, 11): there exists a basin of attraction around the equilibrium point

, 59): there exists a basin of attraction which does not include the attractor, vol.25

, 59: the basin of attraction contains the attractor and the equilibrium point is globally asymptotically stable

J. J. Azar and G. R. Samuel, Drilling engineering, PennWell books, 2007.

C. Canudas-de-wit, F. Rubio, and M. Corchero, DOSKIL: A New Mechanism for Controlling Stick-Slip Oscillations in Oil Well Drillstrings, IEEE Trans-435 actions on Control Systems Technology, vol.16, issue.6, pp.1177-1191, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00394990

Z. Lozia and D. Zardecki, Vehicle dynamics simulation with inclusion of freeplay and dry friction in steering system, SAE Transactions, pp.907-923, 2002.

B. Armstrong-hélouvry, P. Dupont, and C. Canudas-de-wit, A survey of mod

R. Beerens, A. Bisoffi, L. Zaccarian, W. P. Heemels, H. Nijmeijer et al., Reset integral control for improved settling of PID-based motion systems with friction, Automatica, vol.107, pp.483-492, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02324583

C. A. Coulomb, Théorie des machines simples en ayantégard au frottement de leurs parties età la roideur des cordages, p.1821

R. Stribeck, Die wesentlichen eigenschaften der gleit-und rollenlager, Zeitschrift des Vereines Deutscher Ingenieure, vol.46, pp.1341-1348, 1902.

P. R. Dahl, A solid friction model, Aerospace Corp El Segundo, vol.450

. Ca, , 1968.

C. Wit, H. Olsson, K. J. Astrom, and P. Lischinsky, A new model for control of systems with friction, IEEE Transactions on automatic control, vol.40, issue.3, pp.419-425, 1995.

J. Swevers, F. Al-bender, C. G. Ganseman, and T. Projogo, An integrated fric-455 tion model structure with improved presliding behavior for accurate friction compensation, IEEE Transactions on automatic control, vol.45, issue.4, pp.675-686, 2000.

Y. F. Liu, J. Li, Z. M. Zhang, X. H. Hu, and W. J. Zhang, Experimental comparison of five friction models on the same test-bed of the micro stick-460 slip motion system, Mechanical Sciences, vol.6, issue.1, pp.15-28, 2015.

A. Bisoffi, M. Da-lio, A. R. Teel, and L. Zaccarian, Global asymptotic stability of a PID control system with Coulomb friction, IEEE Transactions on Automatic Control, vol.63, issue.8, pp.2654-2661, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01700168

D. Putra, H. Nijmeijer, and N. Van-de-wouw, Analysis of undercompensation 465 and overcompensation of friction in 1dof mechanical systems, Automatica, vol.43, issue.8, pp.1387-1394, 2007.

V. A. Yakubovich, G. A. Leonov, and A. K. Gelig, Stability of stationary sets in control systems with discontinuous nonlinearities, vol.14, 2004.

B. Armstrong-hélouvry, Stick-slip arising from Stribeck friction, in: Proceedings, IEEE International Conference on Robotics and Automation, pp.1377-1382, 1990.

A. Mcmillan, A non-linear friction model for self-excited vibrations, Journal of sound and vibration, vol.205, issue.3, pp.323-335, 1997.

J. J. Thomsen and A. Fidlin, Analytical approximations for stick-slip vibration amplitudes, International Journal of Non-Linear Mechanics, vol.38, issue.3, pp.389-403, 2003.

J. Abdo and A. A. Abouelsoud, Analytical approach to estimate amplitude of stick-slip oscillations, Journal of Theoretical and Applied Mechanics, vol.49, issue.4, pp.971-986, 2011.

A. Bisoffi, R. Beerens, W. P. Heemels, H. Nijmeijer, N. Van-de-wouw et al., To stick or to slip: A reset PID control perspective on positioning systems with friction, Annual Reviews in Control, 2020.

D. Karnopp, Computer simulation of stick-slip friction in mechanical dynamic systems, Journal of dynamic systems, vol.107, issue.1, pp.100-103, 1985.

A. F. Filippov, Differential equations with discontinuous righthand sides: control systems, vol.18, p.490, 2013.

M. Barreau, F. Gouaisbaut, and A. Seuret, Practical stability analysis of a drilling pipe under friction with a PI-controller, IEEE Transaction on Control Systems Technologies, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02099459

H. Khalil, Nonlinear Systems, Pearson Education, 1996.

S. Tarbouriech, I. Queinnec, and C. Prieur, Stability analysis and stabilization 495 of systems with input backlash, IEEE Transactions on Automatic Control, vol.59, issue.2, pp.488-494, 2014.

S. Tarbouriech, G. Garcia, J. M. Da-silva, and I. Queinnec, Stability and stabilization of linear systems with saturating actuators, 2011.

J. K. Astrom and C. Canudas-de-wit, Revisiting the LuGre friction model, IEEE Control Systems Magazine, vol.28, issue.6, pp.101-114, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00394988

M. Aps, The MOSEK optimization toolbox for MATLAB manual. Version 9, 2019.

J. Löfberg, YALMIP: A toolbox for modeling and optimization in MAT-LAB, IEEE International Symposium on Computer Aided Control Systems Design, pp.284-289, 2005.

V. Acary and B. Brogliato, Numerical methods for nonsmooth dynamical systems: applications in mechanics and electronics, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00423530