
t→∞

xae(t)→ xss(t), (22)

where

xss(t+ Te)→ xss(t).

Consider now the Lyapunov function V2(xe, xae) = 1
2 (xe − xae)>P (xe − xae),

then the derivative of V2 along the trajectories of (4) is given as:

dV2

dt
= (xe − xae)>P

dxae
dt

+
dxae
dt

>
P (xe − xae)

− (xe − xae)>P
dxae
dt
− dxae

dt

>
P (xe − xae),

and due to (19), we can write

dxa
dt

= Aλe(t)(xe − xae).

16



Then,

dV2

dt
= (xe − xae)>(Aλe(t))

>P + PAλe(t))(xe − xae)− 2(xe − xae)>P
dxae
dt

.

Multiplying (20) on the left by
[
(xe − xae) dxae

dt

]>
, using the selected Q =

C>C + εI and on the right by its transpose, we obtain

(xe − xae)>(A>v P + PAv + 2εI + 2C>C)(xe − xae)

−2(xe − xae)>P
dxae
dt
− γ2 dxae

dt

> dxae
dt
≤ 0,

with v = {−1, 1}. Note that A1 = A(1) and A−1 = A(0).

Now, multiplying the first inequality by λ(t) and the second one by 1 − λ(t),

and summing the two resulting inequalities, we obtain:

(xe − xae)>(A>λe(t)P + PAλe(t) + 2εI + 2C>C)(xe − xae)

−2(xe − xae)>P
dxae
dt
− γ2 dxae

dt

> dxae
dt
≤ 0.

Then, by the positivity of (xe − xae)>2εI(xe − xae) we have

dV2

dt
+ 2|ye(t)− yae(t)|2 − γ2

∥∥∥∥dxae(t)dt

∥∥∥∥2

dt ≤ 0,

which in turns by integration on [t, t+ Te] gives

V2 (xe(t+ Te), xae(t+ Te))− V2(xe(t), xae(t))+∫ t+Te

t

2|ye(t̄)− yae(t̄)|2dt̄− γ2

∫ t+Te

t

∣∣∣∣dxae(t̄)dt̄

∣∣∣∣2 dt̄ ≤ 0.

From equation (22), we have:

V2(xe(t+ Te), xss(t+ Te))− V2(xe(t), xss(t))+∫ t+Te

t

|ye(t̄)− yae(t̄)|2dt̄−
γ2

2

∫ t+Te

t

∥∥∥∥dxae(t̄)dt̄

∥∥∥∥2

dt̄ ≤ 0,

and by the periodicity of xss(t),∫ t+Te

t

|ye(t̄)− yae(t̄)|2dt̄ ≤
γ2

2

∫ t+Te

t

∥∥∥∥dxae(t̄)dt̄

∥∥∥∥2

dt̄. (23)
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To complete the proof, it suffices now to remark that yae(t) = Vmax sin(ωt).

�

From this lemma, we can provide our main result about controlling the boost

inverter working as DC-AC converter.230

Theorem 2. For a given output reference Vr = Vmax sin(ωt), consider xe(λe(Vr(t))),

defined in Proposition 1 and some given parameters Te and T , such that con-

dition (15) is satisfied. Moreover, consider there exist matrices P ∈ R4 � 0,

Q ∈ R4 � 0 and parameters γ2 = ρ > 0 and ε > 0, such that, all Lemma 4

assumptions are satisfied. Then, for any parameters Xt > 0, X > 0 and for

ε0(t) :=
γ2

2

∫ t+Te

t

∥∥∥∥dxae(t̄)dt̄

∥∥∥∥2

dt̄.

and any scalar T ∈ [0, T ∗] the following holds:

1. set

At := {ζ ∈ H : ‖x− xe‖ ≤ X +Xt, τ ∈ [0, T ]}.

is compact,

2. set At is UGAS for hybrid system (12)–(14),

3. the system output is bounded by
∫ t+Te
t

|y(t)−Vr(t̄)|2dt̄ < TeX
2 +ε0, (12)–

(14),235

4. set At,0 := {ζ : ‖x− xe‖ ≤ Xt, u ∈ {0, 1}, τ ∈ [0, T ]} is globally practically

asymptotically stable for system (12)–(14). As long as, T is small enough,

set A can be arbitrarily close to A0.

Proof. The proof mainly follows the proof of Theorem 1.

Proof of item 1) From the proof of Theorem 1, here, the proof is completed240

from Lemma 4, which provides a bound of ‖ye−Vr(t)‖, which implies the bound

‖xe−xae‖ ≤ ψ(ε0(t)) ≤ Xt. Then, ‖x−xe‖ ≤ ‖x−xe‖+ ‖xe−xae‖ ≤ X +Xt.

Proof of item 2) In this item, we will consider the following Lyapunov can-

didate

V (x, xe, xae) := V1(x, xe) + V2(xe, xae) (24)

18



defined in (17) and Lemma 4 proof. It is easy to see the solution to the optimi-

sation problem given in Lemma 4, satisfy the assumptions of Theorem 1. Then,

the solution to hybrid system (12)–(14) goes to the interior of At, guaranteeing245

that this set is UGAS.

Proof of item 3) The output error is |y−yae|2 = |y−Vmax sin(ωt)|2, integrat-

ing from t to t+Te and applying Theorem 1 and Lemma 4 to bound |y−ye|2 and

|ye−yea|2 respectively, we have
∫ t+Te
t

|y(t̄)−Vr(t̄)|2dt̄ <
∫ t+Te
t

|y(t̄)−ye(t̄)|2dt̄+∫ t+Te
t

|ye(t̄)− Vr(t̄)|2dt̄ < TeX
2 + ε0.250

Proof of item 4) Direct from the proof of Theorem 1.

�

Remark 2. If xae(t) is constant, the right term in the inequality (23) is equal

to zero and ye(t) → Vr(t). As expected, the error depends on the variations of

xae(t) and γ2 can be interpreted as the rejection gain when dxae(t)
dt is considered255

as a perturbation signal. y

Remark 3. The approach proposed above is based on the assumption R� R0.

If this assumption is not satisfied, it is not possible to obtain an analytical

expression for λe(Vr). In such case, the value of λe(Vr) is characterized by:

Vr = −λeR0Vin
(2λe − 1)(λe − 1)

λ2
eR0(λe − 1)2 +R(2λ2

e − 2λe + 1)
.

Recall that only the admissible values of λe are real, meaning 0 < λe < 1. The

previous equation can also be written as

1 +
Vr

R0Vin

λ2
eR0(λe − 1)2 +R(2λ2

e − 2λe + 1)

λe(2λe − 1)(λe − 1)
= 0.

Invoking the simple root locus building rules, we can easily see that depending

of the sign of Vr, only one root is of interest and varies with Vr around 1/2.260

Then it is possible to compute the value of λe for a given value of Vr. All the

values of λe for a given function Vr(t) can be determined off-line. The approach

developed above can then be applied. y
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It is worth noting that Theorem 2 provides a solution for almost all items

stated in Problem 1. However, the last item related with robustness is not still265

considered.

5. Robustness

In many occasions, these electronic systems suffer variations in the load, R,

in the voltage input, Vin, or in other components, needing to guaranty output

robustness with respect to parameter variations, or even, to modelled errors. To

this deal, we introduce an extra dynamic to regulate the voltage output, y(t).

This dynamic is given by

%̇ = −K1%−K1K2x̃4, (25)

where K1 and K2 are predefined positive parameters, such that, Property 1

holds. The variable % gathers the current reference variations to compensate any

perturbation occurred in the voltage due to any parameter change. Therefore,

it is needed to add % to the current references. In particular, to the reference of

xe,1 = i1 + i2, and xe,3 = i1 − i2. Thus, we can define

xe,% := xe(λe)−Υ%,

where xe(λe) is given in Property 1 and Υ := [1 0 1 0]>. Defining the

augmented vectors χ := [x %]>, χae := [xea 0]> and χe := [xe,% 0]>, as well

as, χ̃ := χ− χe, we get the following error system dynamics ˙̃χ = Āvχ̃+ B̄v,

ỹ = C̄(χ̃+ χe − χae),
(26)

where

Āv :=



−RL −
1

2L 0 v
2L −K1K2 −K1 + R

L

1
2C0

0 − v
2C0

0 v−1
2C0

0 v
2L −RL −

1
2L −K1K2 −K1 + R

L

− v
2C0

0 1
2C0

− 2
R0C0

v−1
2C0

0 0 0 −K1K2 −K1


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B̄v :=



2Vin
L

0

0

0

0


+


Avxe(λe)

0


C̄ := [0 0 0 1 0].

From this dynamic, we can formulate the robust hybrid system as follows:

H̄ :





˙̃χ

v̇

τ̇

χ̇ae

λ̇e

χ̇e


=



Āvχ̃+ B̄v

0

1− dz( τT )

Āλeχae + B̄

f1(Vr)

f2(λe)

0


, ζ̄ ∈ C̄



χ̃+

v+

τ+

χ+
ae

λ+
e

χ+
e


∈



χ̃

argmin
i∈{−1,1}

χ̃>P̄ (Āiχ̃+ B̄v)

0

χae

λe

χe


, ζ̄ ∈ D̄,

ỹ = C̄χ

(27)

where ζ̄ = [χ̃ v τ χae λe χe]
> ∈ H̄, such that, H̄ := {χ̃ ∈ R5, v ∈ {−1, 1}, τ ∈

R+, χae ∈ R5, λe ∈ [ν, 1 − ν], χe ∈ R5}, with a parameter ν > 0 small enough.

Moreover, Āλe = Āv, where v is replaced by λe and B̄ := [ B0 ]. Likewise, the

flow and jump sets are

C̄ := {ζ̄ : χ̃>P̄ (Āvχ̃+ B̄v) ≤ −χ̃>Q̄χ̃, τ ∈ [0, T ]} (28)

D̄ := {ζ̄ : χ̃>P̄ (Āvχ̃+ B̄v) ≥ −χ̃>Q̄χ̃, τ = T}. (29)

with matrices P̄ , Q̄ � 0 ∈ R5.
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Theorem 3. For a given output reference Vr = Vmax sin(ωt), consider χe(xe(λe(Vr))),

being xe(λe) defined in Proposition 1 and some given parameters Te and T ,

such that condition (15) is satisfied. Moreover, consider there exist matrices

P̄ ∈ R5 � 0, Q̄ ∈ R5 � 0 and parameters γ2 = ρ > 0 and ε > 0, such that, all

Lemma 4 assumptions are satisfied. Then, for any parameters Xt > 0, X > 0

and for

ε0(t) :=
γ2

2

∫ t+Te

t

∥∥∥∥dχae(t̄)dt̄

∥∥∥∥2

dt̄.

and any scalar T ∈ [0, T ∗] the following holds:

1. set

At := {ζ ∈ H : ‖χ− χe‖ ≤ X +Xt, τ ∈ [0, T ]}

is compact,270

2. set At is UGAS for hybrid system (27)–(29),

3. the system output is bounded by
∫ t+Te
t

|y(t)−Vr(t̄)|2dt̄ < TeX
2 +ε0, (12)–

(14),

4. set At,0 := {ζ : ‖χ−χe‖ ≤ Xt, u ∈ {0, 1}, τ ∈ [0, T ]} is globally practically

asymptotically stable for system (12)–(14). As long as, T is small enough,275

set A can be arbitrarily close to A0.

Proof. The proof is direct from Theorem 2 proof. �

Remark 4. Remark 3 makes reference to modelled errors, when considering

R0 � R. This can be compensated from the hybrid scheme (27)–(29) and

applying Theorem 3. y280

Now, all items of Problem 1 are satisfied.

6. Simulations

In this section, we validate our hybrid control approach to the boost inverter

(2) in simulations. These simulations are performed in MATLAB/Simulink by

exploiting the HyEQ Toolbox [21].285
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The boost inverter parameters are given in Table 2, satisfying Assumptions 1.

Moreover, we take K1 = 1 and K2 = 1000. Then, the related optimization

problem of Theorem 3 provides ε = 9 · 10−8, ρ = 1.14 · 10−5, and

P̄ =



3.25 0.00 −0.11 0.00 −3.11

0.00 0.15 −0.00 −0.05 0.00

−0.11 −0.00 3.25 0.00 −3.11

0.00 −0.05 0.00 0.15 0.00

−3.11 0.00 −3.11 0.00 6.23


.

The upper bound of T for a chattering of 10A in the currents, 4V in the voltages

and 2 · 105 in ρ is T ∗ = 7.92 · 10−4. Hence, the selected minimum dwell-time

was T = 10−6s.

Table 2: Simulation parameters

Parameter Notation Value Units

DC input voltage Vin 70 V

Reference peak voltage Vmax 220
√

2 V

Nominal angular ω 120π rad/s

frequency

Nominal load resistance R0 100 Ω

Estimated series R 0.02 Ω

resistance

Inductor L 44 mH

Output capacitor C 200 λF

Note that Property 7 and condition (15) are satisfied. Some simulations are

performed considering two scenarios:290

6.1. Scenario I

This scenario is characterized by a perturbation of the load resistance, R0,

of 100% with respect to its nominal one, i.e., it changes from 100Ω to 200Ω at

0.02s. Figure 4 shows the evolution of the voltages, currents and variable % of (2)
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when the controlled hybrid system (27)–(29) is applied. Note, after the change295

of load R0 at 0.02s, the currents i1 and i2 converge to a different equilibrium.

Moreover, Fig. 4 performs the system output. Note, the extra state % evolves,

such that, the system output gets to reject the perturbations and the modelled

errors.
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Figure 3: Evolution of the states with a 100% variation of R0 w.r.t. its nominal one.

6.2. Scenario II300

In this second scenario, the input voltage Vin changes a 30% with respect

to its nominal value, i.e., from 48V to 100V at 0.02s. Figures 5 and 6 show

the state and output system evolutions. Note, the system output rejects the

perturbations and modelled errors with the introduced extra state ρ, converging

y(t) to Vr(t) = Vmax sin(ωt) after the change of Vin. Nevertheless, we can305
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Figure 4: Output with a 100% variation of R0 w.r.t. its nominal one.

conclude the error tracking system output is regulated, such that, is robust

with respect to the considered perturbation.

7. Conclusion

In this paper, a hybrid control law is proposed for a DC-AC converter also

known as a boost inverter. This control takes into account the real nature of310

the inverter signals, meaning the continuous-time dynamics represented by the

voltages and the currents and the discrete-time dynamic, which is the discrete

input signal. Moreover, a minimum dwell time is also considered. UGAS is

guaranteed to an attractor, ensuring the convergence of y(t) to a neighbourhood

of its reference, small enough. An extension of this result is given to provide315

robustness properties in terms of error tracking output regulation. Here, it is

shown the ability of the system output to reject any parameter change.

The future work is to obtain experimental results in a prototype.
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Figure 5: Evolution of the states with a 30% variation of Vin from its nominal one.
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