J. A. Acebron, L. L. Bonilla, C. J. Vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Reviews of Modern Physics, vol.77, issue.1, pp.137-185, 2005.

D. Aeyels and J. A. Rogge, Existence of partial entrainment and stability of phase locking behavior of coupled oscillators, Progress of Theoretical Physics, vol.112, issue.6, pp.921-942, 2004.

T. Aoki, Self-organization of a recurrent network under ongoing synaptic plasticity, Neural Networks, vol.62, pp.11-19, 2015.

N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE transactions on Automatic Control, vol.54, issue.2, pp.353-357, 2009.

F. Dörfler and F. Bullo, Synchronization and transient stability in power networks and non-uniform Kuramoto oscillators, SIAM Journal on Control and Optimization, vol.50, issue.3, pp.1616-1642, 2010.

F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM Journal on Control and Optimization, vol.10, issue.3, pp.1070-1099, 2011.

R. Goebel, R. Sanfelice, and A. Teel, Hybrid Dynamical Systems: modeling, stability, and robustness, 2012.

A. Jadbabaie, N. Motee, and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, Proceedings of the 2004 American Control Conference, vol.5, pp.4296-4301, 2004.

Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International symposium on mathematical problems in theoretical physics, pp.420-422, 1975.

N. E. Leonard, T. Shen, B. Nabet, L. Scardovi, I. D. Couzin et al., Decision versus compromise for animal groups in motion, Proceedings of the National Academy of Sciences, vol.109, issue.1, pp.227-232, 2012.

M. Maggiore, M. Sassano, and L. Zaccarian, Reduction theorems for hybrid dynamical systems, IEEE Transactions on Automatic Control, vol.64, issue.6, pp.2254-2265, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01995756

R. Miller and M. Pachter, Maneuvering flight control with actuator constraints, Journal of guidance, control, and dynamics, vol.20, issue.4, pp.729-734, 1997.

W. T. Oud, Design and experimental results of synchronizing metronomes, inspired by Christiaan Huygens, 2006.

S. Phillips and R. G. Sanfelice, A framework for modeling and analysis of dynamical properties of spiking neurons, American Control Conference, 2014.

R. Sanfelice, D. Copp, and P. Nanez, A toolbox for simulation of hybrid systems in Matlab/Simulink: Hybrid Equations (HyEQ) Toolbox, Proceedings of the 16th international conference on Hybrid systems: computation and control, pp.101-106, 2013.

R. Sepulchre, D. A. Paley, and N. E. Leonard, Stabilization of planar collective motion: All-to-all communication, IEEE Transactions on Automatic Control, vol.52, issue.5, pp.811-824, 2007.

A. Seuret, C. Prieur, S. Tarbouriech, A. Teel, and L. Zaccarian, A nonsmooth hybrid invariance principle applied to robust event-triggered design, IEEE Transactions on Automatic Control, vol.64, issue.5, pp.2061-2068, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01526331

S. H. Strogatz, From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D, vol.143, issue.1, pp.1-20, 2000.

P. A. Tass, A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations, Biological Cybernetics, vol.89, issue.2, pp.81-88, 2003.

K. Wiesenfeld, P. Colet, and S. H. Strogatz, Frequency locking in Josephson arrays: Connection with the Kuramoto model, Physical Review E, vol.57, issue.2, pp.1563-1569, 1998.