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Abstract—This paper presents a generic approach to specify Il. RELATED WORK

a fault tolerant robot controller, and its implementation and
validation with ROS and Ga;ebo. The main idea is to implement Fault tolerance is at the very heart of robotic and au-
a fault tolerance strategy using a fauit tree and an ordered set of 4,5 systems community interest. Indeed, in the SPARC
recovery modules. A fault injection campaign has been carried “ - ”
out with a mobile autonomous robot for airport inspection using  f02dmoap [7], the proposed “dependability levels” actually do
simulation with Gazebo and ROS. This successful experiment Not address dependability as a whole, but de nes levels of
implements a safety- rst strategy. autonomy of the robot regarding fault tolerance (e.g. how
Index Terms—Fault tolerance, Autonomous mobile robot, Sim-  the system is able to autonomously manage, even predict,
ulation, Fault injection, ROS, Gazebo and recover from faults). If most of the work in robotic
fault tolerance was developed to cover hardware failures (e.g.,
for industrial manipulators in [8], [9]), the concept has been
Increasing complexity and autonomy of tasks performed Igxtended to the complete architecture of robot and autonomous
mobile robots, requires to deploy more and more techniquestems, from the functional layer to the decisional layer.
to analyse and guarantee condence in such systems [A}. the functional level, fault tolerance in robotics has been
Among all dependability techniques, fault tolerance, de neéixperimented for actuators, sensors or perception software
as a technique to avoid service failures in the presence of fauitsors. For instance, [5] propose to develop dedicated monitors
[2], has been widely used in robots and autonomous systeri®s. each software component for mobile robots, which is
Basically, a fault tolerance mechanism (FTM) is composeiso done in [10]. In these papers, timing or reasonableness
of a detection module (DM) and a recovery module (RMghecks are performed for hardware and software modules
This de nition is applicable to basic redundant architecturesith recovery mechanisms impacting the decisional level (for
(e.g., redundant sensors), to more complex fault tolerant #rstance, reduce the autonomy level of the robot). In [11],
chitectures (e.g. at the localization function level [3], or at thése faults from environment and sensors are detected and
system level [4]), and it is also widely used in componentecovered in the layer responsible for action sequencing and
based robot controllers [5]. However, such approaches fail @gecution in autonomous robot. In case of error detection, the
address an issue which is the coordination between seve&@iresponding function is executed in a fall-back mode. Other
fault tolerance mechanisms included in the robot controller tnctions are chosen to deliver the same task or the level of
different layers. Indeed, when integrating FTM, the recovegutonomy is reduced by switching to a tele-operated mode. In
actions may be triggered in a concurrent way, which can letlls case, the decisional layer is disconnected. At decisional
to unwanted states of the system. For instance, a FTM colgyel, some works on “execution monitoring” [12]-[14] fo-
be in charge of respawning some active control componertgs on planner capacity to cover errors, like environmental
which are actually required by another FTM to stop the robdwazards [15] or faults in the hardware layer [16]. There are
To cope with such situations, our approach is to de ne actually few works really focusing on fault tolerance at the
partial order between FTM based on a fault tree analysis, a#eicisional level as in [17]-[19], and one popular approach is
another one for RM impact on safety. Based on these baticuse active safety monitors in independent layers as fault
elements, we propose a basic safety- rst strategy implementeterance mechanisms [4], [20]-[22].
in a FTM Manager. We apply this approach to a simulated All these works are actually focusing on detection and re-
mobile autonomous robot checking lights on airport runway®very mechanisms dedicated to speci c layers in autonomous
in a ROS/Gazebo environment. robot architecture, but do not address the issue of synchronisa-
This paper rst introduces the case study, the Osmodisn between fault tolerance mechanisms. Such approach can
project [6], in section Ill. Then we present an overview obe found in distributed systems [23] and networks [24], but
the approach in section IV and its application in section \they are globally more focusing on synchronisation protocols
Lessons learnt are provided in the conclusion. rather than on the consistency between the recovery mecha-

I. INTRODUCTION



verif), the graph planner computes the trajectory using a graph
of the airport, and send intermediary points to the Osmosis
Controller which is charge of computing the speed command
according to the current intermediary point to reach. The safety
pilot is in charge of passing commands, unless an obstacle is
too close (then the system switches to controlled stop, i.e.
a 0 speed command is sent), or a preemptive request for
Fig. 1. The simulated Summit XI robot and the airport with Gazebo teleoperation (with a joystick). Theummit xllayer provides

the simulated sensors (odometry, hokuyo laser, IMU, GPS)

Mission ! and actuators (in this case only a linear and angular speed
Manager | "M control node). In the current version we use the absolute
gra*h localization published by Gazebo instead of fusion between
7 p.anﬁer IMU, Odometry and GPS as it is done on the real platform.
ocalization — O:motis IV. APPROACH OVERVIEW
| control The basic steps of the deployment of our approach are
S:ety _ presented below and detailed hereafter:
Pl Tpior  [¥| Teleoperation 1) Analyse the fault propagation chain with a fault tree;
R v__ 2) Identify fault tolerance mechanisms (FTM) mitigating
| summit xI 1 the effect of the unwanted events in the fault tree;
ittt ! 3) Export the resulting FTM tree (FTMTree) and identify
Fig. 2. Osmosis controller ROS-nodes architecture the recovery modules partial order (RMGraph);

4) Choose the recovery strategy that will be implemented
in the FTM Manager.
nisms that can be triggered by the fault tolerance mechanisms,g\mOng all the risk analysis techniques, the fault tree anal-
Another important point is that they usually do not deal witlsjs s still one of the most used in industry and research.
detection and recovery mechanisms that can be implemenfegasically consists of a top-down analysis, starting from the
at different levels of abstraction in the architecture. In afnwanted event (also called “top event’, e.g., “unwanted stop
autonomous architecture, fault tolerance mechanisms hagyghe robot”), and identifying the combination of unwanted
to deal with several levels of abstraction, from functionglyents that may lead to this top event. This combination is
layer to the decisional layer. Hence, managing consister\ggua”y modeled with OR and AND gates. Note that few
between these mechanisms while dealing with different levelgncepts are required to start using it, whereas a high expertise
of abstraction is still an open issue in autonomous systemsg required to develop effective trees.
The second step is to identify all fault tolerance mechanisms
Ill. OSMOSIS Case sTupy that could mitigate the effect of the unwanted events that are
The OSMOSIS experiment [6] is inspired from the SafeANtenti ed in the fault tree. A fault tree analysis is usually done
experiment as part of the CPSE Labs project [25]. In thi® nd minimal cut sets in order to identify weaknesses of
experiment, we consider an autonomous mobile robot alile design, or to estimate the probability of the top event.
to navigate on the airport like in Figure 1 in order to reacln our case, we do not investigate such a use of the fault
runways, and then proceed to light inspections by drivingee analysis, nor a complete risk analysis, but only focus on
along the light row and grabbing light intensity data usingow a fault tree could be a tool for developing fault tolerance
a speci ¢ sensor. For this experiment, we use the simulatorechanisms. As it will be the case in next section, not all
Gazebo, and the simulated robot Summit XL from Robotniknwanted events of a fault tree could be mitigated by a fault
[26] presented in Figure 1 running under ROS. tolerance mechanism, but this is out of the scope of this paper.
The proposed control architecture is shown on Figure 2, fault tolerance mechanism (FTM) can be represented as a
where only nodes and data ow are presented. The complétarrier, as it is done in the left part of bow-tie diagrams [27],
code and its simulator is available at [6]. The mission i® mitigate the propagation of the unwanted events. We chose
basically a description of which runway the robot has to chet& de ne a FTM by its two main modules: a detection module
(e.g., runway A and B). Two basic control modes are appligdM) and a recovery module (RM). A FTM is thus de ned
: “taxi” when the robot has to reach the starting point of asFTMx p DMy;RMz ¢ A DM could be a timing or
runway, the robot is able to avoid obstacles using a potentiglue error detection, with basic comparisons or more complex
eld algorithm, and “light veri cation” when the robot is on a detection with active components such as watchdogs. For RM
runway and checking the lights, in this case the robot just stoge stick to the three basic ones : forward, backward, and
in case of an obstacle presence, and wait until the obstacleniasking [2]. Forward recovery is usually a mission level action
removed. The mission manager is in charge of transmitting tfiee. emergency stop, or controlled stop), whereas backward
objective point and the associated control mode (taxi or lightecovery and masking are used at component level.
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Fig. 3. FTM Manager inputs and outputs

Fig. 4. DM and RM state machines

The FTM tree in the third step is actually a direct translatiof
of the previous fault tree (where FTMs act as barriers), whe

TABLE |

DETECTION MODULES DESCRIPTION

DM1 Prohibited Area

A redundant device is able to detect |if

the robot reach a prohibited area

DM2 Command not updateq

Freshness of command is assessed

DM3 Wrong command valug

Out-of bounds error detection

DM4 Control node crash

=}

A watchdog is associated to the ma|
control node

DM5 Non-control
crash

nodes

A watchdog is associated to all node

DM6 Localization not up-
dated

Freshness of localization is assessed

DM7
crash

Localization node

A watchdog is associated to the locdl-

ization node

TABLE I

RECOVERY MODULES DESCRIPTION

RM1 Emergency stop

A command to engage brakes at Io
level is simulated

RM2 Controlled stop

Linear and angular speed are assign
a 0 value.

RM3 Respawn Control Osmosis Control, Mission Managef,

nodes Graph Planner are respawn

RM4 Respawn Non-contro| Respawn non-control nodes (Teleopg
n nodes ation, Localization, HMI)

=
'

eRM5 Switch to teleoperation

The safety pilot is activated to only
execute commands from the joystick

T

the relation order is the distance in the cause-consequer
chain to the top event. For instance, in the tree of Figure 6,
FTM1 (details are given in the next section) is the root
mechanism, whereaSTM 5 and FTM 7 are leaves of the FTM is Activated and another FTM becomective.
tree. Our objective is to deploy an architecture of the FTM
For the RMGraph, the partial order relation between RNflanager allowing the developers to specify several strategies
depends on the objective of the overall fault tolerance stratei{jth no modi cation of the implemented DMs and RMs. In
For instance, let us consider only two RMs, “Emergency Stophe next section, we chose to implement a safety- rst strategy,
(a complete shutdown of the power supply leading to blodkhich always leads to activate only one RM, but as we are
the wheels in our case study) and “Controlled stop” (sendit§ing concurrent objects programmed with state machines
a zero value for the speed command, but keep the contidlthe DM and RM abstract classes, the strategy may be
loop active). In a mission- rst strategy, the “Emergency Stopeasily changed to allow an activation of simultaneous recovery
(which drastically impact the mission ful Iment) might bemgcha_mism_s, and each state machine could also be extended
ordered differently if the strategy would be safety- rst. InUsing inheritance.
such a safety- rst strategy, the relation order would be “is
safer than”, expressing the fact that the safety of the reached V. APPLICATION TOOSMOSIS
state after activation of the “Emergency stop”, would be safer The experiment has been carried out on only one fault tree,
than “controlled stop”. “Safer” would be estimated based are. for one top event. We chose to study the top event “moving
potential severity and likelihood of a harm induced by thiside a prohibited area” among the identied hazards. A
robot in case of failure or adverse situation. simpli ed fault tree is presented Figure 5. This fault tree was
The last step is the speci cation of the strategy that shou&halyzed to identify FTMs that could mitigate the propagation
be implemented, particularly when two (or more) FTM aref unwanted events that induce the previous top event.
concurrently active. In a safety- rst strategy, which has been The FTMs are presented Figure 6, wheffel Mx
implemented in our case study, we manage to execute {i¥My;RMz qis used to associate a detection modmi&fy )
FTM according to the FTMTree and the RMGraph as it i a recovery moduleRMz). The complete list of DMs and
presented in Figure 3. The role of the FTM Manager is t8Ms for this experiment are given in Table | and Il. Not all
centralize all detections and prioritize recovery modules. Ounwanted events could be mitigated in this fault tree with
implementation is based on state machines to handle su€FMs, for this paper we do not address this issue, but on
situations (see Figure 4). Basically, DMs have two statdsgw existing fault tolerance mechanisms could coexist.
Idle and Active, and RMs have also two statédle and For this proof-of-concept paper, we chose to implement
Activated. An FTM is said to beActive when its DM is recovery mechanisms of several types. RM1, RM2 and RM7
Active, andActivated when its RM isActivated. The FTM are forward recovery (the system goes in a new state). In
Manager is responsible for controlling the situation where onable Il, “Control nodes” are those that contain mission data



Moving inside a
prohibited area

A

Erroneous graph Erroneous Actuator failure

command
Localization error Command Command
not updated calculation error
Error in Localization
localization not updated Control Non control
estimation node crash node crash

Fig. 5. Fault tree for the top event “moving inside a prohibited area”

We implement a safety- rst algorithm that always select
the highest FTM (in the FTMTree) in case of concurrent
activation, but also able to manage concurrent non-ordered
FTMs using the RMGraph. In this study, we chose to use
the following partial order sets (poset) for tRgMTree
FTM; © whereFTMx © FTMy means “FTMx is closer
to the unwanted event in the cause-consequence chain than
FTMy”. In the same way, we de n®&M Graph RM; ©;j
where RMx © RMy means “RMx is safer than RMy”,
i.e. the probability and severity of potential harm after RMx
engaged, is less than for RMy (such a risk matrix is usually
done by the experts). The resulting poset is represented with
a Hasse diagram in Figure 8.

In the FTMTree we will use thedominance function
usually used in control ow, de ned by: an elemeRtT Mx
dominates an elemeRtT My if every path from the root node
Fig. 6. FTM as barriers added to the fault tree of the top event “Movingy FTMy go throughFTMx. For instance. in Figure 8(a)
inside a prohibited area” . ) ; - ’
FTM1 dompFTM L, FTM 2;FTM 4q If no dominant
is found, the function return®. The function lowest com-

(i.e. Mission Manager, Graph Planner, Osmosis Control fRON dominant low_com dom) corresponds to the closest
Figure 2). “Non-control nodes” are Localization, HMI and?@rent node of a set.of nodes in the tree. For instance, the
Teleoperation (because they are memoryless, they can ed@est common dominant of FTM4 and FTMS is FTM2,
be restarted). The Safety Pilot node is not considered ad® low_com dompFTM 4 FTM5q FTM2. This lowest
functional node, because it is part of the recovery mechani§@mmon dominance of a subset A of the set P, could be
implementation. In short, we should consider that this nod@mally de ned by :a  low_com_dompAqiff Bx P P;px
cannot crash otherwise fault tolerance is not guaranteed. RRMPA;Xg " & dompxaq
is a simple restart of control nodes. RM3 could be qualied The dominance function is also used for the RM-
as a backward recovery technique since “Control nodes” m@taph, such thadompRM 5;RM 3; RM 4q RM5 and
be restarted with previously checkpointed states. dompRM 3;RM 4q O (there is no dominance between RM3
and RM4).

The proposed algorithm shown in Figure 7 is following
The proposed strategy algorithm is provided in Figure 7 afdsic steps in case of simultaneous active FTMs. Let FTM*

the complete code and UML diagrams of the implementatidre the set of active FTMs. If only one FTMx is active,

are available at [6]. then the corresponding RM is activated (noted RM(FTMXx)

A. Strategy algorithm



Input Update

Only one FTMx
active ?

dom(FTM*)=FTMy ?
(FTMTree)

dom(RM*)=RMz ?
(RMGraph)

1 4
Activate RM(FTMXx) Activate RM(FTMy) Activate RMz Activate RM(low_com_dom(FTM*))

Fig. 7. Safety- rst strategy algorithm

FTM1 vative one, for mission- rst strategy for instance (not presented

/ ‘ \ /R'\"l\ in this paper). For the same reason as just above, to ensure
FIMe  FTM2  FTM3  RMS B2 only_one RM is actlyated at a tlrr_1e, _We_stop every RMs
dominated by a RMx just before activating it. Yet, we have to
/ / \ ‘ >< ‘ be careful when stopping RMs. We have to be sure the RM

FTM7  FTM4  FTM5 RM4 RM3 to stop has nished its action or nished putting the system

, , into a degraded mode. Interrupting a RM makes us unable to
Fig. 8. (a) Fault Tolerant Mechanism Tree (FTMTree) (b) Recovery Module

poset (RMGraph) guarantee in which state the system is, and thus its safety.
Figure 9 is a class diagram showing the implementation
TABLE Il of the FTM Manager and corresponding components. Using

RESULTS FOR THE FAULT INJECTION CAMPAIGN inheritance for DM and RM, let us de ne generic state

machines, which led to easily modify DM and RM behavior.

Active FTMs (DMs) | Corresponding Algorithm | Executed| Ve also provide a generic implementqtion for the FTMTree
RMs action RM and RMGraph, which make them easily extendable to new
block ordered sets.
FTM7 RM4 1 RM4
FTMI and FTM6 RMI, RM5 2 RM1 —
FTM3 and FTM4 | RM2, RM3 3 RM2 B. Veri cation
FTM2, FTM6 and FTM5] RM2, RM5, RM4 | 4 RM1 The early validation of the approach and the veri cation

of the FTM implementation has been carried out through a

set of experiments, including a fault injection campaign. All
in block 1 of Figure 7). In case of several active FTMsthese experiments were conducted on the simulated Summit XI
if one FTM dominates the active FTMs (i.elpmpgreturns robot with Gazebo. The complete opensource code is available
FTMy), then it is executedRM pFTMyqin 2). If there online at [6].
is no dominant FTM (option marked as “no”), the algorithm The veri cation of the system implies a careful analysis of
checks if there is a dominant active RM. If there is ondts behavior in the presence of faults. The faults considered
this leads to execute the dominant recovery mechanismhare are those identi ed so far and belonging to the fault tree
3. Finally, if there are no dominant in the RMGraptofmpg given in Figure 8. It is clear that the veri cation steps depends
returns 0), then the algorithm activates the RM of the lowesh the considered FTM; new faults, new FTM, imply new
common dominant FTM in the FTMTreéd . Table Ill presents veri cation experiments. A robot like this is subject to the
some examples covering the four cases explained aboveelwolution of the environment and maybe weather conditions
case of simultaneous FTM, with several dominant RMs, what may lead the robot designer to consider other faults and
chose to not execute all these RMs, but to only execute thg the way new mechanisms. The evolution of the conditions
lowest common dominant. This choice has been made may be dif cult to anticipate at initial design time. This
considering that the impact of simultaneous activation of RMeeans that the heath status of the robot and surroundings
might not guarantee to put the system in a safe state. It isafnditions should be monitored and FTM updated accordingly.
course a conservative approach which can be extended to otheéaptation of FTM is out of the scope of this paper, but this
strategy. issue has already been investigated in companion work, such

This conservative strategy can be extended to a less conserin [28].



Fig. 9. Class diagram of the fault tolerance mechanism

by one, the results obtained are given in Table IV and V.
The rst table is the test case of Osmosis without any FTM
implemented.

A run is consideredsuccessful if the mission requested
has been fullled by the robot. That is to say, if the robot
has gone through every points specied in the mission le
in the right order and with the right mode : “taxi” or “light
veri cation”. A run is consideredsafe if the robot never went
into a prohibited area and if it didn't collide with any obstacles.

Table IV shows how fault injection affects the mission and

Fig. 10. Golden Run of Osmosis with two obstacles (Start:blue, End:gree%?fety Wlth_om any FTM |mplemer_1ted. Each '_n]eCted fault put
the robot in an unsafe state which means it would be very
dangerous to deploy the system like this. For example, if the

The objective here is not to quantify error detection an@bot's localization is somehow not updated the command
recovery coverage, but to analyse the behaviour of the sgemputed stays the same. Thus, the robot can go in a pro-
tem in the presence of unwanted events, namely faults. Aibited area or collide with an obstacle, which is obviously
experiment is organized in two steps: a golden run is donet safe. Also, in most of cases the mission is a failure
rst to observe the nominal behavior of the robot with ndecause after fault injection the robot became non-operational
faults (see Figure 10); then a number of runs are done wi above. Detailed effects of each injected fault are described

unwanted events injected for which FTMs should be normalig Table IV.

activated. Two golden runs were considered with and withoutIn order to keep the robot in a safe state we added FTMs and

obstacles which led to two types of faulty runs, with anthe results can be observed in Table V. We can easily see that
without obstacles as well. every run is now safe no matter which fault was injected. Once
First, regarding the effect of the implemented RMs onagain, the implemented FTMs are safety- rst oriented so their



TABLE IV
OsSMOSIS BENCHMARK WITHOUT THEFTM

Injected Fault Obstacles Mission result | Safety result Description
(Yes - No - Both)
None Both Success Safe Golden Run
The erroneous command can move the robot into a
Command out of bounds (DM3 No Success Unsafe prohibited area and the real system's hardware could have

been damaged. But once the temporary fault is gone the
robot nishes its mission

If it happens during an avoidance manoeuvre a collisign
can occur. If the robot is too close to an obstacle for
Command out of bounds (DM3 Yes Fail Unsafe an avoidance manoeuvre it stops, so after a collision due
to the injected fault there are high chances that the robot
stops (mission failed).

Localization not updated (DM6 Both Fail Unsafe Without localization updates the last one received is kept.
Thus, the command is the same : collision, prohibited area

Command not updated (DM2) Both Fall Unsafe The last command is kept so same consequences as above
HMI or Teleoperation node crash doesn't have much effect

Non-control node crash (DM5) Both Fail Unsafe but a Localization node crash leads again to the samg

consequences as localization not updated

Effects differ according to which node actually crashed.
If MissionManager or GraphPlanner crashes the controller
Control node crash(DM4) Both Fail Unsafe will simply have no new orders to follow so robot will
reach the point it was targetting then eventually stop.
In the case of OsmosisControl no more command will be
computed so it's equivalent to command not updated

TABLE V
OSMOSIS EXPERIMENT WITH FAULT TOLERANCE MECHANISM
Injected Fault Obstacles Mission result | Safety result Description
(Yes - No - Both)
None Both Success Safe Golden Run
Command out of bounds (DM3 Both Fail Safe Robot stopped in a safe area and before any colligion
Localization not updated (DM6 Both Fail Safe Robot stopped and switched to
teleoperation before any collision
Command not updated (DM2) Both Fall Safe Robot stopped in a safe area and before any colligion
Non-control node crash (DM5) Both Success Safe All missing non-control node are restarted instantly
Control node crash (DM4) Both Fall Safe Node restarted but mission progress is lost so the
robot either reaches its current goal or stops

activation is all about ensuring the safety and not ful Il the As a proof of concept, we did not focus on the results
mission. That's why, now, when a “command out of boundsh terms of detection latency, or overhead induced by FTMs
occurs the mission always fails because the robot is orderedudich should actually be done in a real implementation with a
stop, but since it wasn't into a prohibited area before the fauledicated layer for fault tolerance mechanisms), but we focus
it is safe. However, now when a non-control node crashes the logical part of robot behavior in case of concurrent acti-
it is restarted, in particular the localization node. So afterated FTMs, to observe if the safety- rst strategy is practically
being restarted the robot's localization is again updated and #fecient. Test cases given in Table Il enable the four action
mission can be completed. Thus, the FTM made the run bdtlocks of the algorithm to be executed, see Figure 7 (denoted
safe and successful. Moreover, for control nodes, backwardted asl 2 3 4). “Active FTM” are FTMs where their DM
recovery should be done but it hasn't been implemented y&t.active, and “Executed RM” is the resulting RM run by the
These nodes should often save their state in order to BEM Manager. This table con rms the logical behaviour of
restarted in the same one and continue the mission. Currenthg robot and thus the ef ciency of our strategy.
the nodes are restarted anyway despite losing the mission
progression. Since they start in an idle state where the robot is
stopped, the mission is failure but the run is safe. Also, to avoid The proposed FTM framework relies mainly on two trees
collision when an information isn't updated we calculated thg=TMTree and RMGraph), and an FTM strategy using these
watchdogs values according to the robot maximum velocitiees.
and the obstacle detection distance. So the FTM is activatedVe described in this paper a rst implementation of this
before a collision can occur. Therefore, FTMs signi cantlframework as a proof of concepts. The combination of detec-
improved the safety of the system. The last step is to see htian mechanisms and recovery mechanisms in a exible way
the system reacts with concurrent FTMs. offers the opportunity to adjust the objectives and extend the
framework easily. In our case, "safety rst” was the objective.

VI. CONCLUSION



The set of mechanisms de ned to this aim were veri ed byi0]
fault injection, considering a representative set of faults that
may impair the behavior of the robot and violate safety.

A rst important result is the genericity of the implementa{11]
tion, where any extension of new FTM, DM or RM is easily
done with few code modication. Moreover, our approach
allows to integrate more complex FTM rules, using logicdl2]
gates (e.g.FTM pDM 1~ DM 3;RM 2~ RM 4g). All
nodes (including DM, RM and FTM Manager) are baseds)
on generic state machines, which also makes it more easily
extendable to complex behaviors. However, the experimeftd
also reveals open issues requiring more investigation. The rst
one is the choice of the relation order that could be extended
to more complex de nitions. For instance, the “safer” relatio;r#
could also be mixed with an assessment on the autono 3}
impact, or any other mission performance property. We also
do not investigate how the FTM Manager communicates wi Ifs]
the Mission Manager, in order to replan, repair a plan, or
cancel the mission, which may have an impact on the FTM
Strategy. Finally, some additional features must be addﬁq
to the framework, such as a stable storage feature enabl né
checkpointing to increase recovery mechanisms performances
However, in this paper we did not study the overhead cost in-
duced by the whole FTM (including RM, DM and FTManagey; g
algorithm), as we only focus rst in a proof of concept of the
FT mechanism, implemented in a ROS architecture. This is
is of paramount importance for a complete deployment, :#@
we plan to use a dedicated layer to implement the FTM. A
preliminary study was performed using ROS for the function
part, and the framework MAUVE [29] for the fault toleran
mechanism, and it will be deployed for future experiments.

0]
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