, TGA/MS analysis as well as Dr. Bruno Chaudret, from LPCNO

R. N. Khouzam, S. Al-mawed, V. Farah, and A. Mizeracki, Next-Generation Airbags and the Possibility of Negative Outcomes Due to Thoracic Injury, Canadian Journal of Cardiology, vol.30, pp.396-404, 2014.

A. Shaout and C. A. Mallon, Automotive airbag technology: past, present and future, International Journal of Computer Applications in Technology, vol.13, pp.159-171, 2000.

, Air Bags

L. Shamo, This personal airbag could help protect the elderly from hip injuries

Q. Zhang, H. Q. Li, Y. K. Ning, D. Liang, and G. R. Zhao, Design and Realization of a Wearable Hip-Airbag System for Fall Protection, Applied Mechanics and Materials, vol.461, pp.667-674, 2014.

R. A. Williams, E. Beloni, and E. L. Dreizin, Ignition of Metal Powder Layers of Different Thickness by Electrostatic Discharge, J Propul Power, vol.28, pp.132-139, 2012.

G. Shi, C. S. Chan, W. J. Li, K. Leung, Y. Zou et al., Mobile Human Airbag System for Fall Protection Using MEMS Sensors and Embedded SVM Classifier, IEEE Sensors Journal, vol.9, pp.495-503, 2009.

C. S. Chan, G. Shi, Y. Luo, G. Zhang, W. J. Li et al., A Human-Airbag System for Hip Protection Using MEMS Motion Sensors: Experimental Feasibility Results, editor^editors. 2006 International Conference on Mechatronics and Automation, pp.831-836, 2006.

R. Nayak, R. Padhye, K. Sinnappoo, L. Arnold, and B. K. Behera, Airbags, Textile Progress, vol.45, pp.209-301, 2013.

H. Potvin and M. H. Back, A Study of the Decomposition of Sodium Azide using Differential Thermal Analysis, Canadian Journal of Chemistry, vol.51, pp.183-186, 1973.

H. S. Kim, J. H. Kim, J. H. Ku, M. H. Cho, J. K. Cha et al., Effects of metal oxide nanoparticles on combustion and gas-generating performance of NaN3/Al composite powders ignited using a microhotplate platform, Advanced Powder Technology, pp.1023-1031, 2020.

A. Lathika, S. Suthangathan-paramashivan, B. Ramasamy, and S. Mahadevan, Impact of fuel/oxidizer ratio of NaN3 and KNO3 airbag gas generants on toxic emission and performance, Process Safety and Environmental Protection, vol.133, pp.348-357, 2020.

K. R. Olson, I. B. Anderson, N. L. Benowitz, P. D. Blanc, R. F. Clark et al., Poisoning & Drug Overdose, Poisoning & Drug Overdose, 2018.

S. Zeuner, A. Hofmann, R. Schropp, and K. Rödig, Guanidine-thermite igniter composition for use in gas generators, 2000.

P. S. Khandhadia, S. P. Burns, and G. K. Williams, High gas yield non-azide gas generants, 1998.

U. S. Epa, Provisional Peer-Reviewed Toxicity Values for Guanidine Chloride, 2014.

H. Tabuchi, Airbag Compound Has Vexed Takata for Years

A. Lafrance, How Airbags Are Supposed to Work

T. M. Southern and W. W. Wendlandt, The thermal decomposition of metal complexes-XX: Some amine copper(II) nitrate complexes, Journal of Inorganic and Nuclear Chemistry, vol.32, pp.3783-3792, 1970.

S. Mathew, C. G. Nair, and K. N. Ninan, Thermal Decomposition Studies on Amine Complexes of Copper(II) Nitrate in Solid State, Bulletin of the Chemical Society of Japan, vol.64, pp.3207-3209, 1991.

M. Künzel, J. Selesovsky, and R. Matyá?, Characterization of Tetraamminecopper Salts, 18th New Trends in Research of Energetic Materials, pp.664-669, 2015.

M. Künzel, O. Vodochodský, R. Matyá?, Z. Jalový, J. Pachman et al., Tetraamminecopper(II) Nitrate and Its Effects on Ammonium Nitrate(V) Central, European Journal of Energetic Materials, vol.14, pp.169-183, 2017.

M. Liszka-skoczylas, E. Mikuli, J. Szklarzewicz, and J. Hetma?czyk, Thermal behaviour, phase transition and molecular motions in, Thermochimica Acta, vol.496, pp.38-44, 2009.

W. W. Wendlandt and J. P. Smith, Thermal decomposition of metal complexes-VI some ammine cobalt (II) complexes, Journal of Inorganic and Nuclear Chemistry, vol.25, pp.985-993, 1963.

A. Migda?-mikuli, E. Mikuli, R. Dziembaj, D. Majda, and ?. Hetma?czyk, Thermal decomposition of, vol.419, pp.223-229, 2004.

J. M. Janik, E. Mikuli, A. Migdal-mikuli, M. Rachwalska, T. Stanek et al., Proton Magnetic Resonance and Neutron Quasielastic Scattering Studies of, Physica Scripta, vol.28, pp.569-572, 1983.

E. Mikuli, M. Liszka, and M. Molenda, Thermal decomposition of, vol.89, pp.573-578, 2007.

C. Pradère, S. Suhard, L. Vendier, G. Jacob, B. Chaudret et al., Heterometallic Werner complexes as energetic materials, Dalton Transactions, pp.2725-2731, 2008.

G. K. Lund, J. C. Hinshaw, D. W. Doll, and R. J. Blau, Metal complexes for use as gas generants, 1997.

L. Glavier, G. Taton, J. Ducéré, V. Baijot, S. Pinon et al., Nanoenergetics as pressure generator for nontoxic impact primers: Comparison of Al/Bi2O3, Al/CuO, Al/MoO3 nanothermites and Al/PTFE, Combustion and Flame, vol.162, pp.1813-1820, 2015.

A. Nicollet, L. Salvagnac, V. Baijot, A. Estève, and C. Rossi, Fast circuit breaker based on integration of Al/CuO nanothermites, Sensors and Actuators A: Physical, vol.273, pp.249-255, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01743964

C. Rossi, Engineering of Al/CuO Reactive Multilayer Thin Films for Tunable Initiation and Actuation, Propellants, Explosives, Pyrotechnics, vol.44, pp.94-108, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01847132

B. Julien, J. Cure, L. Salvagnac, C. Josse, A. Esteve et al., Integration of Gold Nanoparticles to Modulate the Ignitability of Nanothermite Films, ACS Applied Nano Materials, vol.3, pp.2562-2572, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02885829

I. Abdallah, J. Zapata, G. Lahiner, B. Warot-fonrose, J. Cure et al., Structure and Chemical Characterization at the Atomic Level of Reactions in Al/CuO Multilayers, ACS Applied Energy Materials, vol.1, pp.1762-1770, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01759153

T. Wu, X. Wang, P. Y. Zavalij, J. B. Delisio, H. Wang et al., Performance of iodine oxides/iodic acids as oxidizers in thermite systems, Combustion and Flame, vol.191, pp.335-342, 2018.

, Figure 3. Temporal pressure traces of CuC/Al/CuO energetic composites and traditional

, Al/CuO nanothermite as reference