E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer et al., Software-defined networking (sdn): Layers and architecture terminology, Tech. Rep, 2015.

X. Yang, B. Han, Z. Sun, and J. Huang, Sdn-based ddos attack detection with cross-plane collaboration and lightweight flow monitoring, GLOBECOM 2017-2017 IEEE Global Communications Conference, pp.1-6, 2017.

N. Feamster and J. Rexford, Why (and how) networks should run themselves, 2017.

P. Kalmbach, J. Zerwas, P. Babarczi, A. Blenk, W. Kellerer et al., Empowering self-driving networks, Proceedings of the Afternoon Workshop on Self-Driving Networks, pp.8-14, 2018.

P. Tsai, C. Tsai, C. Hsu, and C. Yang, Network monitoring in software-defined networking: A review, IEEE Systems Journal, 2018.

G. Tangari, D. Tuncer, M. Charalambides, Y. Qi, and G. Pavlou, Selfadaptive decentralized monitoring in software-defined networks, IEEE Transactions on Network and Service Management, vol.15, issue.4, pp.1277-1291, 2018.

S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, and V. Stankovski, Monitoring self-adaptive applications within edge computing frameworks: A state-of-the-art review, Journal of Systems and Software, vol.136, pp.19-38, 2018.

. Onf-tr-521, Sdn architecture, 2016.

. Onf-tr-516, Framework for sdn: Scope and requirements, version 1.0, 2015.

O. S. Version, , 2014.

. Onf-tr-502, Sdn architecture, 2014.

S. Schaller and D. Hood, Software defined networking architecture standardization, Computer Standards & Interfaces, vol.54, pp.197-202, 2017.

R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar et al., A comprehensive survey on machine learning for networking: evolution, applications and research opportunities, Journal of Internet Services and Applications, vol.9, issue.1, p.16, 2018.

J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu et al., A survey of machine learning techniques applied to software defined networking (sdn): Research issues and challenges, IEEE Communications Surveys & Tutorials, 2018.

D. Rafique and L. Velasco, Machine learning for network automation: Overview, architecture, and applications, Journal of Optical Communications and Networking, vol.10, issue.10, pp.126-143, 2018.

D. Trihinas, G. Pallis, and M. Dikaiakos, Low-cost adaptive monitoring techniques for the internet of things, IEEE Transactions on Services Computing, 2018.

R. J. Hyndman and A. B. Koehler, Another look at measures of forecast accuracy, International journal of forecasting, vol.22, issue.4, pp.679-688, 2006.

I. Shafer, K. Ren, V. N. Boddeti, Y. Abe, G. R. Ganger et al., Rainmon: an integrated approach to mining bursty timeseries monitoring data, Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.1158-1166, 2012.

D. Laiymani and A. Makhoul, Adaptive data collection approach for periodic sensor networks, 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC), pp.1448-1453, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01222995

S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, Payless: A low cost network monitoring framework for software defined networks, Network Operations and Management Symposium (NOMS), 2014.

. Ieee and . Ieee, , pp.1-9, 2014.

Y. Zhang, An adaptive flow counting method for anomaly detection in sdn, Proceedings of the ninth ACM conference on Emerging networking experiments and technologies, pp.25-30, 2013.

N. L. Van-adrichem, C. Doerr, and F. A. Kuipers, Opennetmon: Network monitoring in openflow software-defined networks, 2014 IEEE Network Operations and Management Symposium (NOMS), pp.1-8, 2014.

L. Fawcett, S. Scott-hayward, M. Broadbent, A. Wright, and N. Race, Tennison: A distributed sdn framework for scalable network security, IEEE Journal on Selected Areas in Communications, vol.36, issue.12, pp.2805-2818, 2018.