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Abstract: This paper proposes a framework to assess the stability of an ordinary differential
equation which is coupled to a 1D-partial differential equation (PDE). The stability theorem is
based on a new result on Integral Quadratic Constraints (IQCs) and expressed in terms of two
linear matrix inequalities with a moderate computational burden. The IQCs are not generated
using dissipation inequalities involving the whole state of an infinite-dimensional system, but
by using projection coefficients of the infinite-dimensional state. This permits to generalize our
robustness result to many other PDEs. The proposed methodology is applied to a time-delay
system and numerical results comparable to those in the literature are obtained.
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1. INTRODUCTION

Many processes are modeled by a finite-dimensional lin-
ear system subject to an infinite-dimensional uncertainty
(Barreau et al., 2019; Fridman, 2014). Robustness analysis
assesses the stability of the resulting coupled system. This
paper focuses on an infinite-dimensional type of uncer-
tainties modeled by a linear Partial Differential Equation.
Attention has been paid on these special couplings, partly
because Time-Delay Systems (TDS) are a subclass thereof
(Fridman, 2014; Gu et al., 2003; Safi et al., 2017).

In recent decades, many articles have been dealing with
asymptotic stability of TDS, using different robust control
tools. A first method is based on the Lyapunov-Krasovskii
theorem and requires to find a differentiable functional
with suitable properties (Gu et al., 2003). Another ap-
proach considers dissipativity (Willems, 1972). More re-
cently, a general framework for dealing with coupled Or-
dinary Differential Equation (ODE) and uncertainties has
been proposed by Fu et al. (1998); Jun and Safonov (2001);
Megretski and Rantzer (1997). This requires to find IQCs
to assess stability of the interconnection.

The methodology presented in Seuret and Gouaisbaut
(2015) shows how to construct a Lyapunov functional for
TDS based on the projection coefficients of the infinite-
dimensional state. The resulting stability test is made
up of tractable Linear Matrix Inequalities (LMIs) with a
moderate computational burden. This approach has been
applied to a transport equation in Safi et al. (2017), to
a heat equation in Baudouin et al. (2019) and to a wave
equation in Barreau et al. (2018).

1 This work is supported by the ANR project SCIDiS contract
number 15-CE23-0014.

The aim of this paper is to extend the theory devel-
oped in the previous references by using IQCs as exposed
in Scherer and Veenman (2018). In this context, a fil-
ter providing the projection coefficients of the infinite-
dimensional state is derived. Thanks to this filter, a new
class of IQCs can be generated, not related to a specific
class of PDEs. In that sense, the proposed result is adapt-
able to many linear PDEs and it is promising to extend
these ideas to other classes.

In Section 2, the problem is stated and a stability theorem
is derived. The filter is obtained in Section 3. Section 4
is dedicated to the application of the previous results to
a TDS. Section 5 provides a numerical example with a
transport equation. Finally, conclusions are drawn and
several perspectives are proposed.

Notation: Rn×m stands for the set of real matrices with
n rows and m columns and col(A,B) =

[

A⊤B⊤
]⊤

for real
matrices A and B of appropriate dimensions. Sn is the
set of symmetric matricesA matrix A is positive definite
if A ≻ 0 and positive semi-definite if A � 0. For a matrix
A, A⊥ is a basis of its null-space and for square matrices,
we use diag(A,B) = [A 0

0 B ] and He(A) = A + A⊤. The

Euclidean norm of v is defined as ‖v‖2 = v⊤v. For brevity,
the following notation is used for A,B, C,D, P and M
matrices of appropriate dimensions:

L (P,M, [A B
C D ]) =

[

I 0
A B
C D

]⊤ [ 0 P 0
P 0 0
0 0 M

] [

I 0
A B
C D

]

.

We also use C(sI −A)−1B +D =

u

v

A B

C D

}

~.

∂
(i)
x means the ith distributional derivative with respect

to the variable x. For convenience, a short-hand notation
is ∂xf = fx. The space of square integrable functions on



Fig. 1. Block diagram describing the interconnected sys-
tem (1)-(3).

[0, 1] is denoted by L2(0, 1) and L2e is the space of locally
square integrable signals on [0,∞). We work with Sobolev
spaces denoted by

Hm(0, 1) =
{

f ∈ L2(0, 1) | ∀k ≤ m, ∂(k)x f ∈ L2(0, 1)
}

.

The canonical inner product on L2(0, 1) is 〈f, g〉 =
∫ 1

0
f⊤(s)g(s)ds for f, g ∈ L2(0, 1). Similarly, L2(0,∞) is

the space of square integrable functions on [0,∞). The
binomial coefficients are defined by

(

k
l

)

= k!
l!(k−l)! .

2. PROBLEM STATEMENT

The studied system is presented in Fig. 1 and described
by the following equations as inspired by the classical IQC
framework (Megretski and Rantzer, 1997):

{

v = w + d, (y, w) ∈ ∆,

y = Gv.
(1)

Here, ∆ is a relation defined afterwards and G is the linear
time-invariant system whose representation is

{

Ẋ = AX +Bv, X(0) = 0n,1,

y = CX +Dv,
(2)

with state, input and output dimensions n, r and p re-
spectively; A, B, C and D are real matrices of appropriate
dimensions.

Remark 1. Note that we study the interconnection be-
tween an LTI system and a relation, similarly to what is
done in the behavioral approach to system theory (Willems
and Polderman, 2013). We use a relation since, in our
situation, there is no clear way to express ∆ as a causal
input-output map. This is different from the feedback
configuration as studied by Megretski and al. (1997). �

Before introducing ∆, let us define the following infinite-
dimensional system with state z(x, t) ∈ R

l for t ≥ 0:

zt(x, t) = A z(x, t) =
m
∑

k=0

Fk∂
(k)
x z(x, t), for x ∈ [0, 1]. (3)

The initial state is z(·, 0) = 0l,1. Herem ∈ N,m > 0, Fm 6=
0 and the domain of the operator A is parameterized by
y ∈ R

p such that

Dy(A ) = {z ∈ Hm(0, 1) | KBBm(z) = Ky} (4)

where KB ∈ R
ml×2ml has full-rank, K ∈ R

ml×p, and

Bm(z) = col
(

z(0), z(1), . . . , ∂(m−1)
x z(0), ∂(m−1)

x z(1)
)

.

Note that Bm is similar to the trace operator and maps the
input function to its values and those of the derivatives at
the two boundary points. Such an operator has already

been introduced by Ahmadi et al. (2016) for instance.
The equality KBBm(z) = Ky reflects the boundary
conditions.

∆ is the relation that is implicitly defined through
the boundary conditions of (3). We say that all pairs
(y, w) ∈ L2

2e belong to ∆ if there exists a solution z ∈
C1([0,∞], Hm(0, 1)) of (3) with

z(., t) ∈ Dy(t)(A ), w(t) = LBm(z(., t)) (5)

for all t ≥ 0, where L ∈ R
r×2ml.

Remark 2. Wellposedness is assumed in this paper, as it is
usually the case in IQC theory (Megretski et al., 1997) and
examples show that ∆ is often not empty. Theorem 3.1.7 in
combination with Theorem 3.3.4 from Curtain and Zwart
(1995) with KD = 0 and d ∈ L2e can be used to obtain
general sufficient conditions for ∆ to be non-empty. �

To see that the proposed framework is versatile, the
following examples describe how a time-delay system and
a coupled ODE/heat equation can be transformed into (1).

Example 1. We consider the time-delay system
{

Ẋ(t) = AX(t) +B(X(t− h) + d(t)), t > 0,

y(t) = CX(t) +DX(t− h), t ≥ 0,

with A ∈ R
n×n, B ∈ R

n×n, C = In, D = 0n,n and h > 0.
This system has been widely studied by Fridman (2014);
Sipahi et al. (2011) for instance.

This system can be converted into an ODE that is coupled
to a transport equation with speed ρ = h−1. The PDE is
written as

zt(x, t) = −ρzx(x, t), x ∈ (0, 1), t > 0 (6)

with w(t) = z(1, t) = LB1(z(t)) and

D(A ) =
{

z ∈ H1(0, 1) | z(0, t) = y(t)
}

.

In our framework we have m = 1, F0 = 0, F1 = −ρIn
with ρ = h−1 > 0 and l = n. The boundary conditions

are described with K = In and KB =
[

In 0n

]

, while the

signal w is expressed with L =
[

0n In

]

.

Example 2. Consider now the interconnection studied in
Baudouin et al. (2019) between (2) and a heat equation

zt(x, t) = γzxx(x, t)

with z(0, t) = CX(t), ux(1, t) = 0 for x ∈ (0, 1), t ≥ 0. It
can be written in the proposed framework by considering
m = 2, F0 = 0, F1 = 0, F2 = γ. The boundary conditions

are such that KB = [ I 0 0 0
0 0 0 I ] and K = [ I 0 ]

⊤
. The signal

w is generated considering L = [0 I].

Remark 3. Note that the system (3) is a generic PDE.
Other physical models fitting the framework are, for in-
stance, the linear KdV equation (Miles, 1981) with m = 3
or the beam equation with m = 4 (Gupta, 1988). �

We will study the stability of (1) according to the following
definition, which is classical in IQC theory.

Definition 1. System (1) is stable if there exists γ such
that the following inequality holds for all its trajectories:

∀T ≥ 0,

∫ T

0

‖y(s)‖2
Rn
ds ≤ γ2

∫ T

0

‖d(s)‖2
Rp
ds. (7)

Our goal is to obtain computational tests ensuring that
system (1) is stable.



3. ROBUST IQC THEOREM ON SIGNALS

An Integral Quadratic Constraint on y,Bm(z) ∈ L2(0,∞)
is expressed as:

∫ +∞

−∞

[

ŷ(jω)

B̂m(z)(jω)

]⊤

Π(jω)

[

ŷ(jω)

B̂m(z)(jω)

]

dω ≥ 0. (8)

Here, the Fourier transforms are denoted by a ·̂. Π is
a frequency-dependent Hermitian matrix of appropriate
dimension and called the multiplier in the sequel. We
assume that Π can be written in the form

Π = Ψ∗MΨ (9)

where Ψ is a transfer matrix with poles in the open left-
half plane, Ψ∗(s) = Ψ(−s)⊤ andM =M⊤. If (8) holds for
Π1 = Ψ∗M1Ψ and Π2 = Ψ∗M2Ψ, then it is also valid for
Π1 +Π2 = Ψ∗(M1 +M2)Ψ. This multiplier representation
is classical and many classes of multipliers admit such a
description (Megretski and Rantzer, 1997; Veenman et al.,
2016). Using Parseval’s theorem and (9), a time-domain
version of (8), called a soft IQC, with (9) can be deduced:

∫ +∞

0

ψ(t)⊤Mψ(t)dt ≥ 0. (10)

Here ψ is the output of the system defined by Ψ with
input y,Bm(z) ∈ L2(0,∞) associated to a state-space
realization:

Ψ =

u

v

AΨ By BB

CΨ Dy DB

}

~ .

Therefore, Ψ has the following time-domain representation

ξ̇ = AΨξ +Byy +BBBm(z), ξ(0) = 0,

ψ = CΨξ +Dyy +DBBm(z),
(11)

where ξ(t) ∈ R
nξ , ψ(t) ∈ R

pψ and AΨ, By, BB, CΨ, Dy

and DB are of appropriate dimensions. This filter can be
seen as an augmented system providing new signals, which
are of interest when finding suitable multipliersM in order
to get valid IQCs.

Notice that (10) is an infinite horizon IQC. Considering
only truncations of the signal ψ to [0, T ] for T > 0, a
revised notion, called finite horizon IQC has been proposed
in Megretski and Rantzer (1997). This last notion has been
enhanced in Scherer and Veenman (2018) introducing a
terminal cost depending on the final value of the filter.
This notion, useful for our purpose, is recalled here.

Definition 2. For the trajectories of (3), (4) and (11) with
any y,Bm(z) ∈ L2e, M =M⊤ is a multiplier for a finite
horizon IQC with terminal cost defined by the matrix
Z = Z⊤ if the following holds for all T ≥ 0:

∫ T

0

ψ⊤(t)Mψ(t)dt+ ξ⊤(T )Zξ(T ) ≥ 0. (12)

We then say that M defines a finite horizon IQC with
terminal cost Z with respect to the filter Ψ.

Notice that as we are focusing on signals in L2e in the
previous definition and not in L2 then the filter Ψ can be
unstable. In the sequel, and similarly to what was done by
Scherer and Veenman (2018), we introduce the following
realization:

Ψ

(

GL

I2(m+1)l

)

=

u

w

w

v

AΨ ByC ByDL+BB

0 A BL

CΨ DyC DyDL+DB

}

�

�

~

=

u

v

A B

C D

}

~ .

(13)

All these definitions lead to the following theorem which is
an adapted version of Theorem 3 in Scherer et al. (2018).

Theorem 1. Let P ∈ S
nξ+n and a multiplier M = M⊤

be such that the finite horizon IQC with terminal cost
Z ∈ S

nξ (defined in (12) with respect to the factorization
(9)) holds together with

K⊥
◦

⊤
L (P,M, [A B

C D ])K⊥
◦ ≺ 0, (14)

P −

[

Z 0

0 0n

]

≻ 0, (15)

where

K◦ =
[

0ml,nξ KC −KB

]

.

Then system (1) is stable in the sense of Definition 1.

The main advantage of this theorem lies in the simplicity
of its proof.

Proof : To ease the readability, the sketch of proof is
divided into two parts. First, we show that if (14) holds,
then an extended LMI also holds. The second part aims
at deriving (7) from this larger LMI; the calculations
are highly inspired by the ones in Scherer and Veenman
(2018).

Step 1: Take first a trajectory η = col(ξ,X,Bm, d) of
(2) and (3) together with (5). We can then introduce the
dynamical system






d

dt

[

ξ
X

]

= A
[

ξ
X

]

+ B̃
[

Bm(z)
d

]

,
[

ξ(0)
X(0)

]

= 0,
[

ψ
y
d

]

= C̃
[

ξ
X

]

+ D̃
[

Bm(z)
d

]

,
(16)

with

B̃ =
[

B
ByD

B

]

, C̃ =
[

C
0 C
0 0

]

, D̃ =

[

D Dy
DL D
0 Ir

]

.

Note that, for almost all t ≥ 0, K̃◦η(t) = 0 where

K̃◦ = [K◦ 0 ]. Let M̃γ = diag(M, 1
γ
Ip,−γIr) and define

the following matrices:

L = L (P,M, [A B
C D ]) and L̃γ = L

(

P, M̃γ ,
[

A B̃
C̃ D̃

])

.

After some calculations, the following equality is obtained:

L̃γ =

[

L Φ(P,B, C,M,By, Dy)

⋆ D⊤
y MDy − γI

]

+
1

γ
Θ(C,D,L),

where Φ and Θ are matrices of appropriate dimension that
are not depending on γ. Assume now that the conditions of
Theorem 1 hold. Then, by Finsler’s lemma (Skelton et al.,
1997), there exists σ > 0 such that:

L − σK⊤
◦ K◦ ≺ 0.

Consequently, since Φ and Θ do not depend on γ, there
exists γ > 0 sufficiently large such that we get L̃γ −

σK̃⊤
◦ K̃◦ ≺ 0. Using Finsler’s lemma again yields:

K̃◦
⊥⊤

L̃γK̃
⊥
◦ ≺ 0. (17)



Step 2: Let us define χ(t) =
(

K̃⊥
◦

)+

η(t) for almost all

t ≥ 0, where
(

K̃⊥
◦

)+

is a right-inverse of K̃⊥
◦ . Inequality

(17) can be written as

χ⊤(t)K̃◦
⊥⊤

L̃γK̃
⊥
◦ χ(t) = η⊤(t)L̃γη(t) ≤ 0. (18)

Expanding (18) and using (16) yields for almost all t ≥ 0:

d

dt

(

[

ξ(t)
X(t)

]⊤

P
[

ξ(t)
X(t)

]

)

+ ψ⊤(t)Mψ(t)

+
1

γ
‖y(t)‖2

Rp
− γ‖d(t)‖2

Rp
≤ 0.

An integration between 0 and T ≥ 0 leads to

[

ξ(T )
X(T )

]⊤

P
[

ξ(T )
X(T )

]

+

∫ T

0

ψ⊤(t)Mψ(t)dt

+

∫ T

0

1

γ
‖y(t)‖2

Rp
− γ‖d(t)‖2

Rp
dt ≤ 0.

Using IQC (12), we get for all T ≥ 0:

[

ξ(T )
X(T )

]⊤

P
[

ξ(T )
X(T )

]

− ξ⊤(T )Zξ(T )

+

∫ T

0

1

γ
‖y(t)‖2

Rp
− γ‖d(t)‖2

Rp
dt ≤ 0.

Since (15) holds, we conclude that system (1) is stable. �

Remark 4. Note that there are some differences between
the previous theorem and Theorem 1 derived by Megretski
et al. (1997). For instance, we neither require the signals
to be in L2(0,∞) nor use the causality of the relation.
The main advantage of the current formulation is that it
is more general than in Megretski and Rantzer (1997) and
it is possible to recover existing results of the IQC theory,
as shown in Scherer and Veenman (2018). �

4. THE PROJECTION METHODOLOGY

In this paper, we want to design a filter Ψ which is well-
suited for the analysis of infinite dimensional uncertainties
such as (3). We will use the projection methodology, an
idea firstly introduced for time-delay systems in Seuret
and Gouaisbaut (2015). It can be extended to coupled
ODE/PDE problems as explained below.

Let N ≥ 0 and denote by (ek)k≤N an orthogonal family

of L2(0, 1). The projection coefficients of z(·, t) are then
defined for k ∈ N as

Ωk(t) =

∫ 1

0

z(x, t)ek(x)dx.

Ωk is called the projection coefficient of order k of z. The
filter should then generate the projections coefficients of
z(·, t) from its boundary values. Notice that the signals
Ωk can be generated by a marginally stable linear system
driven by Bm(z). Indeed, for m = 2, the differentiation of
Ωk with respect to time leads to:

Ω̇k(t) =

∫ 1

0

zt(x, t)ek(x)dx =

2
∑

i=0

Fi

∫ 1

0

∂(i)x z(x, t)ek(x)dx.

Ω̇k(t) = F2

(

[zx(x, t)ek(x)]
1
0 −

[

z(x, t)
d

dx
ek(x)

]1

0

+

∫ 1

0

z
d2

dx2
ek(x)dx

)

+F1

(

[z(x, t)ek(x)]
1
0 −

∫ 1

0

z(x, t)
d ek

dx
(x)dx

)

+ F0Ωk(t).

If we choose {ek}k∈N
as a polynomial orthogonal family

of L2(0, 1),
d
dx
ek is a linear combination of strictly lower

order polynomials in the same family. The only polynomial
basis of L2(0, 1) which has values at the boundaries are
the Legendre polynomials {Lk}k∈N. This family has the
following properties (Courant and Hilbert, 1989):

Lk(x) = (−1)k
k
∑

l=0

(−1)l
(

k
l

) (

k+l
l

)

xl,

Lk(1) = 1, Lk(0) = (−1)k, ‖Lk‖
2
L2

= (2k + 1)−1,

d

dx
Lk(x) =

k
∑

j=0

ℓkjLj(x),
d2

dx2
Lk(x) =

k
∑

j=0

j
∑

i=0

ℓkjℓjiLi(x),

where ℓkj = (2j + 1)(1 − (−1)k+j) if j ≤ k and ℓkj =

0 otherwise. Note that Ω̇k is a linear combination of
strictly lower order projection coefficients, which provides
a hierarchical structure, expressed explicitly as follows:

Ω̇k(t) = F2



zx(1, t)− (−1)kzx(0, t)−

k
∑

j=0

ℓkjz(1, t)

+

k
∑

j=0

(−1)jℓkjz(0, t) +

k
∑

j=0

j
∑

i=0

ℓkjℓjiΩi(t)





+F1



z(1, t)− (−1)kz(0, t)−

k
∑

j=0

ℓkjΩj



+F0Ωk.

The behaviors of the projection coefficients are highly
related to the behavior of z(·, t) and can be generated
by a linear sub-system whose inputs are the boundary
conditions. It is natural to define the state of the filter
by stacking the projection coefficients as in

ξN (t) = col (Ω0(t), Ω1(t), · · · , ΩN (t)).

Finally, the filter dynamics can be expressed by (11) in the
case m ∈ {1, 2}, nξ = (N + 1)l and pψ = 2ml+ nξ with

ANΨ =

m
∑

i=0

(−1)iF̃Ni L
i
N , BNy = 0nξ,p,

BNB =
[

B1 · · · Bm

]

, BNi =

m
∑

j=i

F̃j(−LN)
j−i
[

−1
∗
N 1N

]

,

CNΨ =

[

02(m+1)l,nξ

Inξ

]

, DN
B =

[

I2(m+1)l

0nξ,2(m+1)l

]

, DN
y = 0pψ,p,

(19)where

LN = [ℓijIl]i,j=0..N ∈ R
nξ×nξ ,

F̃Ni = diag(Fi, · · · , Fi) ∈ R
nξ×nξ ,

1N =
[

Il Il · · · Il

]⊤

∈ R
nξ×l,

1
∗
N =

[

Il −Il · · · (−Il)
N
]⊤

∈ R
nξ×l.

Notice that the previous equation can be extended to
higher values of m with a proof based on induction.



To summarize, the filter ΨN has the following form:

ΨN : L2e(0,∞)p+2ml → L2e(0,∞)pψ
[ y

Bm(z)

]

7→ ψN =
[

Bm(z)
ξN

]

,

(20)

and from the boundary values of z and its derivatives, it
computes the N th projection coefficients of z. Thanks to
the previous calculations, using this filter in Theorem 1
leads to the following definitions:

A =

[

ANΨ 0

0 A

]

, B =

[

BNB

BL

]

, C =
[

CNΨ 0
]

, D = DN
B.

Note that the filter ΨN is depending on the dynamic
of the uncertainty. Finding the multiplier MN is then a
consequence of the order N used for the filter and the
PDE under consideration. To apply Theorem 1, we can
follow these subsequent steps:

(1) First rewrite the system under consideration to fit
equations (2) and (3) (see Examples 1 and 2);

(2) Find a class of multiplier MN and terminal cost
matrices ZN verifying (12);

(3) Test the feasibility of LMIs (14) and (15) using the
multipliers found in the previous step. If they are
feasible, then the system is stable (see Section 6).

The following section is dedicated to an example of step 2
with m = 1.

5. GENERATING IQCS USING PROJECTIONS

Proposing IQCs for infinite-dimensional systems requires
different tools than in the finite-dimensional case. We
introduce in the first subsection a justification of how the
filter designed in the previous subsection can be helpful.
Then, the second subsection is dedicated to an application
to a transport equation as defined in Example 1.

5.1 General idea

Since z(·, t) ∈ Hm([0, 1]), it is difficult to find dissipation
inequalities. One solution is to consider an approximation
of z on a finite-dimensional space. Let N ≥ 0 and denote
by (ek)k≤N an orthogonal family of L2(0, 1). Then, the
following holds for t ≥ 0:

min
y∈Span(ek)k≤N

‖z(·, t)− y‖2L2
= ‖z(·, t)− zN(·, t)‖

2
L2

= ‖z(·, t)‖2L2
− 2〈z(·, t), zN(·, t)〉+ ‖z‖2L2

= ‖z(·, t)‖2L2
− ‖zN(·, t)‖

2
L2

≥ 0.

Here we have

zN (·, t) =

N
∑

k=0

Ωk(t)
ek(·)

‖ek‖2L2

.

The previous equality shows that zN is the projection of
z on the subspace spanned by the family (ek)k≤N and is
consequently the optimal approximation (with respect to
the norm ‖ · ‖L2

) of z in the former family. Note that for
R ∈ S

l
+, a consequence of the previous statement is the

following:
∫ 1

0

z⊤(x, t)Rz(x, t)dx ≥
N
∑

k=0

1

‖ek‖2L2

Ω⊤
k (t)RΩk(t). (21)

Inequality (21) is referred to as Bessel Inequality and,
as a consequence of Parseval’s theorem, equality holds
when N goes to infinity. The previous inequality is the
starting point for building multipliers in a similar way as
with Jensen’s inequality for time-delay systems (Fridman,
2014). These considerations indicates that Ωk are signals of
interest to characterize the uncertainty ∆ with the help of
the IQC defined in (12), since the Bessel inequality relates
the energies of the PDE and of a finite-dimensional system.

5.2 Application to uncertainties generated by a transport
equation

Example 1 shows how to model a time-delay system
using our framework. This section is dedicated to finding
multipliers for the uncertainty (6) such that inequality (12)
holds. Two multipliers M1

N and M2
N are obtained using

different techniques and an heavy use of (21).

Finite-horizon IQC with terminal cost. Since the trans-
port equation is an hyperbolic equation, it is a lossless sys-
tem from an energy perspective. This first IQC expresses
this physical fact.

Lemma 1. For the transport equation in (6), if S ≻ 0,
then the finite-horizon IQC (12) with terminal cost Z1

N

and multiplier M1
N holds with:

M1
N =ρ







S 0 0

0 −S 0

0 0 0nξ






, Z1

N = − diag (S, 3S, . . . , (2N + 1)S) .

(22)

Proof : Let us introduce the following notation for t ≥ 0:

I1(t) =

∫ 1

0

z⊤(x, t)Sz(x, t)dx = ‖z(·, t)‖2S.

I1(t) is the energy of the PDE at a given time t. Since
I1(0) = 0, the following holds for T ≥ 0:

I1(T ) =

∫ 1

0

∫ T

0

∂t
(

z⊤(x, t)Sz(x, t)
)

dtdx

= 2

∫ 1

0

∫ T

0

z⊤t (x, t)Sz(x, t)dtdx

= −ρ

∫ T

0

∫ 1

0

2z⊤x (x, t)Sz(x, t)dxdt

= ρ

∫ T

0

z⊤(0, t)Sz(0, t)−z⊤(1, t)Sz(1, t)dt.

From (21), we get I1(T ) ≥
∑N

k=0(2k + 1)Ω⊤
k (T )SΩk(T ).

Combining with the two previous results yields

ρ

∫ T

0

z⊤(0, t)Sz(0, t)−z⊤(1, t)Sz(1, t)dt

−

N
∑

k=0

(2k + 1)Ω⊤
k (T )SΩk(T ) ≥ 0.

Then, the following IQC with terminal cost Z is obtained:
∫ T

0

ψN (t)⊤M1
NψN (t)dt + ξ(T )⊤Z1

Nξ(T ) ≥ 0

for all T ≥ 0. �

Remark 5. Losslessness does not translate into an equality
since we used Bessel inequality. Equality is recovered for
N → ∞. �



Finite horizon IQC with Z = 0. The previous inequality
is about the energy balance between the input and the
output. In this part, we are interested in the transmission
of energy between the input and the PDE itself.

Lemma 2. For R ≻ 0, The finite horizon IQC (12) with
terminal cost Z = 0 and with multiplier

M2
N =







R 0 0

0 0l 0

0 0 − diag (R, 3R, . . . , (2N + 1)R)






(23)

holds for system (6) together with the filter (19).

Proof : We start this time with an integration by parts:
∫ 1

0

He
(

(1− x)z⊤(x, t)Rzx(x, t)
)

dx =

2
[

(1− x)z⊤(x, t)Rz(x, t)
]1

0
+ 2‖z(·, t)‖2R

−

∫ 1

0

He
(

(1 − x)z⊤x (x, t)Rz(x, t)
)

dx.

In other words, the following holds:

z⊤(0, t)Rz(0, t) = ‖z(·, t)‖2R

−

∫ 1

0

He
(

(1− x)z⊤(x, t)Rzx(x, t)
)

dx.

(24)
In a similar way as previously, define the following for
t ≥ 0:

I2(t) =

∫ 1

0

(1− x)z⊤(x, t)Rz(x, t)dx ≤ ‖z(·, t)‖2R.

Then, we get for T ≥ 0:

I2(T ) = 2

∫ 1

0

(1− x)

∫ T

0

z⊤(x, t)Rzt(x, t)dtdx

= −2ρ

∫ T

0

∫ 1

0

(1− x)z⊤(x, t)Rzx(x, t)dxdt.

Using equation (24) and inequality (21), we get:

I2(T ) = ρ

∫ T

0

z⊤(0, t)Rz(0, t)− ‖z(·, t)‖2Rdt

≤ ρ

∫ T

0

z⊤(0, t)Rz(0, t)

−
N
∑

k=0

(2k + 1)Ω⊤
k (t)RΩk(t)dt.

Since I2(t) ≥ 0 for t ≥ 0, the previous results lead to:
∫ T

0

ψN (t)M2
NψN (t)dt ≥ 0. �

Finally, taking MN = M1
N + M2

N and ZN = Z1
N , we

get that MN defines an IQC with terminal cost ZN for
the uncertainty described in Example 1. The second step
of the methodology has then been successfully applied.
The following section is dedicated to an application of
Theorem 1 for a time-delay system. Before that, a short
discussion on the relation with Lyapunov functionals is
included.

On the relation with Lyapunov functionals. A Lyapunov-
based stability theorem for this problem has been derived
in Safi et al. (2017). The functional used is made up of
I1 and I2. After some computations, one can show that

the LMIs resulting from Theorem 1 are the same than the
ones obtained in Safi et al. (2017).

Nevertheless, we provide here a more generic framework
and the proposed methodology can benefit from all the
advances made with IQCs such as performance analysis
and already existing multipliers for some classes of non-
linearities (see (Veenman et al., 2016) and references
therein). In this way, we can get stronger IQCs, and benefit
from all the advances made in that field.

6. NUMERICAL EXAMPLE AND DISCUSSION

We consider the time-delay system in Example 1 with:

A =

[

0 0 1 0
0 0 0 1

−10−k 10 0 0
5 −15 0 −0.25

]

, B =

[

0 0 0 0
0 0 0 0
k 0 0 0
0 0 0 0

]

,

for k > 0. This example describes a regenerative chatter
taken from Gu et al. (2003); Seuret and Gouaisbaut (2015).
This system is a good toy example as finding the values
of (k, ρ) making the system stable is not straightforward.
Nevertheless, using the Control Toolbox of Matlab R© (as in
(Seuret and Gouaisbaut, 2015) for instance), the stability
areas can be exactly obtained.

A first analysis shows that, in the delay independent case,
the maximum allowable k is kmax = 0.3. Using the Small-
Gain theorem leads to the stability for k ≤ 0.104, for
[Megretski, 1997], the maximum k is 0.265, while using
the method described in this paper, we get 0.299. Even at
low order, the proposed methodology is very efficient for
dealing with hyperbolic equations.

We are interested now in the numerical analysis in the case
of a fixed k = 2. The results are displayed in Table 1. To
obtain this table, we used the multiplier obtained in the
previous section and we solved LMIs (14) and (15) with a
grid on h.

First of all, we can note the hierarchy property of Theo-
rem 1 with this example. Indeed, the stable intervals for
N = 0 are included in the others obtained for higher values
of N . And this is also the case for the order 2 and 5.
We can note that for N = 5 or 7, there are at least two
stability pockets detected, meaning that Theorem 1 can
recover stable intervals of the form ρ−1 ∈ [h−, h+] with a
possible non zero h−. And for N = 7, the detected stable
intervals are close to the exact ones, meaning that the
theorem provides a precise estimate of the stability area.

The comparison with other IQC theorems shows that
Theorem 1 is different in nature. Indeed, the IQC theorems
in Megretski and Rantzer (1997) and Veenman et al.
(2016) provide stability for a constant delay between 0
and a maximum value. Consequently, they cannot detect
stability pockets but they ensure the robustness for the
delay varying between the two obtained bounds.

7. CONCLUSION & PERSPECTIVES

This paper presented a preliminary work on the robust
analysis of infinite-dimensional systems coupled to an
ODE. It introduces a different way to assess its stability
using IQCs. This approach gives insights about how to
build a filter deriving the projections coefficients which
helps characterizing the uncertainty. We use a new kind



Stable Intervals [0, 0.859] [1.117, 1.264] [2.75, 3.5]

Theo. 2, N = 0 [0, 0.062] − −

Theo. 2, N = 2 [0, 0.854] − −

Theo. 2, N = 5 [0, 0.859] [1.123, 1.264] −

Theo. 2, N = 7 [0, 0.859] [1.117, 1.264] [2.83, 3.36]

[Megretski, 1997] [0, 0.062] − −

[Veenman, 2016] [0, 0.060] − −

Table 1. Table of stable values for ρ−1. The
first row depicts the exact stable intervals and

rows 2 to 5 are coming from Theorem 1.

of IQCs, which is valid for many more PDEs and, in that
sense, we obtain a robustness result. Moreover, it has been
shown with an example that, for the transport equation,
it leads to the same result as using one of the most recent
Lyapunov functionals in the literature.

Furthermore, this paper offers many perspectives, that
were not raised with the Lyapunov approach. For instance,
further work concerns the wellposedness of the intercon-
nection and a methodology for deriving the IQCs. New
tools were introduced and it would be interesting to pursue
this direction in order to give a better interpretation of the
filter. The interpretation of each IQC in terms of energy
would help building new dissipation inequalities that are
less conservative.
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