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Anthropomorphic Gait Generation using Differential Dynamic
Programming with a Reduced Number of Cost Criteria

Melya Boukheddimi1* , Rohan Budhiraja2, Philippe Sou�eres2 and Bruno Watier1

Abstract— Bipedal gait is the natural means of human
locomotion. Nonetheless, it is still unclear how the central
nervous system coordinates the whole-body segments for gait
generation. We address this question based on the well-
known hypothesis that the human motion is the result of an
optimization process. We consider a reduced set of criteria
taken from the observation of human walking and the study
of the related literature, which seem to be optimized during the
human gait. Differential Dynamic Programming is applied on
these criteria with a 3D whole-body skeletal model involving 42
degrees of freedom to generate walking motions. Nine different
skeletal models and gaits reconstructed from motion capture
data are used to this end. The simulated walking motions
are then analyzed and compared to the human reference to
show the quality of the gait generation process. The interest of
this optimization approach for human-like motion generation
is �nally discussed.

I. I NTRODUCTION

A. Research signi�cance

Walking is an inherent part of human locomotion. Yet,
infants acquire this ability after approximately 18 months
of trial and error, going through walking on all fours.
This learning process leads to a unique walking pattern
characterizing each individual like a �ngerprint. However,
in contrast to �ngerprints, learned walking patterns are not
�xed once and for all, but may change according to externals
variables such as accidents, pathologies or age. The central-
nervous system adjusts the gait whatever the alterations [1],
to allow walking in the best possible way [2]. With more
than 200 Degrees of Freedom (DoFs) the human body is
obviously a highly redundant system for the walking task.
Hence, the issue that arises is: ”what is foremost optimized
by the central-nervous system in order to coordinate the
entire body and generate a human gait”.

B. Related works

To answer this question, active research has been con-
ducted and different approaches were implemented. Most of
them consider simpli�ed models of poly-articulated bodies
for modeling the system with rigid segments and joints.
In addition some studies use a musculoskeletal model to
generate gait. Inverse Kinematics was applied in [3] using
motion capture (MoCap) data and muscular activations as
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Fig. 1. Examples of human-like gaits obtained with Differential Dynamic
Programming.

input. In [4] a dynamic abnormal walking was produced us-
ing muscular control with OpenSim. A neuromusculoskeletal
model was used in [5] with kinematics and in vivo dy-
namic data to generate human-like walking and running.
In [6] a neuro-physiological control of the low-level spinal
was considered to simulate locomotion. With the aim of
reproducing realistic human gaits, a lot of contributions
were also proposed in the 3D animation community. For
instance a real-time complex controller was proposed in [7]
to simulate different kinds of human walking. In [8] the
control framework ”SYMBICON” was designed to generate
bipedal walking without using MoCap data. Based on this
framework, [9] presented an optimization controller robust
to the environment uncertainties, which provided realistic
gait simulations. A predictive human-like walking pattern
was generated in [10] using a muscle-driven dynamic model
with an energy optimization controller. A dynamic walking
was obtained in [11] using a hierarchical tasks framework
robust to the model modi�cations. Optimal control methods
were also widely used to generate anthropomorphic gaits.
One approach is to apply optimal control with direct collo-
cation [12]. For example, in [13] gaits were generated with
”tiredness and effort-like” costs optimization. Whereas in
[14] the kinetics and kinematics of the gait were calculated
from raw inertial sensor data and dynamic gait simulations
by applying one global optimization on three cost functions.
Other approaches used direct multiple-shooting to simulate
walking. A predictive pattern of pathological gait applied to
children was proposed in [15]. In [16], a half gait cycle was
generated using a multiple optimization function approach. It
was later implemented using MUSCOD II [17] and validated
by comparing the obtained gait with MoCap data. In [18]
direct inverse optimal control was used to identify the
cost functions minimized by humans during walking by
identifying the weights applied to a set of chosen criteria.

mailto:mboukhed@laas.fr


C. Contribution of the paper

In this work we propose to generate human-like walking
gait from optimization in accordance with [19]. We use
direct optimal control with multiple-shooting to simulate
human-like locomotion with multiple contacts while coping
with the redundancy of a 42 DoFs model. Our objective is to
demonstrate that human-like walking can be closely repro-
duced by optimizing a small number of key costs functions.
Based on the biomechanical literature and the observations
of the human gait throughout experimental analysis [20],
an appropriate reduced set of optimization criteria is identi-
�ed. A speci�c optimization method, Differential Dynamic
Programming (DDP), is used to simulate the gait from the
minimization of the identi�ed criteria. Nine different models
and gait patterns scaled on nine different subjects are used
to test our hypothesis. Thus, Nine different simulations of
gait are obtained by optimizing over the same objective
criteria. Results are validated by comparing the simulated
gaits pro�le with the human references reconstructed from
MoCap considering both the kinematics and the dynamics.

D. Structure of the paper

The paper is organized as follows. Model and data are
presented in Sec II. Sec III describes the decomposition of
the human gait cycle. Sec IV exposes the optimal control
(OC) problem of whole-body locomotion, and introduces the
OC solver CROCODDYL. The application to gait generation
is detailed in Sec V. Sec VI presents the simulation results
and provides a comparison with the human reference. Finally
the relevance of the approach is discussed in Sec VII.

II. H UMAN MOTION RECONSTRUCTION

A reconstruction of human gaits was conducted for nine
volunteers, in order to construct a human reference for
analyzing the human likeness of the simulated gaits.

A. The data

Experimental data were extracted from [21], they were
conducted in agreement with the standards of the Declaration
of Helsinki (revision 2013), and formal accordance of the
ethics evaluation by the ethic committee of INSERM ,
Paris, France (IORG0003254, FWA00005831). The volun-
teers were nine healthy men, (age: 24.2� 2.3yrs, height:
1.74 � 0.09 m, mass: 71.0� 9.0 kg) performing at least
3 trials of normal walking. One randomly chosen trial
was used for each participant. The experimental framework
was equipped with 13 infrared cameras sampling at 200
Hz (Vicon, Oxford Metrics, UK). The markers set was
positioned in accordance with Wu guidelines [22] [23] and
the International Society of Biomechanics recommendations.

B. The model

The whole-body skeletal model proposed by [24] was
considered for this study as it was proven to be suf�cient
to reproduce the main features of human walking [20] or
parkour jumps [25]. It is a 3D whole-body skeletal dynamic
model involving 42 DoFs and 19 segments. This model was
scaled respectively to the height and weight of each subject

using the open-source software OpenSim. Therefore nine
different models were obtained and used to generate nine
different gaits.

C. Reconstruction of the human reference

An Inverse Kinematics (IK) process was conducted with
the model corresponding to each subject with OpenSim [26].
The IK process aims to compute the generalized coordinates
(i.e., the body con�guration) that �t at best the position of
the model with the experimental position of the markers at
each time step. The generalized coordinates were obtained
by solving a least squares problem. The resolution is based
on a general quadratic programming (QP) solver [4]. The
generalized coordinates obtained by solving the minimiza-
tion problem will be referred to as the ”human reference
coordinates”. They will be used in Sec VI to compare the
joint angles extracted from the obtained gait simulations.

III. G AIT MODELING

In this section, we discuss the different contact phases that
make up the human gait cycle.

A. Gait cycle decomposition

The complete anthropomorphic gait cycle is de�ned by
two steps: left foot swinging (with right foot support) and
right foot swinging (with left foot support). Each step was
divided into 4 phases, according to the contact changes. Here
the phases are de�ned only forthe right foot supportstep;
the left foot supportstep can be deduced by symmetry. Based
on the literature of human gait dynamics, these phases are
de�ned as shown in Fig. 2. The phases for the left foot are:

� Swinging heel of the left foot: begins when the heel of
the left foot starts moving upward, and ends when the
toes of the left foot take off, the left foot being no more
in contact with the ground.

� Flexing of the left foot: begins when the left foot stops
being in contact with the ground, and ends when the
heel of the right foot loses its contact.

� Landing heel of the left foot: begins at the end of the
previous phase and ends when the heel of the left foot
lands on the ground.

� Landing toes of the left foot: begins when the heel of
the left foot strikes the ground, the toes of the left foot
moving downward, and ends when the left foot is fully
in contact (6D) with the ground.

Afterwards, the next step starts with the swinging of the
right foot.

B. Features of the human gait

Based on the biomechanical de�nition of the human gait
and the related literature, the following features arise:

� The foot contact placements have to be speci�ed to
ensure the dynamic feasibility of the human gait cycle.

� During the contact changes, the three dimensional po-
sition of the center of mass (COM) of the whole-body
is crucial. Notably to maintain the position of the upper
part of the body at a reasonable height [21].



Fig. 2. Decomposition of the gait cycle. RF: right foot, LF: left foot. 3D:
Three-dimensional contact. 6D: contact in translation and rotation. Red line:
3D, purple line: 6D.

� Flexions of the swinging knee occur when the walker
tries to avoid the ground or an obstacle close to the
ground with the swinging foot [27].

� Minimizing the torque is necessary to maintain a
human-like torque at the joints [28].

� The velocity of the swinging foot is reduced just before
landing to reduce the impact with the ground [29].

These features of the human gait and the stated cycle
decomposition will be used in Sec V for simulating the gait.

IV. H UMAN GAIT EXPRESSED AS AN OPTIMIZATION

PROBLEM

A. Multi-body Dynamics

The dynamics of a poly-articulated system of rigid bodies
involving K contacts is given by the Euler-Lagrange equa-
tions of movement (1):

M(q)q̈+ b(q; �q) = S| t +
K

å
k= 1

Jk(q)| l k (1)

where,
� q is the con�guration vector which includes the joint

angles and the free-�yer coordinates.
� M(q) is the inertia matrix.
� b(q; �q) contains the nonlinear and gravity forces.
� S is a matrix which selects the actuated components.
� t are the internal joint torques.
� K is the number of contacts.
� Jk(q) is the Jacobian matrix for thekth contact.
� l k is the vector of contact forces of thekth contact.

See [30] for more details.

B. Rigid Contact Constraints

During walking the body is always in contact with the
ground with one or both feet. Contacts can be expressed
as a kinematic constraint on the equation of movement (1).
For thekth body the rigid contact constraint is expressed as
follows:

Jkq̈+ �Jk �q = 0 8k 2 1� � � K (2)

Note that since our dynamics lies in the acceleration space
the rigid contact constraint is represented as a second order
kinematic constraint on the contact placement. Combining

the equation of motion (1) with the contact constraints (2)
the multi-contact body dynamics can be rewritten as:

�
M J |

c
Jc 0

� �
q̈

� l c

�
=

�
S| t � b
� �Jc �q

�
(3)

where1, Jc =
�
J|

0 � � � J|
k � � � J|

K

� | andl c =
�
l |

0 � � � l |
k � � � l |

K

� |

This rede�ned dynamics is the same as the one obtained
by applying the Gauss principle of least constraints on the
motion of a multi-body system with contact constraints [32].
If we consider theKarush-Kahn-Tuckeroptimality condi-
tions on the Gauss's principle, we obtain (3) [33].

C. Optimization for motion generation: Crocoddyl Solver

Consider the problem of generating a human-like gait
using the dynamics de�ned in Sec IV-A and IV-B. To this
end a multi-phase optimization problem is de�ned, each
phase being governed by (3) under a speci�c set of contact.
The �xed contacts and the gait modeling was discussed in
Sec III. The optimization problem is formulated as2:

minimize
q; �q;t

S

å
s= 1

Z ts+ Dts

ts
ls(q; �q; t ) dt

subject to q 2 Q (4a)

�q 2 V (4b)

t 2 T (4c)
�

�q; q̈
� | = f (q; �q; t ) (4d)

where,
� s= 1� � � S is used to describe the contact phases which

de�ne the human walking gait, as discussed in Sec III.
� ls is the cost function for the contact phases.
� f is a reduced formulation of the contact constrained

dynamics (3).
� Q;V ;T are the admissible sets forq; �q; t (de�ned by

the biological limits of the human joint).
To solve this optimization problem we use a Shooting

Method. These methods provide a way of solving boundary
value problems with simple path constraints (such as (4)).
Shooting methods are popular since they are fast to solve
compared to other available methods [12]. Among Shooting
methods, Differential Dynamic Programming (DDP) is a
good way of handling this optimization problem. DDP
allows us to truly exploit the sparsity introduced by the
Markovian nature of the dynamics in (3) in a highly iterative
manner. In this work, we use the frameworkCrocoddyl[34]
to solve the above optimization problem. Crocoddyl is a
DDP-based library [33], which is open-Source, memory
ef�cient and uses fast dynamics and derivative algorithms
provided by Pinocchio [35]. Moreover, Crocoddyl proposes a
variant of DDP, called FDDP (Feasibility DDP) [36], which
avoids the numerical limitations of single-shooting in DDP
and allows warm starting the problem from an infeasible

1When considering the rigid contact constraint (2) in the contact con-
strained dynamics (3), terms de�ned by Baumgarte Stabilization [31] are
often included to improve numerical behaviour of integration.

2q, �q, q̈, t are functions oft. We drop the dependence here for clarity.



state. In this research, we use the FDDP method to solve
the discretized version of our optimization problem (4).

V. GAIT SIMULATION

Relying on the observations made in Sec III-B and accord-
ing to the decomposition of the gait cycle stated in Sec III-
A, we de�ne an optimization problem that covers each
step. Solving this optimization problem leads to compute
the optimal trajectories of the statex = ( q; �q), and the
optimal controlu = t . Moreover, our formulation (3) leads
to compute the contact forcesl k as a function ofx andu.

In order to solve our optimization problem numerically
with Crocoddyl, the problem is �rst discretized overN sub-
intervals (evenly distributed or not) of[0;T]. In each sub-
interval n, the control trajectoryun is constrained to be in
the span of a given �nite trajectory basis, and is �xed to a
constant value. The values ofxn are obtained by integrating
numerically the dynamics (3) using an Implicit Euler scheme
[37]. In Crocoddyl, we de�ne a separate dynamics and cost
model (collectively called anaction model) for each node
of the descritization interval, the optimization problem is
created as a list ofaction modelsin a series. Based on the
list of features of the human gait listed in Sec III-B different
costsF n are designed for the optimization problem. Each
cost is weighted differently by a coef�cientan 2 R. The
�nal objective function for anaction modelis written as:

ls =
N

å
n= 1

anF n(q; �q; t ); (5)

with the following costs and weights,ts denoting the �nal
time of each phase, andt f inal the �nal time of each half
cycle of the gait.

� CoM Cost: During a contact phase, the CoM trajectory
c(t) tracks the �nal CoM position for each phase
cre f (ts).
F 1 = k c(t) � cre f (ts) k2

2; a1 = 17� 103

� Feet Cost: During a contact phase, the swinging foot
position trajectory (rh(t) for the heel orrt (t) for the
toes) tracks the �nal foot placement for each phase.
F 2 = k rh(t) � r re f

h (ts) k2
2; a2 = 1� 103

� Ground Avoidance: The swinging foot needs to main-
tain a clearance from the ground. This is implemented
by a quadratic barrier on thez position of the foot.
F 3 = k minimumf rz

h(t) � rz
h(ts);0g k2

2; a3 = 50� 103

� Minimization of the toes velocity: ( �r(toes)t f inal ) just
before the impact of the swinging foot (applicable only
on the toes and on the last node of a half cycle of gait)
F 4 = k �r(toes)t f inal k2

2; a4 = 1� 105

� Torque minimization: Minimization of the joint torques
for realistic dynamic movements.
F 5 = k t (t) k2

2; a5 = 1� 10� 3

� Posture regularization: This cost deals with the redun-
dancy of multi-body dynamics, giving as input only the
�nal reference posture for each phase.
F 6 = k q(t) � qre f (ts) k2

2; a6 = 0:1
Just for the �nal node of a half cycle of gait att f inal ,

a higher weighta = 10 is used for the posture task. The

Fig. 3. Flexion-extension of the right hip

weights a i for this optimization problem were determined
experimentally. Their were adjusted in order to obtain the
better kinematic results, which were assessed by comparing
them to the joint rotations obtained from MoCap. Addition-
ally to this kinematic benchmarking, the joint torques were
also checked and the costsF 5 were tuned with the aim to
obtain human-like joints torques values. The obtained results
are validated in the next section by comparing them to the
human references coming from MoCap, using the following
biomechanical criteria:

� Range Of Motion (ROM) of the joint rotations.
� Mean and standard deviation.
� Student test (a = 0.05), with his test of signi�cance.
� Shapiro-Wilk test of normality (a = 0.05).

VI. RESULTS AND COMPARISON

A. Results

Nine anthropomorphic gait were generated, each one with
its own scaled model and gait pattern. These simulations
were obtained by solving the same optimization problem
de�ned in Sec V and III for each gait cycle. Some sequences
of snapshots of complete gait-cycles are presented in Fig. 1.
Relevant human-like gait behaviors arise from these simula-
tions. Indeed, the generated movements show a human-like
roll of the swinging foot on the ground, and a natural �exion
of both the knees and the hip. Regarding the upper part of
the body including the neck and the head, a good tracking
of the human walking pattern with natural back and forth
motions of the arms can be observed. Additionally to these
visual and qualitative observations, a statistical analysis is
provided in the next section.

B. Comparison

This section summarizes the study that was conducted to
compare the simulated gaits obtained from the resolution of
the OC problem and the reference human movement. We
compute the mean and standard deviation of joint rotations
over one gait cycle for the nine subjects. Fig. 3 to Fig. 8
show the simulated and the reference gaits for the right
lower limbs, i.e the hip, the knee and the ankle. For all
the obtained movements the results indicate that big parts
of the motion are signi�cantly identical to the reference
movements. Table I presents, for the simulated gait and the
human reference, the mean of the ROM for the joint rotations



Fig. 4. Abduction - adduction of the right hip

Fig. 5. External-internal rotation of the right hip

Fig. 6. Flexion-extension of the right knee

Fig. 7. Eversion-inversion of the right ankle

Fig. 8. Plantar�exion-dorsi�exion of the right ankle

Fig. 9. Mean and standard deviation of the joint torques of the �exion-
extension of the right hip.

Fig. 10. Mean and standard deviation of the joint torques of the �exion-
extension of the right knee.

Fig. 11. Mean and standard deviation of the joint torques of the
plantar�exion-dorsi�exion of the right ankle.



Fig. 12. Mean and standard deviation of the joint torques of the eversion-
inversion of the right ankle.

TABLE I

THE MEANS OF THEROM FOR THE JOINT ROTATIONS(DEGREES).

‡ SIGNIFICANTLY IDENTICAL (a = 0.05). R : RIGHT, L : L EFT.

Joint Rotations ROM
Simulation

ROM
Reference

ROM
Difference

HIP R Flex/Exte 59 54 5
HIP R Abdu/Aduc 23 24 1 ‡
HIP R Axial rotation 12 16 4 ‡
Knee R Flex/Exte 51 67 16
Ankle R Dors/Plan 36 34 2 ‡
Ankle R Ever/Inve 30 27 3 ‡
Hip L Flex/Exte 62 57 5 ‡
Hip L Abdu/Aduc 26 26 0 ‡
Hip L Axial rotation 13 16 3 ‡
Knee L Flex/Exte 48 66 18
Ankle L Dors/Plan 35 35 0 ‡
Ankle L Ever/Inve 29 29 0 ‡

of the lower limbs with their differences. The Student test
is conducted and the obtained joint rotations which are
signi�cantly identical to the references are highlighted in
this table. The ROM for the simulated joint rotations are
signi�cantly identical to the human reference for the ankle,
the abduction - adduction and the external-internal rotation
of the hip for both left and right sides, and for the �exion-
extension of the left hip. Regarding this comparison, the
results show that the joint rotations of the simulated gaits
closely follow the joint rotations pattern and values of the
human references. Moreover, for the nine subjects, the mean
and standard deviation of the joint torques of the right
lower limbs, obtained in simulation over one gait cycle,
are represented in Fig. 9 to 12. It can be noticed that
the simulated joint torques remain within the physiological
limits: mostly between -1 and 1 Nm.Kg� 1, with maximum
values� 4 Nm.Kg� 1. However, these joint torques are not
following a human-like pro�le along the gait cycle, as
described in [2].

VII. C ONCLUDING DISCUSSION

The analysis of the simulated walking movement pre-
sented in Sec VI supports the hypothesis stated in (Sec I-
C), namely that the anthropomorphic gait can be reproduced
from the optimization of a small number of adequately
chosen criteria. In our approach only 8 phases were used

to reconstruct the full gait cycle, while only discrete values
at the end of each phase were given to the optimizer,
without requiring any reference trajectories. By comparison,
a half gait cycle required 5 phases to be simulated in [16].
Having a low number of phases makes the method more
general and easier to implement as the quantity of data
required to specify the motion is reduced. Concerning the
dynamics, the only considered optimization criterion is the
torque minimization which provides a way of regularizing
the optimization problem. As a result we observed that
the torques values remain within the physiological limits
of the human movement all along the gait cycle. In our
previous work [20], in which the task-hierarchy framework
was used with a kinematic model, it was necessary to
give the highest priority to the foot tracking task. Here,
as the full body dynamics is considered, a good quality
of the trajectories is obtained by putting a higher weight
on the CoM cost than on the foot cost. This difference
re�ects the key role of the CoM regulation in dynamical
systems. The proposed method based on DDP allows the
minimization process to be handled for at least one complete
gait cycle while preserving a good quality of the optimized
movement including the execution of the human-like features
all along the simulation. The strength of DDP lies in its
ability to solve the problem in a highly iterative and fast
manner. However, in order to produce quick results, DDP
compromises in its ability to consider constraints on the
optimization (unlike previous works which used Non-Linear
Programming solvers like MUSCOD-II [17]). While the
ability to consider constraints is de�nitely a plus, as shown
by [18], we found that we can by-pass the constraints by
using penalty methods on DDP. Moreover, the additional
computational speed offered by DDP opens new avenues in
which to carry our research. While speed of computation is
more relevant in control of systems, the fast results by DDP
give us the ability to transition smoothly from the realm
of biomechanics to that of robotics. Thus, this work could
possibly be extended to apply our biomechanical analysis
in hardware system, in order to generate realistic human-
like movements in real time. Finally, though the generated
gaits show some important anthropomorphic features of the
human walking, we believe that the following propositions
provide interesting directions for further improving our
results: (1) Adding a cost for the contact forces to the
optimization problem could lead to better movements, and
be suitable for dynamic validation in a physics engine. (2) A
suf�cient �exion of the swinging knee was obtained by the
Ground Clearancecriterion. Removing this cost results in
a stiff-knee with an insuf�cient �exion. This problem could
be alleviated by adding instead a cost for the CoM to follow
the Spring-Load Inverted Pendulum dynamics. (3) Since we
did not try to constraint directly the knee, the maximal
extension of this joint, especially during stance phase, was
not reached in the simulations. A dynamic cost based on
the correlation between the contact forces during the impact
and the extension of the knee could be considered in future
works. (4) The weights in the optimization problem were



so far determined empirically. An inverse optimal control
method could be used to compute this weights (as it was
formulated in [38]). This is indeed a research for the future.
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