R. Verger, Interfacial activation of lipases: facts and artifacts, Trends Biotechnol, vol.15, pp.32-38, 1997.

A. Louwrier, G. J. Drtina, and A. M. Klibanov, On the issue of interfacial activation of lipase in non aqueous media, Biotechnol Bioeng, vol.50, pp.1-5, 1996.

F. Ferrato, F. Carriere, L. Sarda, and R. Verger, A critical reevaluation of the phenomenon of interfacial activation, Methods Enzymol, vol.286, pp.327-347, 1997.

Z. S. Derewenda, Structure and function of lipases, Adv Protein Chem, vol.45, pp.1-52, 1994.

T. Thuren, A model for the molecular mechanism of interfacial activation of phospholipase A2 supporting the substrate theory, FEBS Lett, vol.229, pp.95-99, 1988.

H. L. Brockman, J. H. Law, and F. J. Kezdy, Catalysis by adsorbed enzymes. The hydrolysis of tripropionin by pancreatic lipase adsorbed to siliconized glass beads, J Biol Chem, vol.248, pp.4965-4970, 1973.

M. E. Noble, A. Cleasby, L. N. Johnson, M. R. Egmond, and L. G. Frenken, The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate, FEBS Lett, vol.331, pp.123-128, 1993.

D. Lang, B. Hofmann, L. Haalck, H. J. Hecht, F. Spener et al., Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 angstroms resolution, J Mol Biol, vol.259, pp.704-717, 1996.

J. M. Mancheno, M. A. Pernas, M. J. Martinez, B. Ochoa, M. L. Rua et al., Structural insights into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97A resolution, J Mol Biol, vol.332, pp.1059-1069, 2003.

L. Brady, A. M. Brzozowski, Z. S. Derewenda, E. Dodson, G. Dodson et al., A serine protease triad forms the catalytic centre of a triacylglycerol lipase, Nature, vol.343, issue.6260, pp.767-770, 1990.

U. Derewenda, L. Swenson, Y. Wei, R. Green, P. M. Kobos et al., Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar, J Lipid Res, vol.35, pp.524-534, 1994.

J. D. Schrag and M. Cygler, 1.8 A refined structure of the lipase from Geotrichum candidum, J Mol Biol, vol.230, pp.575-591, 1993.

U. Derewenda, L. Swenson, R. Green, Y. Wei, G. G. Dodson et al., An unusual buried polar cluster in a family of fungal lipases, Nat Struct Biol, vol.1, pp.36-47, 1994.

S. K. Jung, D. G. Jeong, M. S. Lee, J. K. Lee, H. K. Kim et al., Structural basis for the cold adaptation of psychrophilic M37 lipase from Photobacterium lipolyticum, Proteins, vol.71, pp.476-484, 2008.

M. Luic, S. Tomic, I. Lescic, E. Ljubovic, D. Sepac et al., Complex of Burkholderia cepacia lipase with transition state analogue of 1-phenoxy-2-acetoxybutane: biocatalytic, structural and modelling study, Eur J Biochem, vol.268, pp.3964-3973, 2001.

A. Mezzetti, J. D. Schrag, C. S. Cheong, R. Kazlauskas, M. Wolf-watz et al., Mirror-image packing in enantiomer discrimination molecular basis for the enantioselectivity of 31, Nat Struct Mol Biol, vol.11, pp.945-949, 2004.

D. D. Boehr, D. Mcelheny, H. J. Dyson, and P. E. Wright, The dynamic energy landscape of dihydrofolate reductase catalysis, Science, vol.313, pp.1638-1642, 2006.

A. G. Palmer, NMR characterization of the dynamics of biomacromolecules, Chem Rev, vol.104, pp.3623-3640, 2004.

Q. Cui and M. Karplus, Catalysis and specificity in enzymes: a study of triosephosphate isomerase and comparison with methyl glyoxal synthase, Adv Protein Chem, vol.66, pp.315-372, 2003.

E. Z. Eisenmesser, O. Millet, W. Labeikovsky, D. M. Korzhnev, M. Wolf-watz et al., Intrinsic dynamics of an enzyme underlies catalysis, Nature, vol.438, pp.117-121, 2005.

V. Belle, A. Fournel, M. Woudstra, S. Ranaldi, F. Prieri et al., Probing the opening of the pancreatic lipase lid using site-directed spin labeling and EPR spectroscopy, Biochemistry, vol.46, pp.2205-2214, 2007.

S. Myong, B. C. Stevens, and T. Ha, Bridging conformational dynamics and function using single-molecule spectroscopy, Structure, vol.14, pp.633-643, 2006.
DOI : 10.1016/j.str.2006.02.005

URL : https://doi.org/10.1016/j.str.2006.02.005

P. J. Rothwell, S. Berger, O. Kensch, S. Felekyan, M. Antonik et al., Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes, Proc Natl Acad Sci U S A, vol.100, pp.1655-1660, 2003.

B. Schuler, E. A. Lipman, and W. A. Eaton, Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy, Nature, vol.419, pp.743-747, 2002.

Z. Zhang, P. T. Rajagopalan, T. Selzer, S. J. Benkovic, and G. G. Hammes, Singlemolecule and transient kinetics investigation of the interaction of dihydrofolate reductase with NADPH and dihydrofolate, Proc Natl Acad Sci U S A, vol.101, pp.2764-2769, 2004.

G. H. Peters, A. Svendsen, H. Langberg, J. Vind, S. A. Patkar et al., Active serine involved in the stabilization of the active site loop in the Humicola lanuginosa lipase, Biochemistry, vol.37, pp.12375-12383, 1998.

M. Jensen, T. Jensen, K. Kjaer, T. Bjornholm, O. Mouritsen et al., Orientation and conformation of a Lipase at an Interface Studied by molecular Dynamics Simulations, Biophysical Journal, vol.83, pp.98-111, 2002.

G. Peters and R. Bywater, Computational analysis of chain flexibility and fluctuations in Rhizomucor miehei lipase, Protein Eng, vol.12, pp.747-754, 1999.

G. Peters and R. Bywater, Influence of a lipid interface on protein dynamics in a fungal lipase, Biophys J, vol.81, pp.3052-3065, 2001.

G. H. Peters, O. H. Olsen, A. Svendsen, and R. C. Wade, Theoretical investigation of the dynamics of the active site lid in Rhizomucor miehei lipase, Biophys J, vol.71, pp.119-129, 1996.

G. H. Peters, D. M. Van-aalten, O. Edholm, S. Toxvaerd, and R. Bywater, Dynamics of proteins in different solvent systems: analysis of essential motion in lipases, Biophys J, vol.71, issue.5, pp.2245-2255, 1996.

G. H. Peters, D. M. Van-aalten, A. Svendsen, and R. Bywater, Essential dynamics of lipase binding sites: the effect of inhibitors of different chain length, Protein Eng, vol.10, pp.149-158, 1997.

M. Norin, F. Haeffner, K. Hult, and O. Edholm, Molecular dynamics simulations of an enzyme surrounded by vacuum, water, or a hydrophobic solvent, Biophys J, vol.67, pp.548-559, 1994.

S. Jaaskelainen, C. S. Verma, R. E. Hubbard, P. Linko, and L. S. Caves, Conformational change in the activation of lipase: an analysis in terms of low-frequency normal modes, Protein Sci, vol.7, pp.1359-1367, 1998.

J. J. James, B. S. Lakshmi, V. Raviprasad, M. J. Ananth, P. Kangueane et al., Insights from molecular dynamics simulations into pH-dependent enantioselective hydrolysis of ibuprofen esters by Candida rugosa lipase, Protein Eng, vol.16, pp.1017-1024, 2003.
DOI : 10.1093/protein/gzg135

URL : https://academic.oup.com/peds/article-pdf/16/12/1017/4351714/gzg135.pdf

J. J. James, B. S. Lakshmi, A. S. Seshasayee, and P. Gautam, Activation of Candida rugosa lipase at alkane-aqueous interfaces: a molecular dynamics study, FEBS Lett, vol.581, pp.4377-4383, 2007.

B. A. Tejo, A. B. Salleh, and J. Pleiss, Structure and dynamics of Candida rugosa lipase: the role of organic solvent, J Mol Model, vol.10, pp.358-366, 2004.

J. Lee, S. Suh, and S. Shin, Computational studies of Esential Dynamics of Pseudomonas cepacia Lipase, Journal of Biomol Struct & Dyn, vol.18, pp.297-309, 2000.

S. Cherukuvada, A. Seshasayee, K. Raghunathan, S. Anishetty, and G. Pennathur, Evidence of a double-lid movement in Pseudomonas aeruginosa lipase:Insights from molecular dynamics simulations, PLoS Comp Biol, vol.1, pp.182-189, 2005.

P. Trodler, R. D. Schmid, and J. Pleiss, Modeling of solvent-dependent conformational transitions in Burkholderia cepacia lipase, BMC Struct Biol, vol.9, p.38, 2009.

S. Barbe, V. Lafaquiere, D. Guieysse, P. Monsan, M. Remaud-simeon et al., Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations, Proteins, vol.77, pp.509-523, 2009.

S. Rehm, P. Trodler, and J. Pleiss, Solvent-induced lid opening in lipases: a molecular dynamics study, Protein Sci, vol.19, pp.2122-2130, 2010.

Y. Wang, D. Q. Wei, and J. F. Wang, Molecular dynamics studies on T1 lipase: insight into a double-flap mechanism, J Chem Inf Model, vol.50, pp.875-878, 2010.

H. Choset, S. Lynch, S. Hutchinson, G. Kantor, W. Burgard et al., Principles of Robot Motion: Theory, Algorithms, and Implementations, 2005.

S. Lavalle and . Algorithms, , 2006.

M. S. Apaydin, D. L. Brutlag, C. Guestrin, D. Hsu, J. C. Latombe et al., Stochastic roadmap simulation: an efficient representation and algorithm for analyzing molecular motion, J Comput Biol, vol.10, pp.257-281, 2003.

A. P. Singh, J. C. Latombe, and D. L. Brutlag, A motion planning approach to flexible ligand binding, Proc Int Conf Intell Syst Mol Biol, pp.252-261, 1999.

O. B. Bayazit, G. Song, and N. M. Amato, Ligand Binding with OBPRM and Haptic User Input, Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA), pp.954-959, 2001.

M. S. Apaydin, C. E. Guestrin, C. Varma, D. L. Brutlag, and J. C. Latombe, Stochastic roadmap simulation for the study of ligand-protein interactions, Bioinformatics, vol.18, issue.2, pp.18-26, 2002.

M. S. Apaydin, A. P. Singh, D. L. Brutlag, and J. C. Latombe, Capturing Molecular Energy Landscapes with Probabilistic Conformational Roadmaps

, IEEE International Conference on Robotics and Automation (ICRA), pp.932-939, 2001.

D. Guieysse, J. Cortes, S. Puech-guenot, S. Barbe, V. Lafaquiere et al., A structure-controlled investigation of lipase enantioselectivity by a path-planning approach, Chembiochem, vol.9, pp.1308-1317, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01986375

V. Lafaquiere, S. Barbe, S. Puech-guenot, D. Guieysse, J. Cortes et al., Control of lipase enantioselectivity by engineering the substrate binding site and access channel, Chembiochem, vol.10, pp.2760-2771, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01986285

J. Cortes, T. Simeon, V. Ruiz-de-angulo, D. Guieysse, M. Remaud-simeon et al., A path planning approach for computing large-amplitude motions of flexible molecules, Bioinformatics, vol.21, pp.116-125, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01988625

J. Cortes, D. T. Le, R. Iehl, and S. T. , Simulating ligand-induced conformational changes in proteins using a mechanical disassembly method, Phys Chem Chem Phys, vol.12, pp.8268-8276, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01986237

J. Cortes, S. Barbe, M. Erard, and S. T. , Encoding Molecular Motions in Voxel Maps, IEEE/ACM Trans Comput Biol Bioinform, vol.8, issue.2, pp.557-563, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01985823

N. M. Amato, K. A. Dill, and G. Song, Using motion planning to map protein folding landscapes and analyze folding kinetics of known native structures, J Comput Biol, vol.10, pp.239-255, 2003.

X. Tang, B. Kirkpatrick, S. Thomas, G. Song, and N. M. Amato, Using motion planning to study RNA folding kinetics, J Comput Biol, vol.12, pp.862-881, 2005.

N. M. Amato and G. Song, Using motion planning to study protein folding pathways, J Comput Biol, vol.9, issue.2, pp.149-168, 2002.

T. H. Chiang, M. S. Apaydin, D. L. Brutlag, D. Hsu, and J. C. Latombe, Using stochastic roadmap simulation to predict experimental quantities in protein folding kinetics: folding rates and phi-values, J Comput Biol, vol.14, issue.5, pp.578-593, 2007.

S. Thomas, G. Song, and N. M. Amato, Protein folding by motion planning, Phys Biol, vol.2, issue.4, pp.148-155, 2005.

L. Tapia, X. Tang, S. Thomas, and N. M. Amato, Kinetics analysis methods for approximate folding landscapes, Bioinformatics, vol.23, issue.13, pp.539-548, 2007.

J. Cortes, T. Simeon, M. Remaud-simeon, and V. Tran, Geometric algorithms for the conformational analysis of long protein loops, J Comput Chem, vol.25, pp.956-967, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01987902

S. Kirillova, J. Cortes, A. Stefaniu, and T. Simeon, An NMA-guided path planning approach for computing large-amplitude conformational changes in proteins, Proteins, vol.70, pp.131-143, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01987938

A. Enosh, S. J. Fleishman, N. Ben-tal, and D. Halperin, Prediction and simulation of motion in pairs of transmembrane alpha-helices, Bioinformatics, vol.23, pp.212-218, 2007.

S. Thomas, X. Tang, L. Tapia, and N. M. Amato, Simulating protein motions with rigidity analysis, J Comput Biol, vol.14, issue.6, pp.839-855, 2007.

L. Tapia, S. Thomas, and N. M. Amato, A motion Planning Approach to Studying Molecular Motions, Communications in information and Systems, vol.10, issue.1, pp.53-68, 2010.

M. Wiederstein and M. J. Sippl, ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins, Nucleic Acids Res, vol.35, pp.407-410, 2007.

V. Ruiz-de-angulo, J. Cortés, and T. Siméon, BioCD : An efficient algorithm for self-collision and distance computation between highly articulated molecular models. Robotics: Science and Systems, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01988238

S. M. Lavalle and J. J. Kuffner, Rapidly-exploring random trees: progress and prospects, 2001.

J. Cortes, L. Jaillet, and S. T. , Disassembly path planning for complex articulated objects, IEEE Transactions on Robotics, vol.24, pp.475-481, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01993265

D. A. Case, T. E. Darden, I. Cheatham, C. L. Simmerling, J. Wang et al., Jaguar software, vol.9, 2006.

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollamn, and D. A. Case, Development and testing of a general Amber force field, J Comput Chem, vol.25, pp.1157-1174, 2004.

H. J. Berendsen, J. P. Postma, W. F. Van-gunsteren, D. Nola, A. Haak et al., Molecular dynamic with coupling to an external bath, J Chem Phys, pp.3684-3690, 1984.