
HAL Id: hal-02927311
https://laas.hal.science/hal-02927311v3

Submitted on 4 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of Autonomous Robots: A Roboticist’s
Bottom-Up Approach

Félix Ingrand

To cite this version:
Félix Ingrand. Verification of Autonomous Robots: A Roboticist’s Bottom-Up Approach. Software
engineering for robotics, Springer, pp.219-248, 2021, 978-3-030-66493-0. �10.1007/978-3-030-66494-
7_8�. �hal-02927311v3�

https://laas.hal.science/hal-02927311v3
https://hal.archives-ouvertes.fr

Verification of Autonomous Robots:
A Roboticist’s Bottom-Up Approach?

Félix Ingrand

Abstract Autonomous robots may be one day allowed to fly or to drive
around in large numbers, but this will require their makers and programmers
to show that the most critical parts of their software are robust and reliable.
Moreover, autonomous robots embed onboard deliberation functions. This
is what makes them autonomous but opens for new challenges. There are
many approaches to consider for the V&V of AR software, e.g. write high-
level specifications and derive them in correct implementations, deploy and
develop new or modified V&V formalisms to program robotics components,
etc. One should note that learned models aside, most models used in delibera-
tion functions are already amenable to formal V&V. Thus, we rather focus on
the functional level components or modules and propose an approach that
relies on an existing robotics specification and implementation framework
(Gen

oM), in which we harness existing well known formal V&V frameworks
(UPPAAL, BIP, FIACRE-TINA). Gen

oM was originally developed by roboti-
cists and software engineers, who wanted to clearly and precisely specify how
a reusable, portable, middleware independent, functional component should
be specified and implemented. As a result, Gen

oM has a rigorous specification,
a clear semantics of the implementation and it provides a template mech-
anism to synthesize code that opens the door to automatic formal-model
synthesis and formal V&V (offline and online). This bottom-up approach,
which starts from components implementation, is more modest than the top-
down ones which aim at a larger and more global view of the problem. Yet,
it gives encouraging results on real implementations on which one can build

Félix Ingrand
LAAS/CNRS, University of Toulouse, Toulouse, France, e-mail: felix@laas.fr, http:
//homepages.laas.fr/felix

? This work has been supported by the European Union’s Horizon 2020 research and

innovation programme under grant agreement No. 825619 (AI4EU) and the Artificial and
Natural Intelligence Toulouse Institute - Institut 3iA (ANITI) under grant agreement No:

ANR-19-PI3A-0004.

1

felix@laas.fr
http://homepages.laas.fr/felix
http://homepages.laas.fr/felix

2 Félix Ingrand

more complex high-level properties to be then verified and validated offline
but also with online monitors.

1 Introduction

Validation and Verification (V&V) of Autonomous Systems (AS)2 software
is not a “new problem”. More than 20 years ago, a seminal work (Espiau
et al, 1996) started a study on how to guarantee robustness, safety and over-
all dependability of software. Yet, for several reasons, the robotic and AI
communities have mostly been focussed on other problems with respect to
safe dependable autonomous robots. Meanwhile, there are other fields where
bugs and errors can lead to catastrophic events (e.g. aeronautic, nuclear in-
dustry, rail transportation) where there is already a large corpus of research,
and also successfully deployed tools and frameworks (Woodcock et al, 2009),
whose goal is to improve the trust we can put in the software controlling
these complex, although not autonomous, systems.

The fast and recent developments of autonomously driving cars have put
the spotlight on the dramatic consequences of unverified software. Unfortu-
nately, there is no doubt that autonomous vehicles will cause deadly acci-
dents. They will only become “acceptable” if the carmakers have deployed
all reasonably applicable and available techniques to ensure trust and robust-
ness, and if as a result of these techniques, they outperform a regular human
driver by one or two orders of magnitude. The decision to deploy these tech-
niques may come from the carmakers themselves, as a commercial argument
to safety, or as an incentive from car insurances, or they may come from gov-
ernment certification agencies representing the general public concerns about
safety (as this is already the case for aeronautic, railway, etc). In any case,
despite the somewhat human-biased argument that we are “all” good drivers,
autonomous cars will probably prevail if 5, 10 or 20 years from now, statistics
show that they are indeed safer than human driven cars.

One original aspect to consider with respect to AS is that, unlike most
critical systems in other domains, AS exhibit and use deliberative functions
(e.g. planning, acting, monitoring, etc) (Ingrand and Ghallab, 2017). If one
considers the models used by these deliberative functions, some are explicitly
written by humans, while others are learned (Argall et al, 2009; Kober et al,
2013). Similarly for functional components, some also use learned models.
We will see that if the explicit models are amenable to formal verification,
the learned ones pose a new challenge to the V&V community.

For now, most of the trust we put in the AS Software (ASS) is acquired
through test (Sotiropoulos et al, 2017; Koopman and Wagner, 2016). More-
over, there are a number of “good” practices, architectures design, soft-

2 We consider here autonomous systems at large, i.e. including autonomous robots, au-

tonomous vehicles, drones, cyber physical systems, etc.

Verification of Autonomous Robots 3

ware development methodologies, model-based techniques (Brugali, 2015;
Mühlbacher et al, 2016), and specification tools that all contribute to es-
tablish this trust. Still, formal V&V, when applicable, has the potential to
bring a level of confidence unreachable by other practices.

We also need to focus on approaches addressing realistic applications with
real implementations and experiments. We already have reached the point
where AS with tens of sensors and effectors, executing millions of line of
code, running tens of programs on multiple CPUs, are being deployed. The
time where one could illustrate an approach with an example, over simplify-
ing reality, and limited added value to the field has passed. Proving that a
Lego Mindstorm will not crash in the wall, thanks e.g. to its LTL generated
controller, is not quite the same problem than showing that an autonomous
car is not going to do the same.

Moreover, the dependability of the software should be considered as a
whole, looking at the overall complete system. When it comes to V&V, un-
less you take adapted protective containment measures between components,
the overall system will be, at best, as strong as your weakest link or compo-
nent. The way the components are being organized, communicate and share
resources in the architecture is as critical as the components themselves.

There are some recent valuable surveys available, each with their own
reading grid and focus. Their coverage of the decisional components may be
limited (Luckcuck et al, 2018), or they are limited to the decisional compo-
nents (Seshia et al, 2016), or they present a larger safety picture (Guiochet
et al, 2017), (Fisher, 2021, chap. 7), but no formal V&V. Still, they are a
good source of information in this fast-growing field.

Last, our perspective is definitely from a roboticist’s point of view. First,
we want to rely, as much as possible, on automatic synthesis of models and
code. Second, we are aiming at proving properties which are “useful” for the
ASS programmer. Can we guarantee that the plan produced by the planner
is safe and that it will be properly executed by the acting system? Can the
CPU resources available on the robots guarantee that all components will
run fast enough? Can we guarantee that the robot will stop in time when an
obstacle has been properly detected, that the initialization sequence will not
deadlock, etc? Overall, starting from some real ASS implementations, what
is the current status with respect to V&V and how can we improve it?

This chapter is organized as follows: Section 2 presents the V&V models
and techniques that we think are relevant to ASS, while Sect. 3 reviews the
various situations with respect to availability of formal models in an AS. We
then present in Sect. 3.6 some of the robotic software specification frameworks
which could be transformed towards a formal model. Section 4 introduces
Gen

oM, a tool to specify and deploy software functional component, and its
template mechanism. A complex robotics example using Gen

oM, is introduced
in Sect. 5, followed by Sect. 6 which presents the four formal frameworks for
which Gen

oM can synthesize a model. Section 7 illustrates some of the V&V

4 Félix Ingrand

results we obtain both offline and online. Section 8 concludes the chapter and
presents some possible future topics of research.

2 Formal Models and V&V

Our goal here is not to survey such a large field of research. We point the
reader to (D’Silva et al, 2008; Woodcock et al, 2009; Bjørner and Havelund,
2014) for overviews of formal methods in software development3. Formal
methods use mathematical or logical models to analyse and verify programs.
The key point here is that these models can then be used rigorously to prove
properties of the modelled program. Of course, formal methods can cover
various parts of the program life cycle, from the specifications down to the
code. Here, we mostly focus on approaches that are close to the deployed and
running code.

2.1 Models and Methods

There are many formal models available, and none of them covers all the
needs. Some models are grounded in simple yet powerful primitives. Au-
tomata and state machines (Bohren and Cousins, 2010; Verma et al, 2006; Li
et al, 2018) are often put forward as they easily capture the various states of
the subsystems and their transitions. Petri nets (Costelha and Lima, 2012;
Lesire and Pommereau, 2018) are also often used, as they easily model coor-
dination, together with their time extension, e.g. time Petri nets (Berthomieu
and Diaz, 1991). Time is also at the core of Timed Automata widely used in
UPPAAL, Kronos and more recently in the latest BIP version. Other models
are provided as languages defined at a higher level of abstraction, such as the
synchronous system family, but can be translated to mathematical or logi-
cal representation. Such a category also includes temporal logic (Kress-Gazit
et al, 2011), situation calculus (Levesque et al, 1997; Claßen et al, 2012) as
well as interval temporal logic also deployed on robots in various components.
There are also methods geared towards hybrid systems (Tomlin et al, 2003).

From a roboticist’s point of view, we should consider the models and meth-
ods that seem the most appropriate to represent the type of behavior we have
to model and to prove the type of properties we want to check.

3 Note that none of these three recent surveys mention robots nor AS.

Verification of Autonomous Robots 5

2.2 V&V Approaches

Among the various techniques available to the V&V community, we focused
on four different families.

State exploration and model checking. These approaches, given an initial
state and a transition function, explore offline the reachable state of the
system. The search space can sometimes be studied without being completely
built (e.g. by finding a finite set of equivalence classes), but most often, these
approaches suffer from state explosion and often face scalability issues.

Statistical model checking (SMC). These approaches, instead of exploring
the complete state space, sample it using a probability model of the tran-
sition function, and thus evaluate properties to be verified with a resulting
probability. Indeed, there are many properties which are desirable, but not
required 100% of the time. For example, if your drone flight controller, run-
ning at 1 kHz, looses one cycle every one hundred cycles, the consequences
are probably not as dramatic as if it looses one cycle every other cycle. So
SMC approaches allow one to “explore” states space whose size blows the
regular state exploration techniques.

Logical inference. These approaches works offline by building an overap-
proximation of set of reachable states as a logical statement (e.g. obtained by
combining invariants of components). So the set is explored by checking logi-
cal properties, not its individual element. If these approaches can potentially
address the state explosion, which breaks model checking, they face another
problem as the logical invariants can be too general and too loosely fit the
real reachable states set.

Last, runtime verification is more an online approach where the state
transition model is given to an engine that monitors and checks properties
and consistency of the model on the fly. This approach requires specification
of what needs to be done when a property is violated, but allow verification
of models that would not scale, nor fit with the three previous approaches.

We shall now consider the current availability of these models and V&V
approach in ASS.

3 Autonomous System Software and Formal Models

With respect to the availability of formal models within ASS, here we ex-
amine the situation overall (i.e. the architecture), but also the various type
of software components and how they rely (or not) to formal models: pro-
grammed with formal models (knowingly or not); learned models; no model
and some models.

6 Félix Ingrand

Decisional Level

Observing

Monitoring

MODELS

Acting

Planning

Functional Level

rmp440gps velodyne

PotentialField

point
cloud
pcl

odometry
pose_es

Navigation

target
t3d_pos

POM

PF
Cmd
rb

GPS
pose_es

joystick

joystick
joystick

SafetyPilot

Cmd
rb

IMU

IMU
pose_es

Ethernet/UDPEthernet/TCPUSB USB

pose
pose_es

Fig. 1 Overall Architecture of an Autonomous Robot (RMP440).

3.1 Software Architecture

ASS needs to be organized along a particular chosen architecture framework.
See (Kortenkamp and Simmons, 2008) for a survey of the different archi-
tectures available for AS. Some architectures help and ease the V&V of the
overall system, by precisely defining how the layers are organized and how
the components interact. To keep things simple with respect to architecture,
we consider two levels: the Decisional Level and the Functional Level (see
Fig. 1). As a result, we often find two types of software components:

• those performing one of the deliberative functions, that often rely on mod-
els (e.g. planning actions, fault detection models, acting skills) that are
then used to explore the problem space and find a solution (e.g. a plan-
ner combines actions models to find a plan, an fault detection component

Verification of Autonomous Robots 7

monitors the state of the system to find discrepancies with its model, etc),
and

• those performing some data and information processing to solve a problem
or provide a service through a regular algorithm implementing the function
(image processing, motion planning, etc).

In the first category, algorithms involve heuristic searches in a space that
cannot be reasonably explicitly computed, while the second make the search
for the solution explicitly through deterministic algorithms. The algorithm
in the first category may take an apriori unbounded amount of time, while
the ones in the second usually have a predictable global computation time.
The software in the first category often rely on high-level abstraction models,
while the second are often programmed in classical programming languages.

As a result of this dichotomy, the V&V of these different components may
rely on different approaches. We now examine the different situations with
respect to the availability of models suitable for V&V.

3.2 Directly Programming with Formal Models

We consider here systems or software components that are programmed “di-
rectly” using some well established formal frameworks, which may be used
in other domains.

For example, the “synchronous approach” (Benveniste and Berry, 1991;
Benveniste et al, 2003) has been instantiated in a number of languages (e.g.
Lustre, Esterel, Signal, etc) and commercial frameworks. It has been deployed
in critical domains such as, but not limited to, aeronautic (Scade, Lustre and
Esterel) and electronic (Signal). Esterel (Boussinot and de Simone, 1991) is
used in (Simon et al, 2006), which presents a framework (Orccad) to de-
ploy robotics systems programmed in the Maestro language (then translated
in Esterel) to specify Robot Tasks and Robot Procedures. This was used to
successfully program a complete AUV, and prove some properties on the sys-
tem. Yet, the Maestro language was probably too abstract for robotic system
programmers, which did not adopt it.

Similarly, there are decisional components that are programmed using
situation calculus. Such a formalism has been used in Golog (for plan-
ning)(Levesque et al, 1997; Claßen et al, 2012) and Golex (Hähnel et al,
1998) (for acting) within a museum guide robot. However, the language is
quite cumbersome, and has hardly been used for other deployments.

There are numerous other formalims available in the V&V community (e.g.
BIP, LTL, UPPAAL, etc) which could have been used to program directly
some robot components, but apart from toy examples, or localized and limited
functionalities, this was not attempted. Similarly, there are formal tools to
help the specification and the analysis of ASS (e.g. ALTARICA (Cassez et al,
2004)), but they are not easily linked to the real code running on the robot.

8 Félix Ingrand

RoboChart (Cavalcanti, 2017; Miyazawa et al, 2017; Ribeiro et al, 2017),
(Cavalcanti, 2021, chap. 9) proposes an interesting approach where the pro-
grammer explicitly models the robotics application in a formal framework
based on timed communicating sequential process. So the model is provided
by the programmer who must have some familiarity with formal models and
languages. In (Hierons, 2021, chap. 11), they extend this framework to auto-
matically generate test cases, while (Woodcock, 2021, chap. 13) proposes an
extension to model uncertainty using probability.

Overall, in this category we find some interesting attempts to bridge the
gap between ASS and V&V, but clearly, the languages proposed and the
required knowledge and skills to make good use of them is a challenge robotic
programmers must overcome.

3.3 “Hidden” Formal Models

In this category we consider the software components that are programmed
using some formalisms on their own, but that have not been explicitly used
with V&V methods.

For example, PDDL models widely used in automated planning, have all
the right features to be considered formal models. Even if PDDL expressive-
ness can be somewhat limited when it comes to real robotics application, the
semantic is clear and unequivocal, and most heuristic searches used to find
plans, are correct (if not complete, nor optimal). Similarly, there are other
planning formalisms (ANML, HTN, TLPlan, TalPLannner, situation calcu-
lus, temporal interval logic, etc) (Ingrand and Ghallab, 2017) that all fall in
the same category. They were all designed for planning but they have all the
right features to be used for V&V. Some works, e.g. (Abdeddaim et al, 2007;
Bensalem et al, 2014), explicitly study the link between V&V and planning
& scheduling.

Similarly, if we consider the acting component, which is more concerned
in the operational model (skill) of how to execute an action (as opposed to
planning, which is more concerned with a model of how to use it) there are
also many works. ASPiC (Lesire and Pommereau, 2018) is an acting system
based on the composition of skill Petri nets. (Simmons and Pecheur, 2000)
shows that TDL based acting components can be verified using NuSMV.
RMPL (Williams and Ingham, 2003) (which relies on an Esterel-like lan-
guage) is also used for acting and monitoring. RAFCON (Brunner et al, 2016)
also provides mechanisms to model and execute plans produced by high-level
planners. Similarly, in (Pelliccione, 2021, chap. 12) the authors propose to
program the acting part of the robotics system with a DSL, relying on LTL,
which expresses various control structures and event-handling templates.

So there are many components (mostly deliberative within the decisional
layer) that rely on some models that can be linked or transformed to some

Verification of Autonomous Robots 9

of the formal models used for V&V. Such transformation is seldom used, but
is an option that could be easily activated if needed.

3.4 Learned Models

Models acquired through learning are of a different kind. They are popular
because they successfully tackle problems that resisted analytical modelling
and solving. In an AS, one can learn a skill for acting (e.g. using reinforcement
learning (Kober et al, 2013) or DBN (Infantes et al, 2010)), an action model
for planning, (e.g. using MDP), or a perception classifier (e.g. using deep
learning and convolutional neural network), but from a V&V point of view,
these learned models are mostly black boxes.4

Still there are some attempts to improve the dependability of learned mod-
els. In (Amodei et al, 2016), the authors identify five design pitfalls that can
lead to “negative side effects” and they propose some guidelines as to prevent
them. Unfortunately, none of them rely on formal methods, and if we can ex-
pect better models following them, there is no guarantee that false-positive
will not slip in.

Cicala et al (2016) present three areas of ASS where they propose an auto-
matic approach to do V&V. One of the area is Safe Reinforcement Learning
for which they propose to deploy probabilistic model checking on discrete-
time model Markov chains. Similarly Seshia et al (2016) identify five chal-
lenges, to formally verify system that use AI and Machine Learning: En-
vironment Modeling; Formal Specification; Modeling Systems that Learn;
Computational Engines for Training, Testing; and Verification and Correct-
by-Construction Intelligent Systems. But overall, researchers are just starting
to look at these issues, and the inclusion, or not, of learned models in ASS
will depend on their success.

For now, we think that these models must be confined to non-critical
components, and if not, their results should be merged, combined and checked
for consistency with other results before being considered as input in a critical
decisional process.

An interesting work is proposed by (Feth et al, 2018) where they learn a
model to help identify situations which require a higher level of awareness of
the system.

4 Note that if learning itself is considered a deliberative function, the learned models, can
be used within different components, functional or decisional.

10 Félix Ingrand

3.5 No Model

In many situations, the code and the programs are written following some
hopefully good programming practices, but overall, there are no model of
what it does. The code is the model. Still, there are a number of tools that
make thorough checking of the code with static analysis and even some in-
variants extraction (D’Silva et al, 2008). Even more, if formal V&V is really
required, one can deploy an approach such as the one presented in (Täubig
et al, 2011), which requires one to annotate all the functions in the program
with logical preconditions, assertions and effects, which will then be checked
and inferred by the formal tool (Isabelle). This is a rather tedious process, and
can only be done by people that are both familiar with the formal frameworks
used and that understand the algorithms being implemented. Nevertheless,
the results are very encouraging.

3.6 Some “Specification” Models

In this category, we consider all the components that are somehow specified
with some languages, or model-driven frameworks that are not formal. For
example, most robotic domain-specific language DSL are seldom formal. One
often uses the term “semi formal” in the sense that they have a clear syntax,
but their semantics is often ambiguous, which prevents them from being
directly fed to some V&V engine.

There exist numerous framework to develop and deploy robotic soft-
ware (Nordmann et al, 2016; Brugali, 2015). Some offer specification lan-
guages, or rely on well-known specification framework (e.g. UML, AADL,
etc). Some just focus on providing tools and API libraries to ease integra-
tion of different components (Brugali, 2021, chap. 1). Orocos (Bruyninckx,
2001) focuses on real-time control of robots. (Dhouib et al, 2012; Yakymets
et al, 2013) presents RobotML a robotic domain-specific language (Papyrus)
and toolchain (based on Eclipse Modeling Project) that facilitates the devel-
opment of robotics applications. Smartsoft (Schlegel et al, 2009), (Schlegel,
2021, chap. 3) provides a framework to also specify the complete architecture
of a robotic system, while (Lotz et al, 2016) provide a meta-model to separate
user programmer concerns, and system integrators issues. But if these tools
greatly ease the overall architecture and analysis of the system, they remain
short of connecting to a formal model.

Despite its success, ROS provides little support when it comes to ease
V&V of the software with formal models. There are some efforts to model its
communication layer (Halder et al, 2017), or to verify some simple proper-
ties (Come et al, 2018; Meng et al, 2015; Wong and Kress-Gazit, 2017), but
overall, the lack of structure required to write ROS nodes makes it rather
difficult to extract anything worth verifying. Bardaro et al (2018) propose

Verification of Autonomous Robots 11

to model the robot software in AADL and then synthesize code in ROS.
There are also systems that build some “run-time” verification of properties
on the top of ROS (Huang et al, 2014; Sorin et al, 2016), but they hardly
rely on ROS itself. Kai et al (2017) propose model transformation using Mon-
tiArcAutomaton from a high-level specification down to ROS code. Last we
should point out that the SMACH (Bohren and Cousins, 2010) component
can be used to control ROS nodes with state machine models.

MAUVE (Gobillot et al, 2016; Doose et al, 2017) is an interesting frame-
work that allows to extract temporal information from runs and verify them
with an LTL checker, but can also perform some runtime verification of tem-
poral properties. Similarly, (Desai et al, 2017) proposes Drona, to perform
model checking and runtime verification to check and enforce properties on
a model using a Signal Temporal Logic.

3.7 Discussion

Overall, the situation is not completely hopeless. Many components (in par-
ticular the deliberative ones) use formal models (hidden but present), which
can be used for V&V. Providing the algorithm they use are sound, and that
the models are valid w.r.t. the specifications, the results will be consistent
w.r.t. the models. On the other end of the spectrum, code without any mod-
els, our point of vire is that there should not be any. All the running code
should be developed with some level of specification and structure to enable
some verification. As for learned models, we need to consider a change of
paradigm, and not so much prove that a model is validated and verified, but
that it will be used and deployed in such a way that the trust we put in the
system is not jeopardized.

Last, for components developed using a robotics framework for which a
DSL can be derived towards a formal language, then one can also expect
encouraging results. In the following sections, we shall examine in detail a
particular instance in this category.

We have seen that most robotic tools and frameworks do not provide any
formal models per se, and if they do, it is usually up to the programmers to
write both the program to run on the robot and the formal model.

Bjørner and Havelund (2014) write:

“We will argue that we are moving towards a point of singularity, where
specification and programming will be done within the same language
and verification tooling framework. This will help break down the barrier
for programmers to write specifications.”

Following this advice, we advocate that the best way to introduce formal
V&V in robotic components is to rely on existing robotic specification lan-
guages and frameworks, and to offer some automatic translation to formal

12 Félix Ingrand

Ports

Execution Tasks

Activity Services

Internal Data
Structure

IDL

Requests

Control Task Attribute
and

Function
Services

Ports

Ports
In

Out

Clients

Ports

Permanent Activities

Reports

⏱ ⏱

pause pause

start
codel_start s1

codel_s1

s3
codel_s3

s2
codel_s2

ether

end
codel_end

stop
coldel_stop

s1

s2
pause::s1

pause::s1

s3
s3

end

ether

ether

Activity Automata

s3

genom_event
codel_s1(port in p1, port out p2, …
 ids in i1, ids out i2, …
 local in l1, local out l2, …)
{ if … {
 while … {
 …
 }
 } else {
 return pause::s1;
 }
 for (…, …, …) { … }
 return s2;
}

C/C++ code

WCET

s1

Fig. 2 A GenoM generic functional component (module).

models. For this, we need to ensure that the semantics of the specification is
correct, and is properly modelled in the targeted formalism.

We shall now present an existing robotic specification language and its
versatile template mechanism.

4 The Gen
oM tool

Gen
oM (GENerator Of Modules) (Mallet et al, 2010) is a tool to specify and

implement robotic functional components: modules (see the nine modules
“boxes” of the functional level on Fig. 4). These modules provide services
in charge of functionalities that may range from simple low-level driver con-
trol (e.g. the velodyne or IMU modules to respectively control the Velo-
dyne HLV32 or the XSens IMU) to more integrated computations (e.g. POM
for localization with an Unscented Kalman Filter, or PotentialField for
navigation). Gen

oM proposes a language to completely specify the functional
component down to (but not including) the C or C++ functions (codels),
that implement the different stages and steps of the implemented services.
This language fully specifies the shared ports (the green octagons in Fig. 4)
between components (in and out), as well as the shared variables in a compo-
nent, and the periodic tasks (i.e. threads) in which the services run. For each
service, one defines the arguments (in and out), and the automata specifying
the steps to follow to execute the codels, as well as their arguments. From a

Verification of Autonomous Robots 13

specification point of view, there is a clear semantics of what should be done
and how it should be properly implemented.

We now briefly present Gen
oM specification and its template mechanism.

4.1 Gen
oM Specification

Fig. 2 presents a generic Gen
oM component, composed of:

Control Task: A component always has an implicit cyclic control task that
manages the control flow by processing requests and sending reports (from
and to external clients); it also runs control (attribute and function) ser-
vices, and activates or interrupts activity services in Execution Tasks.

Execution Task(s): Aside from the control task, whose reactivity must re-
main high, one may need one or more cyclic execution tasks, aperiodic or
periodic, in charge of longer computations needed by activity services

Services: The core algorithms needed by the component are encapsulated
within services. Services are associated to requests (with the same name).
The algorithm executed by these services may require a short computation
time or a long one. Short services are known as control services and are
directly executed by the control task. Control services are in charge of
quick computations and may be attributes (setters or getters) or functions.
Longer services are known as activities and they are executed by execution
tasks. Activities ensure longer computations and are modelled with an
automaton that breaks down the computation into different states (see an
example in the lower right part of Fig. 2). Each state is associated with a
codel, which specifies a C or C++ function (top right part of Fig. 2). The
execution of that codel leads to the next state in the automaton, to execute
immediately, or in the next period if this next state name is prefixed with
pause.

IDS: A local internal data structure is provided for all the services to share
parameters, computed values or state variables of the component. A codel
which needs to access (in or out) fields from the IDS, specifies them in its
argument list and Gen

oM will ensure proper locking of the IDS fields during
the computation.

Ports: They specify the shared data, in and out, the component needs and
produces from and for other components. Access to ports is mutually ex-
clusive and is also specified in the codels arguments list.

This generic component is then instantiated for each specific component
specification with a template mechanism.

14 Félix Ingrand

4.2 Gen
oM Templates

void
genom_<"$comp">_activity_report(
struct genom_component_data *self,
struct genom_activity *a)

{
switch(a->sid) {
case -1: return; /* permanent activity reports nothing */

<’foreach s [$component services] {’>
case <"$comp">_<"[$s name]">_RqstId:
genom_<"$comp">_<"[$s name]">_activity_report(
self,
(struct genom_<"$comp">_<"[$s name]">_activity *)a);

return;
<’}’>
}

Listing 1 A simple template code snippet.

A Gen
oM template is a set of text files that include Tcl code, whose eval-

uation in the context of a Gen
oM call on a specification file will produce the

target of this particular template. The target can be as simple as one file
with the list of the name of the services specified in the module (in which
case the template file will just include a loop over all services and print their
name), or it can be the C code which control the execution of an activity
automaton, or it can be all the code which implement the module itself in
ROS. Templates are the building blocks of any output of Gen

oM.
The template mechanism was initially introduced to deal with the middle-

ware independency problem (Mallet et al, 2010). Indeed, the specifications
presented above do not subsume any specific middleware. In short, the com-
ponents are specified in a generic way using Gen

oM and different templates are
then used to automatically synthesize the components for different middle-
ware, which are then linked to the codels library for the considered module.

A template, when called by Gen
oM on a given module specification, has

access to all the information contained in the specification file such as ser-
vices names and types, ports and IDS fields needed by each codel, execu-
tion tasks periods, etc. Through the template interpreter (using Tcl syn-
tax), one specifies what they need the template to synthesize. For instance,
Listing 1 shows an excerpt of a template code and Listing 2 the C code
it produces when called together with the Navigation component specifi-
cation file. The interpreter evaluates anything enclosed in markers <’ ’>
without output, while on the code between <” ”>, variables and com-
mands substitution is performed and the result is output in the desti-
nation file, together with the text outside of the markers. For example,

Verification of Autonomous Robots 15

<'foreach s [$component services] {'> ... <"[$s name]"> ... <'}'> it-
erates over the list of services of the component, contained in the $component
variable; while <"[$s name]"> is replaced by the name of the service contained
in the $s variable bound by the foreach statement.

void
genom_Navigation_activity_report(
struct genom_component_data *self,
struct genom_activity *a)

{
switch(a->sid) {
case -1: return; /* permanent activity reports nothing */
case Navigation_connect_port_RqstId:
genom_Navigation_connect_port_activity_report(
self,
(struct genom_Navigation_connect_port_activity *)a);

return;
...

case Navigation_GotoPosition_RqstId:
genom_Navigation_GotoPosition_activity_report(
self,
(struct genom_Navigation_GotoPosition_activity *)a);

return;
case Navigation_GotoNode_RqstId:
genom_Navigation_GotoNode_activity_report(
self,
(struct genom_Navigation_GotoNode_activity *)a);

return;
}

...

Listing 2 Excerpt of the synthesized C code for the PocoLibs Navigation component
corresponding to the template in Listing 1 (note how the C code is synthesized for all the

services of the component).

There are already templates to synthesize: the component implementa-
tion for various middleware (e.g. PocoLibs5, ROS-Com (Quigley et al, 2009),
Orocos (Bruyninckx, 2001)); client libraries to control the component (e.g.
JSON, C, OpenPRS), etc. Among the available middleware, we rather fo-
cus on Pocolibs as it is the most suitable for real-time applications (notably
UAVs). Yet, its implementation, as efficient as it can be, cannot guarantee
crucial properties such as schedulability of periodic tasks, for this we need
formal V&V.

Fig. 3 shows the workflow to synthesize regular PocoLibs or ROS Gen
oM

components.

5 https://git.openrobots.org/projects/pocolibs

https://git.openrobots.org/projects/pocolibs

16 Félix Ingrand

TCL/C++

TCL/C

.gen

C++

C

GenoM

PocoLibs
Liib

Component
Specification

ROS Lib

template
PocoLibs

C

Component
Codels

template
ROS

Compiler

Codels Lib

Component
PL Server

Source

Component
ROS Server

Source

Compiler

Compiler

Linker

Linker

PocoLibs
exec

Component

ROS
exec

Component

code generationInitial Sources
GenoM

templateLegend:
Final

executable
Component

Fig. 3 Workflow to synthesize regular PocoLibs or ROS GenoM components.

We now present a non trivial realworld experiment implemented using
Gen

oM. As we shall see, it is not an autonomous car, but it shares a lot of
common sensors and effectors with one.

5 Not A Toy Example

To illustrate our approach, we present a complete navigation experiment for
an RMP440 LE robot (called Minnie). Minnie has the following sensors: an
XSens MTi IMU, a KVH DSP-5000 fiber optic gyro, a Novatel GPS, all
connected through serial or USB lines and an HDL-32E Velodyne lidar (on
an ethernet UDP interface). The RMP440 platform comes with a low-level
controller (accessed through an ethernet interface), which allows controlling
the robot with a speed (x-linear and z-angular) command, and returns the
platform wheel odometry. There is also a wireless Sony PS2 joystick connected
to a USB port. Finally, the platform includes a Nuvis 5306RT i7-6700 CPU
with 16 Gb RAM and a 256 Go SSD drive, running Ubuntu 16.04.

These hardware components are controlled through their respective Gen
oM

modules (see Fig. 4)6. They produce their respective ports (e.g. pose esti-
mation, point cloud, buttons and axes pushed, etc). On top of these, POM
uses an UKF to merge pose estimations from gps, IMU and rmp440 (gyro
and odometry) and to provide the position of the platform in the Pose port.
Navigation offer services to navigate in a graph of positions in a topolog-
ical map of the environment, and produces a port with the next Target to
reach. This Target is used by PotentialField as the current goal to reach,

6 The gyro does not appear as a separate module has it is managed inside the RMP440

module.

Verification of Autonomous Robots 17

Functional Level

rmp440gps
Task: io aperiodic
Services:
perm, unfix, fix_here,
send_rtcm, connect,
disconnect, connect_rtk

velodyne
Task: scan
period: 10ms
Services:
Init, GetScans,
GetOneScan,
SavePCD

port name
type

PotentialField

point
cloud
pcl

odometry
pose_es

Navigation

target
t3d_pos

POM

pose
pose_es

PF
Cmd
rb

Task: plan
period:100ms
Services:
StartTrackTargetPort

Task: navigate
period: 200 ms
Services:
GotoPosition
GotoNode

Task: io
period: 10ms
Services:
perm, add_me
Task: filter
period:10ms
Services:
perm

Attribute Service
Function Service
Activity Service

GPS
pose_es

Task: pose
period: 10ms
Services:
StartPoseProcessing,
SetFixedSensorPose

SetDelay, StopAcquisition, StopGetScans,
{Setup,Stop}PoseProcessing

SetParams*,
StopTrackTargetPort

Task: Motion
period: 50ms
Services:
Perm, Init,
JoystickOn,
Gyro

Task: Track
period: 50ms
Services:
Track

set_var_params,
Stop, log_stop

pose_es = or_pose_estimator::state
t3d_pos = or::t3d::pos
rb = or_rigid_body::state
pcl
joystick = or_joystick::state

Port:

joystick
Task: publish
aperiodic
Services:
Rename
device_list

joystick
joystick

SafetyPilot

Cmd
rb

Task: pilot
period: 50ms
Services:
SpeedMergeAndStopIf
Obstacle

SetParams*, Stop

IMU
Task: Update
period: 10ms
Services:
Measure

IMU
pose_es

Ethernet/UDP

Task: acquisition
aperiodic
Services:
StartAcquisition

SetParams*
ConnectDevice
Stop

Ethernet/TCPUSB USB

get_reference
set_reference
log, log_stop, log_info

Stop

Fig. 4 Functional level of the Minnie RMP440 experiment

while avoiding obstacles in the point cloud using a Potential Field method
inspired from (Guerra et al, 2016) (the points in the cloud are collected in an

18 Félix Ingrand

occupancy grid which is then used to provide obstacles position in the local
map). The speed reference PF Cmd is then read by SafetyPilot which,
as last resort, checks that no obstacles is too close to the robot, and stops
the robot if needed. It also considers the joystick port and uses it as a speed
command producer if the proper joystick buttons are pushed (which is a way
to gain control back of the robot platform in case something goes astray).
The final speed Cmd produced is then read by RMP440, which pushes it to
the low-level controller of the robot. The goal of this chapter is not to discuss
the overall localisation and navigation implemented on Minnie, but to give
a reasonable idea of the overall complexity entailed by a non-trivial robotic
experiment.7

So for each of these modules, Fig. 4 indicates how many execution tasks
each module has, the associated activity services (in bold), the function ser-
vices (in italic), and the attribute services. Ports, represented by octagons,
have a name and the data type they hold. For example, velodyne has three
execution tasks: scan and pose running at 100 Hz, and acquisition aperiodic.
scan has four services, Init, GetScans, GetOneScans and SavePCD. To fur-
ther illustrate the Gen

oM specification, Listing 3 presents the GetScans activ-
ity service of the velodyne. Note the automata specification, which is also
presented on Fig. 5.

<start>
GetScansStart

<copy_packet>
GetOneScanCopyPackets

<stamp_packet>
GetOneScanStampPackets

ether

copy_packet

stamp_packet

copy_packet

ether

ether

ether

ether

<end>
GetOneScanEnd

<wait>
GetScansWait

pause::wait

pause::stamp_packet

<build_scan>
GetOneScanBuildScan

build_scan

ether
end

wait

ether

GetScans

Fig. 5 Finite-state machine of the activity GetScans (listing 3)

7 The complete code of the Minnie experiment is available at: https://redmine.laas.fr/
projects/minnie.

https://redmine.laas.fr/projects/minnie
https://redmine.laas.fr/projects/minnie

Verification of Autonomous Robots 19

1 activity GetScans(
2 in double firstAngle = :"First angle of the scan (in degrees)",
3 in double lastAngle = :"Last angle of the scan (in degrees)",
4 in double period = :"Time in between two scans",
5 in double timeout = :"Timeout used when stamping packets")
6 {
7 doc "Acquire full scans from the velodyne sensor periodically";
8 task scan;
9

10 validate GetScansValidate(in firstAngle, in lastAngle, in period);
11

12 codel<start> GetScansStart(in acquisition_params)
13 yield copy_packets;
14 codel<copy_packets> GetOneScanCopyPackets(in acquisition_params,
15 out mutex_buffer)
16 yield stamp_packets;
17 codel<stamp_packets> GetOneScanStampPackets(in acquisition_params,
18 out mutex_pose_data, in timeout)
19 yield pause::stamp_packets, build_scan;
20 codel<build_scan> GetOneScanBuildScan(in acquisition_params,
21 in firstAngle, in lastAngle)
22 yield end;
23 codel<end> GetOneScanEnd(in acquisition_params,
24 port out point_cloud, inout usec_delay)
25 yield wait;
26 codel<wait> GetScansWait(in period)
27 yield pause::wait, copy_packets;
28

29 interrupts GetOneScan, SavePCD, GetScans;
30 };

Listing 3 The GenoM specification of the GetScans activity (Velodyne).

Overall, the Minnie experiment includes: 9 modules, 9 ports, (13 + 9)
tasks, 38 activity services (with automata), 41 function services, 43 attribute
services, 170 codels over 14k loc (lines of codes) and their respective WCET.
The synthesized Gen

oM modules amount to 200k loc for all to which one must
add external libraries (middleware, PCL, Euler, etc).

We now briefly present the formal frameworks for which we have written
Gen

oM templates.

6 Synthesized BIP, FIACRE, UPPAAL formal models

The template mechanism used to synthesize the Gen
oM modules from their

specifications and codels, can also synthesize models for three formal frame-
works. These templates also use temporal and statistical information obtained

20 Félix Ingrand

by running the regular modules with the proper probes. In particular, for all
formal models, we include the extracted Worst-Case Execution Time of each
codel, as well as the distribution of state transitions in the service automata
for the UPPAAL-SMC model. We now briefly present the three formal frame-
works.

6.1 RT BIP

RT BIP is a framework8 that allows modelling of embedded real-time systems,
within components, including automata with guards (logical and temporal)
and ports for synchronization (rendez vous and broadcast) with other com-
ponents. RT BIP is not to be confused with the original BIP template used
in (Bensalem et al, 2011) which did not include time information. RT BIP
can be used offline with RT D-Finder (Ben Rayana et al, 2016) to prove some
properties. For this, it automatically extracts invariant, from the automata,
the interactions and the clock’s histories and synthesizes an overapproxima-
tion of the reachable states of the system. It then tries to prove with a SAT
solver that the desired property is satisfied in it. More interestingly, it can
also be used online, and then use the RT BIP Engine (Socci et al, 2013)
to run the model itself, linked with the codels, and enforce the properties at
runtime. This runtime verification can also be augmented with more complex
properties the roboticist may want to enforce.

6.2 UPPAAL and UPPAAL-SMC

UPPAAL is an integrated tool environment9 for modeling, validation and
verification of real-time systems modeled as networks of timed automata, ex-
tended with data types. Unlike BIP, it uses model checking to verify simpli-
fied TCTL (timed computation tree logic) properties in the modelled systems.
The latest UPPAAL version (UPPAAL-SMC10) addresses the state explosion
limit by offering a Statistical Model Checking extension. The timed automata
can then be enriched with transition frequencies to perform sampling of the
reachable states consistent with the transition frequencies. The properties are
then proven with a confidence which is the ratio of state in which they are
true over all the sampled states.

8 http://www-verimag.imag.fr/RSD-Tools.html
9 http://www.uppaal.org/
10 http://people.cs.aau.dk/∼adavid/smc/

http://www-verimag.imag.fr/RSD-Tools.html
http://www.uppaal.org/
http://people.cs.aau.dk/~adavid/smc/

Verification of Autonomous Robots 21

6.3 FIACRE

FIACRE11 is a formal language12 for specifying concurrent and real-time
systems also based on automata (behavior), ports and transitions, which
can be guarded and sensitized over a time interval (similar to time Petri
nets). The semantics is different from the timed automata used in BIP and
UPPAAL. FIACRE provides a rich model to represent behavior and timing
aspects of concurrent systems, using complex types, functions and externals.
The produced model can then be analyzed with a model checking tool (see
the TINA (TIme petri Nets Analyzer) toolbox13), but can also be deployed
and executed using the Hippo model execution engine.

Table 1 sums up the various formal frameworks for which Gen
oM templates

are available, and the corresponding tools used. The resulting formal models
are automatically synthesized for the experiment, such as the one presented in
Fig. 4. The offline versions abstract codels with their WCET, and are enriched
with a client model (specific or generic) that specifies the sequence of requests
to execute. The resulting model is then fed to the respective V&V tools (see
some results in (Foughali, 2018)). The online versions (RT-BIP Engine and
FIACRE-Hippo), provide an API to allow for: asynchronous external events
handling to receive requests from the real clients; codels execution in separate
threads, and reporting results to the clients. So the online versions run the real
components (in place e.g. of the Pocolibs implementation of the component),
we will show that with some added properties, these online versions perform
runtime verification.

Formal Frameworks Offline
Online PocoLibs

(Herrb, 1992)

Online ROS-Comm

(Quigley et al
2009)

RT BIP

(Socci et al, 2013)

RT D-Finder
(Ben Rayana et al

2016)

RT BIP Engine
(Abdellatif et al

2010)

RT BIP Engine

FIACRE
(Berthomieu et al, 2008)

Tina
(Dal Zilio et al, 2015)

Hippo(Hladik, 2020) Hippo

UPPAAL

(Behrmann et al, 2006)
OK NA NA

UPPAAL-SMC

(David et al, 2015)
OK NA NA

Table 1 Existing formal framework templates for GenoM.

11 “Format Intermédiaire pour les Architectures de Composants Répartis Embarqués”,
french for ”Intermediate Format for Embedded Distributed Component Architectures”.
12 http://projects.laas.fr/fiacre/
13 http://projects.laas.fr/tina/

http://projects.laas.fr/fiacre/
http://projects.laas.fr/tina/

22 Félix Ingrand

Writing these templates is tedious. It requires a very good knowledge of
the Gen

oM specification and implementation, and of course a good knowledge
of the formal frameworks used. But an interesting side effect, is that writing
the formal version of a synthesized implementation (e.g. the Pocolibs imple-
mentation of the module) requires to also clarify the specification and the
implementation when they are subject to ambiguities.

We shall now examine how the synthesized formal models for the Minnie
experiment can be used to provide the Minnie Gen

oM module programmers
with more confidence and proof of what the robot is doing.

7 Putting These Formal Models To Use

The three frameworks presented in the previous section have been deployed
and tested online and offline with the Minnie experiment.

7.1 Online runtime verification with BIP

The BIP model of the Minnie experiment (Section 5) is 27k lines long and
is linked to all the codels of the experiment. It handles requests, reports and
ports exactly like the regular Gen

oM modules. Thus the BIP Engine can run
the whole experiment, in place of the regular Gen

oM module implementation,
but also check and enforce properties. Thus it will check that the tasks speci-
fied periods are respected, but it can also check more complex properties. For
example, we may want to stop the robot when the point cloud port has not
been properly published. For this type of temporal properties, we can add a
monitor (Listing 4) such that:

• the scan() BIP port will be connected to the GetOneScanEnd codel (List-
ing 3, line 23) termination (which corresponds to the writing of the point
cloud Gen

oM port)
• the report() BIP port will be connected to the BIP model of the Track

service of the rmp440 modules, and force a transition to the stop state, of
this automaton which makes an emergency stop of the robot (i.e. putting
both linear and angular speed to 0).

To test this scenario, we introduced a SetDelay service in velodyne that
artificially delays the execution of the GetOneScanEnd codel, and indeed, after
two seconds, one can see the robot make an emergency stop.14

Running the BIP Engine, in the Minnie experiment, incurs a 15% increase
in the CPU load, which remains acceptable considering the added safety. The

14 BIP Engine traces and videos are available at this url https://redmine.laas.fr/
projects/minnie/gollum/index which demonstrate the expected behavior.

https://redmine.laas.fr/projects/minnie/gollum/index
https://redmine.laas.fr/projects/minnie/gollum/index

Verification of Autonomous Robots 23

atom type monitor_timeout()

clock c unit millisecond
export port Port scan()
export port Port report()

place idle, busy // Automata state

initial to idle //Initial state

on scan
from idle to busy
do {c = 0;} // reset clock

on scan // scan interact, we stay in
from busy to busy // busy state
provided (c <= 2000) // providing it took less than 2 sec
do {printf("monitor_timeout <= 2000.\n"); c = 0;} // reset clock

on report // report interact
from busy to idle // when in busy (transit to idle)
provided (c > 2000) // if it took more than 2 sec
do { printf("monitor_timeout > 2000.\n");}

end

Listing 4 A BIP monitor atom type

offline version of this model has also been tested and run with RT-DFinder,
but did not bring any noticeable results.

7.2 Offline verification with UPPAAL

The synthesized UPPAAL model for the whole Minnie experiment is 9k lines.
This model can be used for offline verification, but we need to add a “client”
model, which represents the overall procedure, including the initialization
sequence, of request to start and then run the experiment. Indeed, in robotics
applications, initialization sequence are rather critical: many subsystems need
to start at once, race conditions and deadlock are to be avoided. Such a
“client” model is also written in UPPAAL, translated from the regular TCL
script used to run the experiment. We can then check offline than no port
is ever read before it has been written at least once. The UPPAAL property
for the Pose port is:

A� (not port_reading[Pose] or port_inited[Pose])

24 Félix Ingrand

Then it is just a matter of making a conjunction for all the ports. If the
UPPAAL model checker finds this formula false, it will report the sequence
which led to this state.

In fact, this very property was initially false because of a race condition in
the initialization sequence of the robot where the Navigation module may
have tried to navigate before the first pose position of the robot had been
produced by the POM module.

7.3 Offline and online verification with FIACRE

The FIACRE model of the Minnie experiment is around 34k lines and in-
cludes the nine modules, 13 execution tasks, and 38 activity services calling
170 codels. It is the most detailed formal model we have and provides an
execution fully equivalent to the regular Gen

oM version15. The big advantage
of this model, is that it is exactly the same used offline with the TINA tools
and online with the Hippo runtime execution engine. The differences between
the two versions are minimal:

• The codel returned values, which define the next state in the activity
automata, in the model executed online are replaced with nondeterministic
“select” choices in the model used offline.

• Real code execution time in hippo (dispatched in a separate thread) is
handled with transitions over the time interval of [0, wcet] in the offline
version

• We use external ports in the online version to receive requests from the
client, while the offline version deploys a generic or specific FIACRE pro-
cess to produce them and get reports.

In fact, the Gen
oM template16 that produces the formal model is the same,

there is just a flag to pass at synthesis time to select which version to produce
(online or offline).

As a result, we are able to show properties similar to the ones we have
shown in UPPAAL, even if the two approaches use two different time pre-
sentations (timed automata and global clock, versus local clocked guard and
sensibilisation). Listing 5 shows the code to check for Uninitialized Port Read
in Fiacre with Hippo; at runtime an error can be reported when the UPR
state is reached. A similar version (without start/sync) can be used offline
searching if there is a path leading to UPR.

15 Without going into the detail, the BIP and UPPAAL models are too abstracted com-

pared to the FIACRE one, they oversimplify the control task part of requests execution
(interrupts, before, after), and do not properly model the interleaving of activities within

one task (activities run completely to ether or pause before the next activity get called).
16 https://redmine.laas.fr/projects/genom3-fiacre-template

https://redmine.laas.fr/projects/genom3-fiacre-template

Verification of Autonomous Robots 25

from Navigation_start
on (navigate_turn = my_index);
if (navigate_activities[my_index].state = Navigation_stop) then

to Navigation_stop
end;
on ((mutex_ports[Pose_port] = no_codel) and /* guard to check both */

(mutex_ports[Target_port] = no_codel)); /* ports are available */
mutex_ports[Pose_port] := SetTargetToPoseStart_port_codel; /* we lock */
mutex_ports[Target_port] := SetTargetToPoseStart_port_codel; /* them */
navigate_running_codel := SetTargetToPoseStart;
if (not write_ports[Pose_port]) then /* Pose has not been written yet */

to UPR /* the UPR state will report the error, */
end; /* and take actions */
/* The codel is called (start) in its own thread */
start Navigation_SetTargetToPose_start(navigate_activities[my_index]);
to Navigation_start_sync

from Navigation_start_sync
/* waiting (sync) for the codel to return */
sync Navigation_SetTargetToPose_start state;
mutex_ports[Pose_port] := no_codel; /* ports are released */
mutex_ports[Target_port] := no_codel;
write_ports[Target_port] := true; /* Target port is marked as written */
navigate_running_codel := 0; /* navigate task has no running codel now

*/
to Navigation_start_dispatch

Listing 5 A FIACRE code snippet handling Uninitialized Port Read of the Pose port by
the SetTargetToPose service from the Navigation module.

Similarly, we can compute the maximum time it takes between a stop
request sent to Navigation and the writing of the zero speed on the robot
HW controller by rmp440 from the Cmd port of SafetyPilot. Given a
proper model of the scheduler, which can also be written in FIACRE, we can
check wether the number of cores on the CPU is sufficient or not (Foughali
et al, 2018). The model includes an overshoot state for each periodic task
and if this state is reached, it means that the task has taken more time than
its specified period. The number of cores available in an experiment can be
considered in the model and one can adjust the value or the period or the
activity services automata, or the codel to change the wcet, to ensure the
schedulability of all the tasks. Note that this property is checked offline (with
WCET and number of core) but also at runtime during the real execution.

So not only are these properties checked offline, but as a result, they are
also true of the same model which executes them in a monitor online with
the Hippo engine. Like BIP, we can write monitors in FIACRE that enforces
more complex properties at runtime.

26 Félix Ingrand

Overall, even if model checking techniques suffer from state-space explo-
sion, the results obtained here on fairly complex robotic experiments are still
encouraging.

All these results are obtained with models automatically synthesized and
with automatic verification tools. One still needs to understand how to ex-
press properties in the corresponding query language (e.g. LTL and patterns
for FIACRE, TCTL for UPPAAL) and how to interpret the results. Still, it is
a big step forward in providing V&V tools to roboticists. To formally validate
the obtained model, the semantics of Gen

oM has been first specified in Timed
Transition Systems and then transformed in Timed Automata with Urgency
and Data (Foughali et al, 2018). Still this is subject to the correctness of
the semantics of Gen

oM in TTS. If there is a flaw in this semantics, the flaw
will also ends up in the verified model. From our roboticist point of view,
having exactly the same model (produced from the same template file) for
execution and offline verification is a much stronger argument for validation
of the model, as it exhibits a behavior at runtime perfectly similar to the reg-
ular Pocolibs implementation. Finally, one should note that all implemented
modules in Gen

oM, get all these equivalent formal models for free, and their
programmer can run the various V&V tools associated to them.

8 Conclusion and Future Work

In the proposed architecture, we distinguish between functional and deci-
sional components. We have seen that some of these components already
provide formal models (§3.3), so for these, future research may focus on ver-
ifying the correctness of the search algorithms deployed. Some rely on DSL
and specific frameworks (§3.6) which could be extended to automatically pro-
vides formal models on which one can perform V&V as we have shown in
Section 4. The Gen

oM formal frameworks templates should not be seen as the
only possible path to infusing V&V in robotics. It is an example, of such a
possible path, and there are numerous robotics frameworks that could do a
similar automatic transformation of their specification towards formal mod-
els. We invite other robotic framework programmers to reach out and look at
the possible formal frameworks they can connect to. Learned models (§3.4)
have already been identified as outliers, so they probably need a “special”
architectural setup for now and until we are satisfied with the confidence we
can put in them. As for components with no model at all (§3.5), there are
tedious solutions, if one cannot deploy them, one should at least consider re-
organizing the code in such a way that it can rely on existing DSL or robotic
frameworks.

On a different topic, the same way AI and robotics have to take into
account human presence and interaction, V&V must also integrate it in the
process. So we need to consider models of human behavior to introduce them

Verification of Autonomous Robots 27

in the V&V process. This can be models of the users of the AS itself (e.g.
passenger of an autonomous car), but also models of people around the AS
(e.g. pedestrian, or drivers of a regular car)(Vicentini et al, 2020). Of course
this adds another layer of variability and expands again the size of the models
to explore, but we should also consider this as an opportunity to “close” the
model and keep the reachable states at a reasonable size.

Another topic which needs to be considered is how these different models
coexist and complete each other when it comes to proving a property of all
the ASS. For example, the link between the different layers and components
must also be verified. If one can rely on “compatible” formalisms between
these layers, the better, as it will ease checking properties which are defined
over more than one layer. The communication and middleware should also be
properly modelled to be part of the V&V process. Shared memory is rather
straightforward to model with locks, but publish and subscribe over XML-
RPC (e.g. in ROS) is a completely different story. One needs to take into
account network latencies, size of the queue, etc. We also need to guarantee
consistency over the various models deployed.

Last, we should keep in mind that specifications, even if they produce
formally equivalent models that can be fed to V&V tools, need to correctly
capture the intents of the system designer. As pointed by (Rozier, 2016)
“there is no escaping the ‘garbage in, garbage out’ reality”. For this prob-
lem, we think that for now, we should rely on good old testing (see in this
book (Gotlieb, 2021, chap. 4), (Eder, 2021, chap. 5)) of the system as to check
that specifications are correct and synthesize the proper formal model.

References

Abdeddaim Y, Asarin E, Gallien M, Ingrand F, Lesire C, Sighireanu M (2007)
Planning Robust Temporal Plans: A Comparison Between CBTP and TGA
Approaches. In: Proceedings of the International Conference on Auto-
mated Planning and Scheduling, URL https://hal.archives-ouvertes.
fr/hal-00157935

Abdellatif T, Combaz J, Sifakis J (2010) Model-Based Implementation of
Real-Time Applications. In: International Conference on Embedded Soft-
ware, URL http://dl.acm.org/citation.cfm?id=1879052

Amodei D, Olah C, Steinhardt J, Christiano P, Schulman J, Mané D (2016)
Concrete Problems in AI Safety. arXivorg URL http://arxiv.org/abs/
1606.06565v2, 1606.06565v2

Argall BD, Chernova S, Veloso MM, Browning B (2009) A survey of
robot learning from demonstration. Robotics and Autonomous Systems
57(5):469–483

Bardaro G, Semprebon A, Matteucci M (2018) A use case in model-based
robot development using AADL and ROS. In: ACM/IEEE Workshop on

https://hal.archives-ouvertes.fr/hal-00157935
https://hal.archives-ouvertes.fr/hal-00157935
http://dl.acm.org/citation.cfm?id=1879052
http://arxiv.org/abs/1606.06565v2
http://arxiv.org/abs/1606.06565v2
1606.06565v2

28 Félix Ingrand

Robotics Software Engineering, ACM Press, New York, New York, USA,
pp 9–16, DOI rm10.1007/978-3-319-10783-7 13, URL http://dl.acm.
org/citation.cfm?doid=3196558.3196560

Behrmann G, David A, Larsen KG (2006) A Tutorial on Uppaal 4.0. Tech.
rep., Department of Computer Science, Aalborg University, Denmark, URL
message:%3CC726A2F8-69CE-4CD4-A5B9-50F9B00C2C74@laas.fr%3E

Ben Rayana S, Bozga M, Bensalem S, Combaz J (2016) RTD-Finder -
A Tool for Compositional Verification of Real-Time Component-Based
Systems. In: TACAS, URL http://link.springer.com/chapter/10.1007/
978-3-662-49674-9 23

Bensalem S, de Silva L, Ingrand F, Yan R (2011) A Verifiable and Correct-by-
Construction Controller for Robot Functional Levels. Journal of Software
Engineering for Robotics 1(2):1–19, URL http://arxiv.org/abs/0908.
0221v1

Bensalem S, Havelund K, Orlandini A (2014) Verification and validation
meet planning and scheduling. International Journal on Software Tools
for Technology Transfer 16(1):1–12, DOI rm10.1007/s10009-013-0294-x,
URL http://link.springer.com/10.1007/s10009-013-0294-x

Benveniste A, Berry G (1991) The synchronous approach to reactive and
real-time systems. Proceedings of the IEEE 79(9):1270–1282

Benveniste A, Caspi P, Edwards S, Halbwachs N, Le Guernic P, de Simone R
(2003) The synchronous languages 12 years later. Proceedings of the IEEE
URL https://dblp.org/rec/journals/pieee/BenvenisteCEHGS03

Berthomieu B, Diaz M (1991) Modeling and Verification of Time-Dependent
Systems Using Time Petri Nets. Ieee Transactions on Software En-
gineering 17(3):259–273, URL http://gateway.webofknowledge.com/
gateway/Gateway.cgi?GWVersion=2&SrcAuth=mekentosj&SrcApp=Papers&
DestLinkType=FullRecord&DestApp=WOS&KeyUT=A1991FE66100005

Berthomieu B, Bodeveix JP, Farail P, Filali M, Garavel H, Gaufillet P, Lang
F, Vernadat F (2008) Fiacre: an Intermediate Language for Model Verifi-
cation in the Topcased Environment. In: Embedded Real-Time Software
and Systems, HAL - CCSD, Toulouse, URL http://hal.inria.fr/docs/
00/26/24/42/PDF/Berthomieu-Bodeveix-Farail-et-al-08.pdf

Bjørner D, Havelund K (2014) 40 Years of Formal Methods - Some Ob-
stacles and Some Possibilities? FM URL https://dblp.org/rec/conf/fm/
BjornerH14

Bohren J, Cousins S (2010) The SMACH High-Level Executive. IEEE
Robotics and Automation Magazine 17(4):18–20, DOI rm10.1109/
MRA.2010.938836, URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=5663871

Boussinot F, de Simone R (1991) The ESTEREL Language. In: Proceeding
of the IEEE, pp 1293–1304

Brugali D (2015) Model-Driven Software Engineering in Robotics. IEEE
Robotics and Automation Magazine 22(3):155–166, DOI rm10.1109/

http://dl.acm.org/citation.cfm?doid=3196558.3196560
http://dl.acm.org/citation.cfm?doid=3196558.3196560
message:%3CC726A2F8-69CE-4CD4-A5B9-50F9B00C2C74@laas.fr%3E
http://link.springer.com/chapter/10.1007/978-3-662-49674-9_23
http://link.springer.com/chapter/10.1007/978-3-662-49674-9_23
http://arxiv.org/abs/0908.0221v1
http://arxiv.org/abs/0908.0221v1
http://link.springer.com/10.1007/s10009-013-0294-x
https://dblp.org/rec/journals/pieee/BenvenisteCEHGS03
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=mekentosj&SrcApp=Papers&DestLinkType=FullRecord&DestApp=WOS&KeyUT=A1991FE66100005
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=mekentosj&SrcApp=Papers&DestLinkType=FullRecord&DestApp=WOS&KeyUT=A1991FE66100005
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=mekentosj&SrcApp=Papers&DestLinkType=FullRecord&DestApp=WOS&KeyUT=A1991FE66100005
http://hal.inria.fr/docs/00/26/24/42/PDF/Berthomieu-Bodeveix-Farail-et-al-08.pdf
http://hal.inria.fr/docs/00/26/24/42/PDF/Berthomieu-Bodeveix-Farail-et-al-08.pdf
https://dblp.org/rec/conf/fm/BjornerH14
https://dblp.org/rec/conf/fm/BjornerH14
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5663871
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5663871

Verification of Autonomous Robots 29

MRA.2015.2452201, URL http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=7254324

Brugali D (2021) Managing software variability for dynamic reconfiguration
of robot control systems. In: Software Engineering for Robotics, Springer,
URL https://doi.org/10.1007/978-3-030-66494-7

Brunner SG, Steinmetz F, Belder R, Domel A (2016) RAFCON: A graph-
ical tool for engineering complex, robotic tasks. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IEEE, pp 3283–3290,
DOI rm10.1109/IROS.2016.7759506, URL http://ieeexplore.ieee.org/
document/7759506/

Bruyninckx H (2001) Open Robot Control Software: The OROCOS Project.
In: IEEE International Conference on Robotics and Automation

Cassez F, Pagetti C, Roux OH (2004) A Timed Extension for ALTARICA.
Fundam Inform URL https://dblp.org/rec/journals/fuin/CassezPR04

Cavalcanti A (2017) Formal Methods for Robotics: RoboChart, RoboSim,
and More. In: Formal Methods: Foundations and Applications, Springer In-
ternational Publishing, Cham, pp 3–6, DOI rm10.1145/1592434.1592436,
URL http://link.springer.com/10.1007/978-3-319-70848-5 1

Cavalcanti A (2021) RoboStar technology - a roboticist’s toolbox for com-
bined proof and sound simulation. In: Software Engineering for Robotics,
Springer, URL https://doi.org/10.1007/978-3-030-66494-7

Cicala G, Khalili A, Metta G, Natale L, Pathak S, Pulina L, Tacchella
A (2016) Engineering approaches and methods to verify software in
autonomous systems. In: International Conference on Intelligent Au-
tonomous Systems, URL http://link.springer.com/chapter/10.1007/
978-3-319-08338-4 121

Claßen J, Röger G, Lakemeyer G, Nebel B (2012) Platas—Integrating
Planning and the Action Language Golog. KI-Künstliche Intelli-
genz 26(1):61–67, URL http://link.springer.com/article/10.1007/
s13218-011-0155-2

Come D, Brunel J, Doose D (2018) Improving Code Quality in ROS Packages
Using a Temporal Extension of First-Order Logic. In: IEEE International
Conference on Robotic Computing, IEEE, pp 1–8, DOI rm10.1109/IRC.
2018.00010, URL http://ieeexplore.ieee.org/document/8329874/

Costelha H, Lima PU (2012) Robot task plan representation by Petri nets:
modelling, identification, analysis and execution. Autonomous Robots
33(4):337–360, DOI rm10.1142/3376, URL http://link.springer.com/
10.1007/s10514-012-9288-x

Dal Zilio S, Berthomieu B, Le Botlan D (2015) Latency Analysis of an Aerial
Video Tracking System Using Fiacre and Tina. In: FMTV verification chal-
lenge of WATERS 2015, LAAS-VERTICS, URL http://arxiv.org/abs/
1509.06506v1

David A, Larsen KG, Legay A, Mikučionis M, Poulsen DB (2015) UP-
PAAL SMC tutorial. International Journal on Software Tools for Technol-

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7254324
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7254324
https://doi.org/10.1007/978-3-030-66494-7
http://ieeexplore.ieee.org/document/7759506/
http://ieeexplore.ieee.org/document/7759506/
https://dblp.org/rec/journals/fuin/CassezPR04
http://link.springer.com/10.1007/978-3-319-70848-5_1
https://doi.org/10.1007/978-3-030-66494-7
http://link.springer.com/chapter/10.1007/978-3-319-08338-4_121
http://link.springer.com/chapter/10.1007/978-3-319-08338-4_121
http://link.springer.com/article/10.1007/s13218-011-0155-2
http://link.springer.com/article/10.1007/s13218-011-0155-2
http://ieeexplore.ieee.org/document/8329874/
http://link.springer.com/10.1007/s10514-012-9288-x
http://link.springer.com/10.1007/s10514-012-9288-x
http://arxiv.org/abs/1509.06506v1
http://arxiv.org/abs/1509.06506v1

30 Félix Ingrand

ogy Transfer pp 1–19, DOI rm10.1007/s10009-014-0361-y, URL http:
//dx.doi.org/10.1007/s10009-014-0361-y

Desai A, Dreossi T, Seshia SA (2017) Combining Model Checking and Run-
time Verification for Safe Robotics. RV URL https://dblp.org/rec/conf/
rv/DesaiDS17

Dhouib S, Kchir S, Stinckwich S, Ziadi T, Ziane M (2012) RobotML, a
Domain-Specific Language to Design, Simulate and Deploy Robotic Ap-
plications. In: IEEE International Conference on Simulation, Modeling,
and Programming for Autonomous Robots, URL http://link.springer.
com/chapter/10.1007/978-3-642-34327-8 16

Doose D, Grand C, Lesire C (2017) MAUVE Runtime: A Component-
Based Middleware to Reconfigure Software Architectures in Real-Time.
In: IEEE International Conference on Robotic Computing, IEEE, pp 208–
211, DOI rm10.1109/IRC.2017.47, URL http://ieeexplore.ieee.org/
document/7926540/

D’Silva V, Kroening D, Weissenbacher G (2008) A Survey of Auto-
mated Techniques for Formal Software Verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 27(7):1165–
1178, DOI rm10.1109/TCAD.2008.923410, URL http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=4544862

Eder K (2021) Gaining confidence in the correctness of robotic and au-
tonomous systems. In: Software Engineering for Robotics, Springer, URL
https://doi.org/10.1007/978-3-030-66494-7

Espiau B, Kapellos K, Jourdan M (1996) Formal verification in
robotics: Why and how? In: International Symposium on Robotics Re-
search, URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.54.3091&rep=rep1&type=pdf

Feth P, Akram MN, Schuster R, Wasenmüller O (2018) Dynamic Risk Assess-
ment for Vehicles of Higher Automation Levels by Deep Learning. arXivorg
URL http://arxiv.org/abs/1806.07635v1, 1806.07635v1

Fisher M (2021) Verifiable autonomy and responsible robotics. In: Soft-
ware Engineering for Robotics, Springer, URL https://doi.org/10.1007/
978-3-030-66494-7

Foughali M (2018) Formal Verification of the Functional Layer of Robotic
and Autonomous Systems. PhD thesis, LAAS/CNRS

Foughali M, Berthomieu B, Dal Zilio S, Hladik PE, Ingrand F, Mallet
A (2018) Formal verification of complex robotic systems on resource-
constrained platforms. In: FormaliSE @ The International Conference on
Software Engineering ICSE, ACM Press, New York, New York, USA, pp 2–
9, DOI rm10.1016/S1571-0661(05)80435-9, URL https://hal.laas.fr/
hal-01778960

Gobillot N, Guet F, Doose D, Grand C, Lesire C, Santinelli L
(2016) Measurement-based real-time analysis of robotic software ar-
chitectures. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE, pp 3306–3311, DOI rm10.1109/IROS.2016.

http://dx.doi.org/10.1007/s10009-014-0361-y
http://dx.doi.org/10.1007/s10009-014-0361-y
https://dblp.org/rec/conf/rv/DesaiDS17
https://dblp.org/rec/conf/rv/DesaiDS17
http://link.springer.com/chapter/10.1007/978-3-642-34327-8_16
http://link.springer.com/chapter/10.1007/978-3-642-34327-8_16
http://ieeexplore.ieee.org/document/7926540/
http://ieeexplore.ieee.org/document/7926540/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4544862
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4544862
https://doi.org/10.1007/978-3-030-66494-7
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.3091&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.54.3091&rep=rep1&type=pdf
http://arxiv.org/abs/1806.07635v1
1806.07635v1
https://doi.org/10.1007/978-3-030-66494-7
https://doi.org/10.1007/978-3-030-66494-7
https://hal.laas.fr/hal-01778960
https://hal.laas.fr/hal-01778960

Verification of Autonomous Robots 31

7759509, URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
tp=&arnumber=7759509&contentType=Conference+Publications

Gotlieb A (2021) Testing robotic systems: A new battlefield! In: Soft-
ware Engineering for Robotics, Springer, URL https://doi.org/10.1007/
978-3-030-66494-7

Guerra M, Efimov D, Zheng G, Perruquetti W (2016) Avoiding local minima
in the potential field method using input-to-state stability. Control Engi-
neering Practice 55(C):174–184, DOI rm10.1016/j.conengprac.2016.07.
008, URL http://dx.doi.org/10.1016/j.conengprac.2016.07.008

Guiochet J, Machin M, Waeselynck H (2017) Safety-critical advanced
robots: A survey. Robotics and Autonomous Systems URL http://www.
sciencedirect.com/science/article/pii/S0921889016300768

Hähnel D, Burgard W, Lakemeyer G (1998) GOLEX—bridging the gap be-
tween logic (GOLOG) and a real robot. In: KI Advances in Artificial In-
telligence, Springer, pp 165–176

Halder R, Proença J, Macedo N, Santos A (2017) Formal Verification of
ROS-Based Robotic Applications Using Timed-Automata. In: IEEE/ACM
International FME Workshop on Formal Methods in Software Engineering
(FormaliSE), URL https://dblp.org/rec/conf/icse/HalderPMS17

Herrb M (1992) Pocolibs: POsix COmmunication LIbrary. Tech. rep., LAAS-
CNRS, URL https://git.openrobots.org/projects/pocolibs/gollum/
index

Hierons R (2021) Systematic automated testing of robotic systems based
on formal models. In: Software Engineering for Robotics, Springer, URL
https://doi.org/10.1007/978-3-030-66494-7

Hladik PE (2020) Hippo. Tech. rep., LAAS-CNRS, URL https://redmine.
laas.fr/projects/genom3-fiacre-template/gollum/hippo

Huang J, Erdogan C, Zhang Y, Moore B, Luo Q, Sundaresan A, Rosu G
(2014) ROSRV: Runtime verification for robots. In: Runtime Verification,
URL http://link.springer.com/chapter/10.1007/978-3-319-11164-3
20

Infantes G, Ghallab M, Ingrand F (2010) Learning the behavior model of a
robot. Autonomous Robots pp 1–21, URL https://homepages.laas.fr/
felix/publis-pdf/arj10.pdf

Ingrand F, Ghallab M (2017) Deliberation for autonomous robots: A survey.
Artificial Intelligence 247:10–44, DOI rm10.1016/j.artint.2014.11.003,
URL http://dx.doi.org/10.1016/j.artint.2014.11.003

Kai A, Hölldobler K, Rumpe B, Wortmann A (2017) Modeling Robotics
Software Architectures with Modular Model Transformations. Journal of
Software Engineering for Robotics 8(1):3–16, DOI rm10.6092/JOSER, URL
https://www.google.com/

Kober J, Bagnell JA, Peters J (2013) Reinforcement Learning in Robotics:
A Survey. International Journal of Robotics Research DOI rm10.1177/
0278364913495721, URL http://ijr.sagepub.com/content/early/2013/
08/22/0278364913495721.abstract

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7759509&contentType=Conference+Publications
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=7759509&contentType=Conference+Publications
https://doi.org/10.1007/978-3-030-66494-7
https://doi.org/10.1007/978-3-030-66494-7
http://dx.doi.org/10.1016/j.conengprac.2016.07.008
http://www.sciencedirect.com/science/article/pii/S0921889016300768
http://www.sciencedirect.com/science/article/pii/S0921889016300768
https://dblp.org/rec/conf/icse/HalderPMS17
https://git.openrobots.org/projects/pocolibs/gollum/index
https://git.openrobots.org/projects/pocolibs/gollum/index
https://doi.org/10.1007/978-3-030-66494-7
https://redmine.laas.fr/projects/genom3-fiacre-template/gollum/hippo
https://redmine.laas.fr/projects/genom3-fiacre-template/gollum/hippo
http://link.springer.com/chapter/10.1007/978-3-319-11164-3_20
http://link.springer.com/chapter/10.1007/978-3-319-11164-3_20
https://homepages.laas.fr/felix/publis-pdf/arj10.pdf
https://homepages.laas.fr/felix/publis-pdf/arj10.pdf
http://dx.doi.org/10.1016/j.artint.2014.11.003
https://www.google.com/
http://ijr.sagepub.com/content/early/2013/08/22/0278364913495721.abstract
http://ijr.sagepub.com/content/early/2013/08/22/0278364913495721.abstract

32 Félix Ingrand

Koopman P, Wagner M (2016) Challenges in Autonomous Vehicle Test-
ing and Validation. SAE International Journal of Transportation Safety
4(1):15–24, DOI rm10.4271/2016-01-0128, URL http://papers.sae.
org/2016-01-0128/

Kortenkamp D, Simmons RG (2008) Robotic Systems Architectures and Pro-
gramming. In: Siciliano B, Khatib O (eds) Handbook of Robotics, Springer,
pp 187–206

Kress-Gazit H, Wongpiromsarn T, Topcu U (2011) Correct, Reactive, High-
Level Robot Control. IEEE Robotics and Automation Magazine 18(3):65–
74, DOI rm10.1109/MRA.2011.942116, URL http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=6016593

Lesire C, Pommereau F (2018) ASPiC: an Acting system based on Skill Petri
net Composition. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp 1–7

Levesque HJ, Reiter R, Lesperance Y, Lin F, Scherl RB (1997) GOLOG:
A logic programming language for dynamic domains. The Journal of
Logic Programming 31(1):59–83, URL http://www.sciencedirect.com/
science/article/pii/S0743106696001215

Li W, Miyazawa A, Ribeiro P, Cavalcanti A, Woodcock J, Timmis J (2018)
From Formalised State Machines to Implementations of Robotic Con-
trollers . In: Distributed Autonomous Robotic Systems, pp 1–14, URL
https://scholar.google.com/

Lotz A, Hamann A, Lütkebohle I, Stampfer D (2016) Modeling
Non-Functional Application Domain Constraints for Component-Based
Robotics Software Systems. arXivorg URL http://arxiv.org/abs/1601.
02379, related:kK103Nsy7GYJ

Luckcuck M, Farrell M, Dennis L, Dixon C, Fisher M (2018) Formal Specifica-
tion and Verification of Autonomous Robotic Systems: A Survey. arXivorg
URL http://arxiv.org/abs/1807.00048v1, 1807.00048v1

Mallet A, Pasteur C, Herrb M, Lemaignan S, Ingrand F (2010) GenoM3:
Building middleware-independent robotic components. In: IEEE Interna-
tional Conference on Robotics and Automation, pp 4627–4632, DOI rm10.
1109/ROBOT.2010.5509539, URL http://ieeexplore.ieee.org/xpls/abs
all.jsp?arnumber=5509539

Meng W, Park J, Sokolsky O, Weirich S, Lee I (2015) Verified ROS-Based
Deployment of Platform-Independent Control Systems. In: NASA formal
methods, Springer International Publishing, Cham, pp 248–262, DOI
rm10.1007/978-3-319-17524-9 18, URL http://link.springer.com/10.
1007/978-3-319-17524-9 18

Miyazawa A, Ribeiro P, Li W, Cavalcanti A, Timmis J (2017) Automatic
property checking of robotic applications. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems, URL http://dblp.org/
rec/conf/iros/Miyazawa0LCT17

Mühlbacher C, Gspandl S, Reip M, Steinbauer G (2016) Improving De-
pendability of Industrial Transport Robots Using Model-Based Tech-

http://papers.sae.org/2016-01-0128/
http://papers.sae.org/2016-01-0128/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6016593
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6016593
http://www.sciencedirect.com/science/article/pii/S0743106696001215
http://www.sciencedirect.com/science/article/pii/S0743106696001215
https://scholar.google.com/
http://arxiv.org/abs/1601.02379
http://arxiv.org/abs/1601.02379
related:kK103Nsy7GYJ
http://arxiv.org/abs/1807.00048v1
1807.00048v1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5509539
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5509539
http://link.springer.com/10.1007/978-3-319-17524-9_18
http://link.springer.com/10.1007/978-3-319-17524-9_18
http://dblp.org/rec/conf/iros/Miyazawa0LCT17
http://dblp.org/rec/conf/iros/Miyazawa0LCT17

Verification of Autonomous Robots 33

niques. In: IEEE International Conference on Robotics and Automa-
tion, pp 3133–3140, DOI rm10.1109/ICRA.2016.7487480, URL http://
ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=7487480

Nordmann A, Hochgeschwender N, Wigand D, Wrede S (2016) A Survey on
Domain-Specific Modeling and Languages in Robotics. Journal of Software
Engineering for Robotics 7(1):1–25, URL https://scholar.google.com/

Pelliccione P (2021) Making robots usable in everyday life. In: Soft-
ware Engineering for Robotics, Springer, URL https://doi.org/10.1007/
978-3-030-66494-7

Quigley M, Gerkey B, Conley K, Faust J, Foote T, Leibs J, Berger E, Wheeler
R, Ng AY (2009) ROS: an open-source Robot Operating System. In: IEEE
International Conference on Robotics and Automation

Ribeiro P, Miyazawa A, Li W, Cavalcanti A, Timmis J (2017) Modelling
and Verification of Timed Robotic Controllers. In: International Confer-
ence on Integrated Formal Methods, URL http://dblp.org/rec/conf/
ifm/0002MLCT17

Rozier KY (2016) Specification - The Biggest Bottleneck in Formal Methods
and Autonomy. In: Verified Software: Theories, Tools, and Experiments,
DOI rm10.1007/978-3-319-48869-1, URL http://link.springer.com/
chapter/10.1007/978-3-319-48869-1 2

Schlegel C (2021) Composition, separation of roles and model-driven ap-
proaches as enabler of a robotics software ecosystem. In: Software
Engineering for Robotics, Springer, URL https://doi.org/10.1007/
978-3-030-66494-7

Schlegel C, Hassler T, Lotz A, Steck A (2009) Robotic software systems:
From code-driven to model-driven designs. In: International Conference on
Advanced Robotics, IEEE, pp 1–8, URL http://ieeexplore.ieee.org/
xpls/abs all.jsp?arnumber=5174736

Seshia SA, Sadigh D, Sastry SS (2016) Towards Verified Artificial Intelligence.
arXivorg URL http://arxiv.org/abs/1606.08514v3, 1606.08514v3

Simmons RG, Pecheur C (2000) Automating Model Checking for Au-
tonomous Systems. In: AAAI Spring Symposium on Real-Time Au-
tonomous Systems

Simon D, Pissard-Gibollet R, Arias S (2006) ORCCAD, a framework for
safe robot control design and implementation. In: Control Architecture for
Robots, URL https://hal.inria.fr/inria-00385258

Socci D, Poplavko P, Bensalem S, Bozga M (2013) Modeling Mixed-critical
Systems in Real-time BIP. In: 1st workshop on Real-Time Mixed Criticality
Systems, URL https://hal.archives-ouvertes.fr/hal-00867465/

Sorin A, Morten L, Kjeld J, Schultz UP (2016) Rule-based Dynamic
Safety Monitoring for Mobile Robots. Journal Of Software Engineering
In Robotics 7(1):120–141, URL https://scholar.google.fr/

Sotiropoulos T, Waeselynck H, Guiochet J, Ingrand F (2017) Can Robot Nav-
igation Bugs Be Found in Simulation? An Exploratory Study. In: IEEE In-

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7487480
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7487480
https://scholar.google.com/
https://doi.org/10.1007/978-3-030-66494-7
https://doi.org/10.1007/978-3-030-66494-7
http://dblp.org/rec/conf/ifm/0002MLCT17
http://dblp.org/rec/conf/ifm/0002MLCT17
http://link.springer.com/chapter/10.1007/978-3-319-48869-1_2
http://link.springer.com/chapter/10.1007/978-3-319-48869-1_2
https://doi.org/10.1007/978-3-030-66494-7
https://doi.org/10.1007/978-3-030-66494-7
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5174736
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5174736
http://arxiv.org/abs/1606.08514v3
1606.08514v3
https://hal.inria.fr/inria-00385258
https://hal.archives-ouvertes.fr/hal-00867465/
https://scholar.google.fr/

34 Félix Ingrand

ternational Conference on Software Quality, Reliability and Security, URL
https://dblp.org/rec/conf/qrs/SotiropoulosWGI17

Täubig H, Frese U, Hertzberg C, Lüth C, Mohr S, Vorobev E, Wal-
ter D (2011) Guaranteeing functional safety: design for provability
and computer-aided verification. Autonomous Robots 32(3):303–331,
DOI rm10.1007/s10514-011-9271-y, URL http://www.springerlink.
com/index/10.1007/s10514-011-9271-y

Tomlin CJ, Mitchell I, Bayen AM, Oishi M (2003) Computational techniques
for the verification of hybrid systems. Proceedings of the IEEE 91(7):986–
1001, DOI rm10.1109/JPROC.2003.814621, URL http://ieeexplore.
ieee.org/document/1215682/

Verma V, Jónsson AK, Pasareanu C, Iatauro M (2006) Universal executive
and PLEXIL: engine and language for robust spacecraft control and op-
erations. In: American Institute of Aeronautics and Astronautics Space,
AIAA Space Conference, URL http://scholar.google.com/scholar?q=
related:IpQ407u5 qsJ:scholar.google.com/&hl=en&num=20&as sdt=0,5

Vicentini F, Askarpour M, Rossi MG, Mandrioli D (2020) Safety Assessment
of Collaborative Robotics Through Automated Formal Verification. IEEE
Transactions on Robotics 36(1):42–61, DOI rm10.1109/TRO.2019.2937471,
URL https://ieeexplore.ieee.org/document/8844289/

Williams BC, Ingham MD (2003) Model-based Programming of Intelligent
Embedded Systems and Robotic Space Explorers. Proc of the IEEE: Spe-
cial Issue on Modeling and Design of Embedded Software 91(1):212–237

Wong KW, Kress-Gazit H (2017) Robot Operating System (ROS) Intro-
spective Implementation of High-Level Task Controllers. Journal of Soft-
ware Engineering for Robotics 8(1):1–13, DOI rm10.6092/JOSER, URL
http://joser.unibg.it/index.php/joser/issue/view/9

Woodcock J (2021) Modelling uncertainty in RoboChart using probability.
In: Software Engineering for Robotics, Springer, URL https://doi.org/
10.1007/978-3-030-66494-7

Woodcock J, Larsen PG, Bicarregui J, Fitzgerald JS (2009) Formal methods
- Practice and experience. ACM computing surveys 41(4), URL https:
//dblp.org/rec/journals/csur/WoodcockLBF09

Yakymets N, Dhouib S, Jaber H, Lanusse A (2013) Model-driven safety as-
sessment of robotic systems. In: IEEE/RSJ International Conference on In-
telligent Robots and Systems, IEEE, pp 1137–1142, DOI rm10.1109/IROS.
2013.6696493, URL http://ieeexplore.ieee.org/xpl/articleDetails.
jsp?tp=&arnumber=6696493&contentType=Conference+Publications

https://dblp.org/rec/conf/qrs/SotiropoulosWGI17
http://www.springerlink.com/index/10.1007/s10514-011-9271-y
http://www.springerlink.com/index/10.1007/s10514-011-9271-y
http://ieeexplore.ieee.org/document/1215682/
http://ieeexplore.ieee.org/document/1215682/
http://scholar.google.com/scholar?q=related:IpQ407u5_qsJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
http://scholar.google.com/scholar?q=related:IpQ407u5_qsJ:scholar.google.com/&hl=en&num=20&as_sdt=0,5
https://ieeexplore.ieee.org/document/8844289/
http://joser.unibg.it/index.php/joser/issue/view/9
https://doi.org/10.1007/978-3-030-66494-7
https://doi.org/10.1007/978-3-030-66494-7
https://dblp.org/rec/journals/csur/WoodcockLBF09
https://dblp.org/rec/journals/csur/WoodcockLBF09
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6696493&contentType=Conference+Publications
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6696493&contentType=Conference+Publications

	Verification of Autonomous Robots:A Roboticist's Bottom-Up Approach
	Félix Ingrand
	Introduction
	Formal Models and V&V
	Models and Methods
	V&V Approaches

	Autonomous System Software and Formal Models
	Software Architecture
	Directly Programming with Formal Models
	``Hidden'' Formal Models
	Learned Models
	No Model
	Some ``Specification'' Models
	Discussion

	The G0Tto0enoM tool
	G0Tto0enoM Specification
	G0Tto0enoM Templates

	Not A Toy Example
	Synthesized BIP, FIACRE, UPPAAL formal models
	RT BIP
	UPPAAL and UPPAAL-SMC
	FIACRE

	Putting These Formal Models To Use
	Online runtime verification with BIP
	Offline verification with UPPAAL
	Offline and online verification with FIACRE

	Conclusion and Future Work
	References
	References

